Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12666/407
Title: WASP-127b: a misaligned planet with a partly cloudy atmosphere and tenuous sodium signature seen by ESPRESSO
Authors: Allart, R.
Pino, L.
Lovis, C.
Sousa, S. G.
Casasayas Barris, N.
Zapatero Osorio, M. R.
Cretignier, M.
Pallé, E.
Pepe, F.
Cristiani, S.
Rebolo, R.
Santos, N. C.
Borsa, F.
Bourrier, V.
Demangeon, O. D. S.
Ehrenreich, D.
Lavie, B.
Lendl, M.
Lillo Box, J.
Micela, G.
Oshagh, M.
Sozzetti, A.
Tabernero, H.
Adibekyan, V.
Allende Prieto, C.
Alibert, Y.
Amate, M.
Benz, W.
Bouchy, F.
Cabral, A.
Dekker, H.
D´Odorico, V.
Di Marcoantonio, P.
Dumusque, X.
Figueira, P.
Genova Santos, R.
González Hernández, J. I.
Lo Curto, G.
Manescau, A.
Martins, C. J. A. P.
Mégevand, D.
Mehner, A.
Molaro, P.
Nunes, N. J.
Poretti, E.
Riva, M.
Suárez Mascareño, A.
Udry, S.
Zerbi, Filippo M.
Keywords: Planets and satellites: atmospheres;Planets and satellites: individual: WASP-127b;Methods: observational;Techniques: spectroscopic
Issue Date: 16-Dec-2020
Publisher: EDP Sciences
DOI: 10.1051/0004-6361/202039234
Published version: https://www.aanda.org/articles/aa/full_html/2020/12/aa39234-20/aa39234-20.html
Citation: Astronomy and Astrophysics 644: A155(2020)
Abstract: Context. The study of exoplanet atmospheres is essential for understanding the formation, evolution, and composition of exoplanets. The transmission spectroscopy technique is playing a significant role in this domain. In particular, the combination of state-of-the-art spectrographs at low- and high-spectral resolution is key to our understanding of atmospheric structure and composition. Aims. We observed two transits of the close-in sub-Saturn-mass planet, WASP-127b, with ESPRESSO in the frame of the Guaranteed Time Observations Consortium. We aim to use these transit observations to study the system architecture and the exoplanet atmosphere simultaneously. Methods. We used the Reloaded Rossiter-McLaughlin technique to measure the projected obliquity λ and the projected rotational velocity veq ⋅sin(i*). We extracted the high-resolution transmission spectrum of the planet to study atomic lines. We also proposed a new cross-correlation framework to search for molecular species and we applied it to water vapor. Results. The planet is orbiting its slowly rotating host star (veq ⋅sin(i*) = 0.53−0.05+0.07 km s−1) on a retrograde misaligned orbit (λ = −128.41−5.46+5.60 °). We detected the sodium line core at the 9-σ confidence level with an excess absorption of 0.34 ± 0.04%, a blueshift of 2.74 ± 0.79 km s−1, and a full width at half maximum of 15.18 ± 1.75 km s−1. However, we did not detect the presence of other atomic species but set upper limits of only a few scale heights. Finally, we put a 3-σ upper limit on the average depth of the 1600 strongest water lines at equilibrium temperature in the visible band of 38 ppm. This constrains the cloud-deck pressure between 0.3 and 0.5 mbar by combining our data with low-resolution data in the near-infrared and models computed for this planet. Conclusions. WASP-127b, with an age of about 10 Gyr, is an unexpected exoplanet by its orbital architecture but also by the small extension of its sodium atmosphere (~7 scale heights). ESPRESSO allows us to take a step forward in the detection of weak signals, thus bringing strong constraints on the presence of clouds in exoplanet atmospheres. The framework proposed in this work can be applied to search for molecular species and study cloud-decks in other exoplanets.
Description: Based on Guaranteed Time Observations collected at the European Southern Observatory under ESO programme 1102.C-0744 by the ESPRESSO Consortium.
URI: http://hdl.handle.net/20.500.12666/407
E-ISSN: 1432-0746
ISSN: 0004-6361
Appears in Collections:(CAB) Artículos

Files in This Item:
File Description SizeFormat 
aa39234-20.pdf12,1 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons