Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.rights.licenseCopyright 2020, Mary Ann Liebert, Inc., publishers-
dc.contributor.authorVeneranda, M.-
dc.contributor.authorLópez Reyes, G.-
dc.contributor.authorManrique, J. A.-
dc.contributor.authorMedina García, J.-
dc.contributor.authorRuiz Galende, P.-
dc.contributor.authorTorre Fdez, I.-
dc.contributor.authorCastro, K.-
dc.contributor.authorLantz, C.-
dc.contributor.authorPoulet, F.-
dc.contributor.authorDypvik, H.-
dc.contributor.authorWerner, S. C.-
dc.contributor.authorRull, F.-
dc.contributor.otherUnidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737-
dc.identifier.citationAstrobiology 20(3): 349-363(2020)es
dc.description.abstractIn the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator can detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. Beside amorphized minerals, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps indirectly to confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was successfully
dc.description.sponsorshipThis project is financed through the European Research Council in the H2020-COMPET-2015 programme (grant 687302) and the Ministry of Economy and Competitiveness (grants ESP2014-56138-C3-2-R and ESP2017-87690-C3-1-R); With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)es
dc.publisherMary Ann Liebert Publisherses
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87690-C3-1-R-
dc.subjectRaman spectroscopyes
dc.subjectImpact crateres
dc.subjectWater targetes
dc.titleExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Marses
dc.contributor.orcidLópez Reyes, G. [0000-0003-1005-1760]-
dc.contributor.orcidRuiz, P. [0000-0003-0181-3532]-
dc.contributor.orcidManrique, J. A. [0000-0002-2053-2819]-
dc.contributor.funderAgencia Estatal de Investigación (AEI)-
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO)-
dc.contributor.funderEuropean Research Council (ERC)-
dc.description.peerreviewedPeer reviewes
Appears in Collections:(CAB) Artículos

Files in This Item:
File Description SizeFormat 
acceso-restringido.pdf221,73 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.