Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.rights.licenseCopyright © 2020, The Author(s)-
dc.contributor.authorManrique, J. A.-
dc.contributor.authorLópez Reyes, G.-
dc.contributor.authorCousin, A.-
dc.contributor.authorRull, F.-
dc.contributor.authorMaurice, S.-
dc.contributor.authorWiens, R. C.-
dc.contributor.authorMadariaga, M. B.-
dc.contributor.authorGasnault, O.-
dc.contributor.authorAramendia, J.-
dc.contributor.authorArana, G.-
dc.contributor.authorBeck, P.-
dc.contributor.authorBernard, S.-
dc.contributor.authorBernardi, P.-
dc.contributor.authorBernt, M. H.-
dc.contributor.authorBerrocal, A.-
dc.contributor.authorBeyssac, O.-
dc.contributor.authorCaïs, P.-
dc.contributor.authorCastro, K.-
dc.contributor.authorClegg, S. M.-
dc.contributor.authorCloutis, E.-
dc.contributor.authorDromart, G.-
dc.contributor.authorDrouet, C.-
dc.contributor.authorDubois, B.-
dc.contributor.authorEscribano, D.-
dc.contributor.authorFabre, C.-
dc.contributor.authorFernández, A.-
dc.contributor.authorForni, O.-
dc.contributor.authorGarcía Baonza, V.-
dc.contributor.authorGontijo, I.-
dc.contributor.authorJohnson, J. R.-
dc.contributor.authorLaserna, J.-
dc.contributor.authorLasue, J.-
dc.contributor.authorMadsen, S.-
dc.contributor.authorMateo Martí, Eva-
dc.contributor.authorMedina, J.-
dc.contributor.authorMeslin, P.-
dc.contributor.authorMontagnac, G.-
dc.contributor.authorMoros, J.-
dc.contributor.authorOllila, A. M.-
dc.contributor.authorOrtega, C.-
dc.contributor.authorPrieto Ballesteros, O.-
dc.contributor.authorReess, J. M.-
dc.contributor.authorRobinson, S.-
dc.contributor.authorRodríguez, J.-
dc.contributor.authorSaiz, J.-
dc.contributor.authorSanz Arranz, J. A.-
dc.contributor.authorSard, I.-
dc.contributor.authorSautter, V.-
dc.contributor.authorSobron, P.-
dc.contributor.authorToplis, M.-
dc.contributor.authorVeneranda, M-
dc.identifier.citationSpace Science Reviews 216, 138es
dc.descriptionPart of a collection: The Mars 2020 Mission-
dc.description.abstractSuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam
dc.description.sponsorshipThe authors would like to thank the Spanish MINECO, projects ESP2014-56138-C3-1-R, ESP2055-71965-REDT, ESP2017-87690-C3-1-R, and RED2018-102600-T for funding. Additional funding in Spain was provided by the University of Valladolid and the local and regional institutions as Valladolid City Council, Valladolid Provincial Council, Junta de Castilla y Leon and we are grateful for their support. Support in the US was provided by NASA’s Mars Exploration Program. Support in France was provided by CNES, CNRS, and local Universities. The Valladolid team thanks in particular the RLS team from INTA and the University of Valladolid for their strong support in many phases of this exciting project. The Danish contribution was funded through support by the Carlsberg Foundation, grants CF16-0981 and CF17-0979 and in addition, we are grateful to DuPont Electronic Materials for providing the Kapton® foils used for reducing the transfer of shock energy to the permanent magnets used for color references. In Canada, funding was provided by the Canadian Space Agency, NSERC, CFI, MRIF, and U. Winnipeg.-
dc.publisherSpringer Linkes
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87690-C3-1-R-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RED2018-102600-T/ES/CIENCIA E INSTRUMENTACION PARA EL ESTUDIO DE PROCESOS (BIO)GEOQUIMICOS EN MARTE/-
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.subjectPerseverance roveres
dc.subjectJezero crateres
dc.subjectRaman spectroscopyes
dc.subjectInfrared spectroscopyes
dc.titleSuperCam Calibration Targets: Design and Developmentes
dc.contributor.funderAgencia Estatal de Investigación (AEI)-
dc.description.peerreviewedPeer reviewes
Appears in Collections:(CAB) Artículos

Files in This Item:
File Description SizeFormat 
Manrique2020_Article_SuperCamCalibrationTargetsDesi (1).pdf2,73 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons