Please use this identifier to cite or link to this item:
Title: A Low-mass Cold and Quiescent Core Population in a Massive Star Protocluster
Authors: Li, S.
Lu, X.
Zhang, Q.
Lee, C. W.
Sanhueza, P.
Beuther, H.
Jiménez Serra, I.
Qiu, K.
Palau, A.
Feng, S.
Pillai, T.
Kim, K. T.
Liu, H. L.
Girart, J. M.
Liu, T.
Wang, K.
Liu, H. B.
Li, D.
Lee, J. E.
Li, F.
Li, J.
Kim, S.
Yue, N.
Keywords: Infrared dark clouds;Early type stars;Star forming regions;Star formation;Interstellar medium;Interstellar line emission;Protoclusters
Issue Date: 29-Apr-2021
Publisher: IOP Science Publishing
DOI: 10.3847/2041-8213/abf64f
Published version:
Citation: The Astrophysical Journal Letters 912(1): L24(2021)
Abstract: Pre-stellar cores represent the initial conditions of star formation. Although these initial conditions in nearby low-mass star-forming regions have been investigated in detail, such initial conditions remain vastly unexplored for massive star-forming regions. We report the detection of a cluster of low-mass starless and pre-stellar core candidates in a massive star protocluster-forming cloud, NGC 6334S. With the Atacama Large Millimeter/submillimeter Array (ALMA) observations at a ∼0.02 pc spatial resolution, we identified 17 low-mass starless core candidates that do not show any evidence of protostellar activity. These candidates present small velocity dispersions, high fractional abundances of NH2D, high NH3 deuterium fractionations, and are completely dark in the infrared wavelengths from 3.6 up to 70 μm. Turbulence is significantly dissipated and the gas kinematics are dominated by thermal motions toward these candidates. Nine out of the 17 cores are gravitationally bound, and therefore are identified as pre-stellar core candidates. The embedded cores of NGC 6334S show a wide diversity in masses and evolutionary stages.
Description: Facilities: ALMA - Atacama Large Millimeter Array, JVLA - , Herschel. - Software: CASA (McMullin et al. 2007), APLpy (Robitaille & Bressert 2012), Astropy (Astropy Collaborationet al. 2013), Matplotlib (Hunter 2007), PySpecKit (Ginsburg & Mirocha 2011).
E-ISSN: 2041-8213
ISSN: 2041-8205
Appears in Collections:(CAB) Artículos

Files in This Item:
File Description SizeFormat 
Li_2021_ApJL_912_L7.pdf1,29 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons