Please use this identifier to cite or link to this item:
Title: Detailed design of the imaging magnetograph experiment (IMaX): a visible imager magnetograph for the Sunrise mission
Authors: Álvarez Herrero, A.
Belenguer, T.
Pastor, C.
González, L.
López Heredero, R.
Ramos, G.
Reina, M.
Sánchez, A.
Villanueva, J.
Sabau, L.
Martínez Pillet, V.
Bonet, J. A.
Collados, M.
Jochum, L.
Ballesteros, E.
Medina Trujillo, J. L.
Ruiz, C. B.
González, J. C.
Del Toro Iniesta, J. C.
López Jiménez, A. C.
Castillo Lorenzo, J.
Herranz, M.
Jerónimo, J. M.
Mellado, P.
Morales, R.
Rodríguez, J.
Domingo, V.
Gasent, J. L.
Rodríguez, P.
Keywords: Balloon Borne Telescopes;Liquid Crystal Retarders;Polarimetry;Sun
Issue Date: 7-Jul-2006
Publisher: SPIE Astronomical Telescopes Instrumentation
DOI: 10.1117/12.672117
Published version:
Citation: Proceedings of Space Telescopes and Instrumentation I, Optical, Infrared and Millimeter 6265: 62654C(2006)
Abstract: In this work, it is described the Imaging Magnetograph eXperiment, IMaX, one of the three postfocal instruments of the Sunrise mission. The Sunrise project consists on a stratospheric balloon with a 1 m aperture telescope, which will fly from the Antarctica within the NASA Long Duration Balloon Program. IMaX will provide vector magnetograms of the solar surface with a spatial resolution of 70 m. This data is relevant for understanding how the magnetic fields emerge in the solar surface, how they couple the photospheric base with the million degrees of temperature of the solar corona and which are the processes that are responsible of the generation of such an immense temperatures. To meet this goal IMaX should work as a high sensitivity polarimeter, high resolution spectrometer and a near diffraction limited imager. Liquid Crystal Variable Retarders will be used as polarization modulators taking advantage of the optical retardation induced by application of low electric fields and avoiding mechanical mechanisms. Therefore, the interest of these devices for aerospace applications is envisaged. The spectral resolution required will be achieved by using a LiNbO3 Fabry-Perot etalon in double pass configuration as spectral filter before the two CCDs detectors. As well phase-diversity techniques will be implemented in order to improve the image quality. Nowadays, IMaX project is in the detailed design phase before fabrication, integration, assembly and verification. This paper briefly describes the current status of the instrument and the technical solutions developed to fulfil the scientific requirements.
Description: COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
ISSN: 0277-786X
Appears in Collections:(Espacio) Artículos

Files in This Item:
File Description SizeFormat 
acceso-restringido.pdf221,73 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.