Please use this identifier to cite or link to this item:
Title: The Ionized Warped Disk and Disk Wind of the Massive Protostar Monoceros R2-IRS2 Seen with ALMA
Authors: Jiménez Serra, I.
Báez Rubio, A.
Martín Pintado, J.
Zhang, Q.
Rivilla, V. M.
Keywords: Star formation
Issue Date: 13-Jul-2020
Publisher: The Institute of Physics (IOP)
DOI: 10.3847/2041-8213/aba050
Published version:
Citation: The Astrophysical Journal Letters 897(2): L33(2020)
Abstract: Theories of massive star formation predict that massive protostars accrete gas through circumstellar disks. Although several cases have been found already thanks to high angular-resolution interferometry, the internal physical structure of these disks remains unknown, in particular whether they present warps or internal holes, as observed in low-mass protoplanetary disks. Here, we report very high angular-resolution observations of the H21 alpha radio recombination line carried out in Band 9 with the Atacama Large Millimeter/submillimeter Array (beam of 80 mas x 60 mas, or 70 au x 50 au) toward the IRS2 massive young stellar object in the Monoceros R2 star-forming cluster. The H21 alpha line shows maser amplification, which allows us to study the kinematics and physical structure of the ionized gas around the massive protostar down to spatial scales of similar to 1-2 au. Our ALMA images and 3D radiative transfer modeling reveal that the ionized gas around IRS2 is distributed in a Keplerian circumstellar disk and an expanding wind. The H21 alpha emission centroids at velocities between -10 and 20 km s(-1)deviate from the disk plane, suggesting a warping for the disk. This could be explained by the presence of a secondary object (a stellar companion or a massive planet) within the system. The ionized wind seems to be launched from the disk surface at distances similar to 11 au from the central star, consistent with magnetically-regulated disk wind models. This suggests a similar wind-launching mechanism to that recently found for evolved massive stars such as MWC349A and MWC922.
E-ISSN: 1538-4357
ISSN: 0004-637X
Appears in Collections:(CAB) Artículos

Files in This Item:
File Description SizeFormat 
Jiménez-Serra_2020_ApJL_897_L33.pdf755,46 kBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons