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The basic mechanisms that lead to the creation of complex socioeconomic structures remain poorly under-
stood. A combination of network science and game theory can help explain them by examining how simple
networks interact to build complex entities, both when connections among individuals are exclusively guided
by self-interest or when they result from a mixture of individual and collective motivations. Here we present a
theoretical framework where individuals or human groups from different communities connect to each other only
if they increase their own eigenvector centrality, a topological measure of wide applications in many different
contexts that quantifies the importance of a node within the network. Our analytical and numerical results show
that the emergence of interconnected networks is catalyzed by the self-interest of peripheral agents, who are
penalized in the long run but transiently benefit from establishing links with nodes from other communities.
Moreover, the interconnection process leads to a hierarchical, assortative, and very efficient structure where
links across networks involve nodes of the same importance. These findings are robust to the introduction of
moderate levels of collective-oriented behavior and compatible with the interconnection dynamics observed in
real-world socioeconomic networks.
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I. INTRODUCTION

Throughout human history, social groups have competed
for resources, knowledge, and technology, just as animals
compete for food or mates in nature and firms fight for cus-
tomers and production factors in modern economies. The
interaction among small communities has permitted the ap-
pearance of larger and more organized structures able to
more efficiently face the challenges that arise along the way.
However, the undesirable consequences of social hierarchy
and economic inequality have become extremely hard to
overcome [1–3]. Despite the attention that this subject has
attracted during the last decades [4–8], the basic mechanisms
that lead to the creation of complex societies and define their
internal structural properties are still a key open question.

The connection between complex networks and social sci-
ences arose almost a century ago with the development of
the concept of the sociogram [9]. However, for a long time
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its use was limited and circumscribed to the fields of soci-
ology [10,11], psychology [12], and anthropology [13,14].
It has only been in the last two decades that network
theory has become popular in other areas [15] such as
economics [16–19], political science [20–22], or archeol-
ogy [23,24]. The application of network theory to social
sciences has not been free of criticism, though, mostly because
its potential difficulty to adequately reflect the underlying
theory [25,26]. Nevertheless, such criticism has been losing
weight as more sophisticated network-based approaches have
demonstrated their power to provide precise measurements
and inspire the development of new theory for a broad range
of social phenomena [27,28]. Game theory has received sim-
ilar criticism, especially regarding its ability to address the
emergence of pro-social behaviors, such as cooperation and
altruism, which are central to the development of human
societies [29–31]. Although game theory has considered the
importance of cooperative behaviors since its inception [32], it
has developed a certain bias toward noncooperative scenarios,
most notably in the field of economics, and therefore the
full application of this theory to social sciences is still in
progress [33].

Those caveats aside, since Axelrod’s pioneering work on
the emergence of cooperation between selfish agents [34],
important advances have been made in the capacity of network
science and game theory to explain the rise and evolution
of complex socioeconomic structures [31,35–42]. In the last
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decade, the scope of these efforts has broadened to include
more realistic scenarios in which networks, rather than single
nodes, interact and compete at different scales, giving rise to
what is usually known as a network of networks [37,43–46].
The present paper expands on this line of research.

We introduce a theoretical model aimed at describing the
process by which the interconnection of small communities
gives rise to complex socioeconomic structures. The process
is driven by the local behavior of the members of different
networked communities that contact each other exclusively
guided by self-interest or following a combination of individ-
ual and collective motivations. More precisely, we consider a
scenario in which groups and individuals try to maximize their
own importance—prestige, wealth, or influence, depending on
the case—with respect to other groups and individuals. As
a quantitative proxy for importance, we adopt a topological
measure, the eigenvector centrality [47], whose applicability
to socioeconomic systems is presented in Sec. II.

Our analytical and numerical results show that the inter-
connection among communities is facilitated by the action of
their weakest members, whose fate is often decoupled from
that of their own community. In contrast, central nodes, whose
well-being aligns better with the collective fate, only engage
with the interaction process when it has become inevitable.
The emerging process leads to an assortative society—i.e.,
nodes connect to other nodes of the same importance, a typical
property in social structures [48]—which is very efficient
in dynamical terms such as the growth rate or the disper-
sion time in spreading processes. Paradoxically, inequality
diminishes during the process but is recovered when the new
interconnected network reaches its asymptotic structure. As a
descriptive example, we simulated the model on networks of
rural communities from southern India [49–51], and assessed
its applicability to a wide range of real systems, focusing on
the spread of scientific collaborations in graphene research
from 2007 to 2018 and the analysis of pairing in the context of
religious, social, or ethnic groups, as well as in international
business activities.

II. THE EIGENVECTOR CENTRALITY
IN SOCIOECONOMIC SYSTEMS

Eigenvector centrality measures the importance of a node
or group of nodes in a network based on the relevance of
its neighbors [47]. Its value is obtained from the eigenvector
associated with the largest eigenvalue of the adjacency matrix.
In practice, the eigenvector centrality describes the power of
a node to affect other nodes in the network not only directly
but also indirectly through its neighbors [52]. For example,
in the context of scientific collaborations, a scientist linked
to colleagues with high eigenvector centrality will also show
high centrality. Note, however, that while being connected to
few but very important nodes is a guarantee of large eigenvec-
tor centrality, this is not necessarily true when connecting to
many but not so relevant neighbors.

This topological measure can be applied to most processes
whose final state is related to the spectral properties of the
network, such as the spread of knowledge, wealth, innovation,
culture, rumors, or diseases [53]. Some applications to very
diverse contexts are the study of the impact of a scientists’

work in the community [54], the webpage ranking in the
internet through the Pagerank algorithm [55], the evolution
of genotypes [56,57], and the detection of relevant regions in
the brain [58], to cite just a few.

Focusing on the socioeconomic literature, eigenvector cen-
trality has received special attention as a proxy for the
influence or prestige of an individual or human group em-
bedded in a community [59,60], the systemic relevance and
robustness of firms and institutions [61], and the amount of
money, goods, and services in economic and financial net-
works [62–65]. In this context, the adequacy of eigenvector
centrality as a measure of a node’s importance is supported
by multiple lines of evidence. For example, a recent study
found that voluntary enrollment into a microfinance program
in rural India significantly increased when the program was
introduced through locals with higher eigenvector centrality
because their influence in the community was larger [50,51].
Furthermore, the correlation of eigenvector centrality with
the systemic relevance and robustness of firms and institu-
tions embedded in financial networks has been extensively
studied, both theoretically and empirically, and it is linked
to greater opportunities for future development and better
access to reliable credit sources in the event of a financial
crisis [61,66–68]. In other cases, eigenvector centrality rep-
resents valuable knowledge for the production of a good or
the control of a technique for which individuals or companies
compete [62,69–71]. Accordingly, this topological measure
has proved especially fruitful to study knowledge spreading
in interfirm networks and to identify those companies that act
as sources of innovation [72,73]. A similar effect has been
described in research collaboration networks, where eigenvec-
tor centrality constitutes a good predictor of article and patent
productivity [74].

Some works have studied the evolution of networks when
creation and destruction of links is based on several measure-
ments of node centrality. In single networks, centrality-based
rewiring leads to nested structures, where the neighborhood
of every node is a subset of the neighborhoods of nodes
with larger degree [70,75]. It is worth mentioning, though,
that most of these works focus on single networks, and it
is well established that many of the properties of isolated
(single) networks drastically differ from those of intercon-
nected networks [45,64,76]. More importantly, intra- and
intercommunity links in real networked systems often differ
in properties and dynamics [77], which warrants a dedicated
study of centrality-based dynamics in networks connected to
other networks. A first step in that direction was presented in
Refs. [37,76], where competition for eigenvector centrality at
the whole-network level was shown to determine the large-
scale configuration of connections across networks. In turn,
here we focus on interconnections at the level of individual
nodes, as our aim is to analyze how different distributions
of individual and collective interests drive the emergence of
interconnected socioeconomic networks.

III. THE EMERGING SOCIETY GAME

In our model, we consider r networks of Ni nodes re-
spectively, where i = A, B, C,... The adjacency matrices Gi

contain full information about the connections (intralinks)
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within each network i, that is, the specific topology of the
networks. The largest eigenvalue λi of Gi grows with the
number of nodes and links, and serves as a proxy for the
network strength (depending on the context, this could mean
the rate at which knowledge or wealth is generated) [76].
Networks can be sorted from strongest to weakest, such that
λA � λB � ... � λr . Collectively, the r networks constitute
the total network T, with NT = ∑

i Ni nodes. The adjacency
matrix GT includes the intralinks that belong to each net-
work and the links among nodes from different networks
(henceforth connector links). In this framework, intra- and in-
tercommunity connections can share the same general nature
(e.g., friendship, trust, commercial partnership) but evolve at
different rates, as we assume that complex societies are built
upon the foundations of already existing smaller structures. In
practice, we maintain the internal structure of each network
and only the connector links evolve with time.

In the simplest form of the game, the goal of each node n is
maximizing its own importance quantified as its eigenvector
centrality Cn, calculated as

Cn = (�uT)n

NT∑
j=1

(�uT) j

, (1)

where �uT is the eigenvector associated with the largest eigen-
value λT of the adjacency matrix of the total network. The
game starts with all networks isolated from each other. In such
disconnected configuration, only the nodes in the strongest
network acquire positive centrality, while the centrality of all
other nodes is zero. In each time step, two random nodes
belonging to different networks (henceforth connector nodes),
for example, l ∈ A and m ∈ B, are connected by an undi-
rected connector link of weight ε. For simplicity, only one
connector link per node is allowed, and therefore any pre-
existing connector links associated to nodes l or m are erased
(but note that accepting a larger, but still small number of
connections per individual does not qualitatively affect the
results). If both nodes are already connected with each other,
the link is erased, allowing the deletion—not only rewiring—
of already existing connector links. The new configuration is
accepted only if both connector nodes (l and m) increase their
centrality; otherwise, the system returns to its former state.
Note that connector links affect the centrality of every node
in every network because the eigenvector centrality is a global
quantity; however, the intrinsic strengths λi of the networks
remain unchanged as long as connector links involve nodes
from different networks (as is the case here).

The system can remain in the initial disconnected state
indefinitely (if there is no possible connector link that simul-
taneously benefits two connector nodes belonging to different
networks) or it can experience a complex evolutionary pro-
cess involving creation, rewiring, and destruction of connector
links. Regardless of the particular random steps of this pro-
cess, the game ends when a Nash equilibrium is reached [78]
such that pairs of nodes cannot increase their centrality any-
more by locally rewiring their connector links.

Because the overall centrality of the total network is always
equal to 1 [Eq. (1)], any competition for centrality among
networks is a zero-sum game. This has important implications

for the emerging society game. In the initial disconnected
state, all centrality is accumulated in the strongest network,
and any connection with weaker communities diverts central-
ity toward those. Thus, from a community perspective, early
connections are detrimental to the strong network and the cre-
ation of connector links is only possible if the benefit that the
connector node obtains by acquiring a new contact outweighs
the loss of centrality experienced by its community. Nodes
in weak networks, however, do not face this dilemma because
connecting to the strong network at the initial step is beneficial
for both the whole community and the individual nodes. In
summary, the interaction of simple ensembles toward larger
and more complex structures will only be feasible through the
self-interest of individuals that act regardless of the fate of
their own community.

IV. INTERCONNECTION DYNAMICS DRIVEN
BY SELF-INTEREST

A. Interaction between two networks

To simulate the dynamics of the emerging society game
in real-world networks, we used survey data obtained in the
context of a microfinance program in rural communities from
southern India [49–51]. We built the loan networks of these
communities by connecting individuals that were willing to
lend and borrow a certain amount of money from each other.
Local loan networks constructed this way provide valuable
information about the financial resilience of a region [79–82],
how much neighbors trust each other, and with whom the
villagers wouldn’t mind sharing a technical innovation or a
new tool. We use these real-world networks as an illustrative
starting point to describe the phenomenology of a generic
interconnection process in which agents connect to each other
pursuing greater centrality. Note, however, that competition
for centrality in this example could result from the house-
holds’ drive to optimize financial resilience or to increase
their influence over the community, as already discussed in
Sec. II. In fact, Banerjee et al. showed in Ref. [50] that the
eigenvector centrality calculated from these networks was
the measure that best quantified the influence of a villager
on the community, outperforming other topological quantities
such as the degree centrality or betweenness.

Figure 1 shows a simulation of the emerging society game
on two of the Indian village networks—-note that the same
phenomenology is obtained when the model is applied to
random Erdős-Rényi networks (see Fig. 1 of the Supplemental
Material [83]) and when two connector links per node are
allowed (see Fig. 2 of the Supplemental Material [83]). In
the beginning, the villages are isolated and all centrality is
assigned to the village with the strongest network (henceforth
network A). After a certain amount of creation, rewiring and
deletion of connector links [Fig. 1(a)], the two villages reach
a state of equilibrium characterized by a high number of
connections [Fig. 1(b)].

Three stages spontaneously emerge during the process be-
fore arriving to the asymptotic regime: (i) the approaching
stage, (ii) the connecting stage, and (iii) the optimization stage.
In the approaching stage, there exists a critical connecting
centrality (�uA)crit such that only those nodes in A with cen-
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FIG. 1. Numerical simulation of the emerging society game: Two
initially isolated networks evolve toward a larger and more com-
plex structure (networks 60 and 44 of Ref. [49], with 213 and 138
nodes, respectively; λA = 5.0785, λB = 4.6961). Dark lines (shad-
owed areas) correspond to averages (10%–90% percentile) over 200
realizations. Only accepted connections are plotted. The strength of
the connector links is ε = 1 in all simulations, unless specified other-
wise. (a) The state of the system at three different times. (b) Number
of connector links between both networks. (c) Centrality of the most
recent connector node from network A. (d) Centrality accumulated
by network A. (e) Assortativity of connections, measured as the
correlation coefficient of the connector node centralities (for con-
sistency, here we used time-independent node centralities, separately
measured in each network). (f) Largest eigenvalue λT. (g) Time to
equilibrium teq = [ln(λT/λT,2)]−1, a quantity proportional to the aver-
age time to reach the equilibrium in a generic spreading process [56].
The maximum reachable growth rate and minimum time to equilib-
rium (marked in green) were determined by numerically optimizing
these quantities subject to the constraint of a single connector link
per node. Stages of the process: I, approaching; II, connecting; III,
optimization; IV, equilibrium stage.

trality smaller than that critical value will connect to network
B. For the first connector link, we obtain

(�uA)crit =
√

2�λ

λA
, (2)

where �λ = λA − λB is the difference between the strengths
of both networks. This critical value is especially low and
therefore hinders the connection between networks, when the
largest eigenvalues of both networks are very similar. The fol-
lowing connector links further decrease the critical centrality
toward

(�uA)crit =
√

�λ

λA
(3)

(see Appendix C for the formal proof of these expressions
and the rest presented in this section). Thus, during these
first steps, connector links are created exclusively between

the most peripheral nodes of network A [the underdogs of the
strong village, see Fig. 1(c)] and any node of network B, be-
cause of the reluctance of central nodes in the strong network
to lose importance and the tendency of all nodes of the weak
network to connect to a promising source of centrality. As a
result, the system becomes dissortative in this first stage and
the average centrality or importance of the peripheral nodes
increases.

The connecting stage starts as just mentioned, with a few
peripheral nodes in A connected to all types of nodes in B.
Nodes in B already connected to a (peripheral) old node in
A can now reconnect to a new (so-far disconnected from B)
node in A as far as the centrality of this new node is bounded
as follows:

(�uA)new ∈ (
(�uA)old, (�uA)crit

)
.

(�uA)crit is given by the complex expression shown in Eq. (C8)
of Appendix C, but when the number of connector links grows
sufficiently, it tends to

(�uA)crit = (�uA)old

2
+

√
�λ

λA
+

[ (�uA)old

2

]2
. (4)

That is, at the beginning of the connecting stage, nodes in
B that are already connected to peripheral nodes in A will
rewire their connections toward slightly more central nodes

in A. The critical centrality (�uA)crit, that was around
√

�λ
λA

at the end of the approaching stage and did not let nodes of
larger centrality connect to B, increases up to a quantity that
grows with (�uA)old [see Eq. (4)]: Each time a new node in
A of centrality larger than the rest of connected nodes steals
a link from a weaker node in A, the critical centrality also
grows, permitting the connection of even more central nodes.
Little by little, a staircase of more central nodes in A enters
the game [Fig. 1(c)], diverting centrality from network A to
network B [Fig. 1(d)]. After a large number of connections
and rewirings, the majority of nodes in A and B become
connected to the other network in a random manner, reaching
the end of the connection stage. In this transition point, the
system reaches a maximum of disorder, which manifests as
a minimum absolute value of assortativity [Fig. 1(e)], and a
maximum in the time that it takes for the system to recover
from a generic perturbation [Fig. 1(g)].

In the subsequent optimization stage, the gain of centrality
of a node l in A that is connected to an old node in B
and rewires its connection toward a different new node in B
verifies

�Cl∈A ∝ (�uB)new − (�uB)old.

In a similar manner, for nodes m in B, we obtain

�Cm∈B ∝ (�uA)new − (�uA)old,

[see Eqs. (C10) and (C11) of Appendix C for details]. This
yields that every node will do its best to avoid detrimental
connections with weaker nodes and to connect to more central
nodes. The process leads to a hierarchical equilibrium state (a
Nash equilibrium), where nodes end up linking to nodes of its
same importance, optimizing the assortativity of the system
(measured only in the connector links, as the internal links of
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both networks are kept constant throughout the process). Also,
the largest eigenvalue of the total network reaches a maximum
close to the optimum [Fig. 1(f)], and the time to equilibrium
(or recovery time) decreases toward its potential minimum
[Fig. 1(g), see Appendix D for a mathematical proof]. As a
consequence, the final structure—the union of networks A
and B—is optimally efficient in dynamical terms, as influence,
wealth, knowledge, or whatever resource we are measuring in
the process will grow at its maximum rate and the spread of
information and goods across the network will be optimally
fast. Note, however, that the maximum assortativity reached
at the end of the interconnection process will push the pe-
ripheral nodes again into the background, with most of them
disconnected from any node of the other network.

Besides the analytical information sketched above, a
thorough theoretical study of the interconnection process is
developed in the Appendices. In Appendix A, we present a
full mathematical treatment of the emerging society game,
whereas in Appendix B we assess the good agreement
between the numerical and analytical approaches. In Ap-
pendix C, we formally describe all three stages of the process
and the transitions between them and we prove that the asymp-
totic state of the system is a Nash equilibrium that maximizes
assortativity. Finally, in Appendix D, we prove that the final
equilibrium optimizes the dynamical properties of the system.

B. Interaction among many networks

What would happen if more than two communities in-
teracted to become a much larger structure? To address
this question, we modeled the connection dynamics of nine
networks with three different topologies (Barabási-Albert
scale-free, Erdős-Rényi random, and a group of villages from
the microfinance program [49–51]). In all cases, we found
that the same phenomenology described above for the two-
network system also occurs in many-network systems (see
Figs. 3–5 of the Supplemental Material [83]). In Fig. 2, we
study the connection process at the network-scale, that is,
we consider networks as the interacting units and focus on
the number of interconnections between pairs of networks,
rather than on the properties of the connector nodes. At the
beginning of the process (the approaching stage), all networks
(and specially the weakest) tend to connect to the strong
one, as this is the only source of centrality, and the larger
the difference between eigenvalues the easier the connection
[see Eqs. (2) and (3) and Appendix C for details]. At the
connecting stage, the system faces a disordered configuration
where connector links are randomly distributed among the
networks and, after the optimization stage, strong networks
link with each other in a rich club that accumulates most of the
final centrality and ignore the weakest neighbors. In summary,
the phenomenology observed in the two-network system is
also detected in multinetwork systems and, interestingly, the
behavior shown at the node scale is mimicked at the network
scale.

V. INDIVIDUAL VERSUS COLLECTIVE MOTIVATIONS

It is known that in some social and economic networks,
the decisions of the individuals are based on both group and

individual motivations. Following Ref. [84], we redefined the
centrality of an individual n as a mixture of collective and
individual interests, such that

C∗
n = αCn + (1 − α)

∑Ni
k=1,k �=n Ckβ

dn,k−1∑Ni
k=1,k �=n βdn,k−1

, (5)

where α ∈ [0, 1] is the self-interest parameter, β ∈ [0, 1] the
normalized social reach, and dn,k is the distance from node n
to a node k of its own network i = A,B,... The raw centralities
of node n, Cn, and of node k, Ck , are given by Eq. (1).

The self-interest parameter α can be interpreted as the
fraction of the total payoff of an individual that is due to its
own activity or initiative. 1 − α could be the side benefits that
an agent receives for belonging to a community or the in-
centive by which the authorities promote community-oriented
strategies, depending on the case [Fig. 3(a), top]. According
to this, α = 1 when the payoff is exclusively that of the
connector node individually—the case studied in the former
section—and α = 0 when the payoff coincides with that of the
neighborhood with which it shares the benefits of its actions.
The normalized social reach β tunes the size of such social
group, and ρ = 1 − 1/ log(β ) is its average radius [Fig. 3(a),
bottom]. β = 0 (i.e., ρ = 1) represents the case in which the
nodes are only involved with the fate of their neighbors at
distance 1 and do not care about the rest, while β = 1 (i.e.,
ρ = ∞) when all nodes in the network are equally important
for each agent.

Figure 3(b) shows that the outcome of the interaction be-
tween two networks critically depends on the values of α

and β. Remarkably, there is a drastic transition between the
cases in which the networks do not ever connect and those
in which the whole connecting process takes place. In the
limit when α = 0 and β = 1, the payoff of every individual
coincides with that of its whole network (excluding itself). In
such a limit case, it is easy to see that the system will remain
disconnected, because an isolated strong network always loses
centrality if it connects to any other network.

Figures 3(c)–3(h) plot the dependency of the critical val-
ues αcrit (for β = 0) such that the connecting process only
takes place for α > αcrit and βcrit (for α = 0) such that the
connecting process only takes place for β < βcrit on some key
properties of the networks, and Fig. 6 of the Supplemental
Material [83] shows the dependency of αcrit on the centrality
of the connector nodes of the strong network (see Appendix E
for an analytic calculation of αcrit and a formal analysis of its
dependency on the network properties). Numerical and the-
oretical results agree and demonstrate that αcrit is remarkably
low—i.e., little self-interest would be enough for initiating the
connecting process, except if the strength λA of the strong
network is very large, if both networks show very similar
eigenvalues, or if the centrality of the most peripheral nodes
is large, which only happens when the networks are small
and their structure is regular or cliquelike. Furthermore, the
dependency of αcrit and βcrit on the network properties is
qualitatively inverse: The connecting process will only take
place if the individuals act sufficiently in their own interest or
if they are altruistic but share their payoff with a community
that is small and close to them.
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FIG. 2. Numerical simulation of the emerging society game in a set of nine interacting networks. One hundred simulations were carried
out using scale-free (Barabási-Albert) networks (whose connection patterns are sketched in (a)), random (Erdős-Rényi) networks, and real
loan networks from Indian villages [49]. The networks were ranked according to their strength (i.e., maximum eigenvalue λi). The number
of connector links between each pair of networks (plotted in (b) at different times) shows that the three stages of the connection process
detected in the two-network case also occur when many networks play the game. (c) When the equilibrium state has been reached, the final
centrality accrued by the nodes of each network (Ci) correlates with the network’s initial strength (λi). Note that in Ref. [37] it was shown
that if the interconnection between the weak networks reaches a larger maximum eigenvalue than that of the strongest network, several final
configurations might coexist, complicating the analysis of the system. The systems studied here are not the case though.

VI. ANALYSIS OF REAL-WORLD
SOCIOECONOMIC SCENARIOS

A. A real system studied along time: scientific collaborations
in an emergent field of research

The unprecedented access to bibliographic databases link-
ing research funding, scientific productivity, and scientific
collaboration patterns has made science of science [86] a
promising research area, which could help accelerate the
development of science by more effectively addressing en-
vironmental, social, and technological challenges, and by
facilitating the identification of the mechanisms responsible
for scientific discovery [87].

To test if the evolution of scientific collaborations follows
the steps predicted by our model, we studied the spread of
collaborations in the field of graphene from 2007 to 2018.
We chose this field because, while being relatively new, it has
experienced rapid growth and is already well established in
the physics community.

We first investigated whether the structure of the collabo-
ration network can predict the impact of a scientist’s work.
To that end, we collected the h-index of the hundred most
central researchers in the graphene coauthorship network in
May 2020 and carried out a stratified analysis to assess how a
researcher’s centrality (measured over the period 2007–2018)
and the network community to which that researcher belongs
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FIG. 3. Individual versus collective motivations in the emerging
society game. (a) The self-interest parameter α weights the relative
contribution of individual and collective motivations to the centrality
of an individual; the normalized social reach β tunes the radius of
collective motivations. (b) Number of connections at equilibrium
between two Erdős-Rényi networks as a function of α and β. Con-
nection occurs if α > αcrit (for β = 1) or if β < βcrit (for α = 0).
(c)–(h) Dependency of αcrit [(c), (e), (g)] and βcrit [(d), (f), (h)] on the
size of the strong network NA [(c), (d)], the maximum eigenvalue of
the strong network λA [(e), (f)], and the ratio of eigenvalues λB/λA

[(g), (h)], calculated in networks of different sizes and topologies
(ER: Erdős-Rényi, SF: scale-free). Unless otherwise specified, λA =
10.2, NA = 213.

reflect on his/her h-index. We found that both the central-
ity and the community contribute to the scientist’s impact.
The quantitative contribution of both factors is similar, with
the community explaining 25% of the variance in the h-
index (ANCOVA, F = 2.7, 13 d.f., p = 0.004) and centrality
explaining an additional 20% (ANCOVA, F = 28.4, 1 d.f.,
p < 10−5). After correcting for the effect of the community,

FIG. 4. Evolution of the scientific coauthorship network in the
field of graphene from 2007 to 2018. 104 670 articles and 193 675
scientists were used in the study (for clarity, only the top 100 re-
searchers are represented). (a) Scientific collaboration networks in
five-year windows starting in 2007, 2009, 2011, and 2013. Nodes
represent researchers, with node sizes proportional to their eigenvec-
tor centrality. Node colors indicate the communities of the original
network (2007–2012) detected by Infomap [85]. Link widths are
proportional to the number of coauthored articles (connector links
in red). (b) Mean centrality of the connector nodes. (c) Assortativity,
measured as the correlation coefficient of the connector nodes’ cen-
tralities. (d) Difference between the maximum eigenvalue (growth
rate) of the system and that of the same communities interconnected
through a randomized set of connector links. (e) Dependence of the
final centrality of each network Ci on the network’s initial strength
λi (Spearman’s correlation coefficient ρ = 0.91, p < 10−4, n = 13).
In (b)–(d), blue lines (shaded areas) indicate mean values (95%
confidence intervals) for 100 randomizations of the connector links.
See Appendix F for details.

the correlation coefficient between centrality and h-index be-
comes R = 0.52 (see Fig. 7 of the Supplemental Material [83],
N = 98, p < 10−7).

Having shown that the structure of the collaboration net-
work is relevant to the midterm impact of an author’s research,
we focused on the dynamics of such collaborations over time.
Figure 4(a) shows the connections for the hundred most cen-
tral researchers in five-year periods (internal links in gray
and connector links in red). In agreement with the model,
the connector links in 2007 mostly involved peripheral nodes,
whereas long-reach collaborations among central researchers
were established in subsequent years [Fig. 4(b)]. Furthermore,
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the shift from negative to positive assortativity already seen in
the simulations [Fig. 1(e)] is also observed in this real case
[Fig. 4(c)]. Figure 4(d) presents the increase in the maximum
eigenvalue (growth rate) of the system in comparison to the
same communities when connected through a randomized set
of connector links. Finally, Fig. 4(e) shows that, at the end
of the process (i.e., in the year 2018), the final centrality of
each community (Ci) correlates with its initial strength (λi), in
agreement with the examples analyzed in Fig. 2.

In summary, the patterns observed for the establishment
of scientific collaborations are fully compatible with the
phenomenology described in this paper: starting from a frag-
mented network, intergroup collaborations initially linked
peripheral scientists from large groups (probably postdoctoral
researchers with high mobility) with relevant professionals
from smaller groups. These original connections catalyzed the
collaboration among more senior scientists that, taking part
in this process in a second stage, led to the current, very
active, intertwined, and more hierarchical network, where
most centrality accumulates in the strongest groups. The final
equilibrium has not yet been reached, though, and both a
decrease of the mean centrality of the researchers that es-
tablish new collaborations and a saturation of the maximum
eigenvalue of the system should be expected for the following
years.

B. Assortativity in real socioeconomic networks

The previous example is exceptional because it covers the
evolution of an ensemble of interconnected networks from
its early stages to near maturity. In contrast, most socioe-
conomic networks with available data represent advanced
stages of the interconnection process. Although we cannot
study the dynamics of those networks in as much depth as
we did with graphene collaborations, we expect that they
will display some general properties that are characteristic of
the stationary state of the process. Specifically, we focused
on two robust predictions of the emerging society game: As
the final network reaches the stationary state, (i) nodes from
a community connect to nodes of similar importance from
other communities and (ii) interconnections tend to involve
communities of similar strength. We tested these predictions
in a diverse set of real-world networks that include, among
others, friendship networks in African rural communities [88]
and business affinity networks revealed by overlap in their
boards of directors [89]. As predicted by the model and shown
in Fig. 5, the networks studied are assortative both at the
node level (one-sample student’s T test, T = 8.8, 44 d.f.,
p < 10−10) and at the community level (one-sample student’s
T test, T = 19.1, 38 d.f., p < 10−10).

C. Individual versus collective motivations in real
socioeconomic networks

The centrality-based framework described in this paper
naturally applies to social interaction processes in which in-
dividuals aim to connect with broader environments than
those where they normally operate. The drive to connect with
individuals outside the group can be more or less intense
depending, among other factors, on the degree of satisfac-

FIG. 5. Assortativity of connector links in real-world socioe-
conomic networks. Network communities were detected with
Infomap [85] and links were classified as intracommunity or con-
nector, depending on whether they involve nodes from the same or
different communities. Intracommunity links were used to calculate
the strength (i.e., the largest eigenvalue of the adjacency matrix)
of each community. The node-level assortativity (left) measures the
correlation between connector node centralities. The community-
level assortativity (right) measures the correlation in the strengths of
interconnected communities, weighted by the number of connector
links. Horizontal red lines indicate the mean assortativities, equal to
0.21 and 0.35 at the node and community level, respectively.

tion offered by the relationships already existing within the
group [90,91]. The propensity to open up to external con-
nections is also influenced by the nature of the group; for
example, many highly cohesive communities, such as re-
ligious, ethnic or even family groups, favor pairings with
members of the group itself [92,93], which negatively affects
the propensity to establish intergroup relationships [94,95].
In that context, the self-interest parameter α represents the
disregard or indifference of the individual toward the loss of
internal cohesion that the group will experience as a conse-
quence of the new external connection. It is deeply related to
the conformity (i.e., the force behind our desire to fit in, low α)
and anti-conformity (high α) biases, widely studied in cultural
evolution [96]. In turn, the normalized social reach β reflects
the depth of the social field that influences the individual’s
decision-making.

Taking these two factors into account, we can classify the
cases where the model is applicable in four large categories
(Fig. 6). Category I (low α, high β) includes scenarios where
the decision to connect is strongly influenced by the whole
group (high conformity bias), therefore hindering intergroup
connections. That is the case of some ethnic, cultural or re-
ligious communities [97,98] that establish barriers to pairings
with individuals that do not belong to the group [99]. Category
II (low α, low β) is also characterized by a high conformity
bias, but the reference is no longer the whole group but a
closer environment, such as the family or the circle of friends
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FIG. 6. A classification of real-world socioeconomic scenarios
where the connection among small communities is differentially
affected by individual and collective motivations.

or co-workers. Family and peer pressure against matches with
people from different socioeconomic backgrounds would fall
in this category [100]. Another example is found in certain
hunter-gatherer societies such as the Yámana/Yagán, which
develop in very limited social groups but on certain occasions,
such as when a whale is stranded on the beach, meet in larger
gatherings which are used to make pairings [101]. Category
III (high α, high β) would include societies that are open
to relationships across groups or whose members reject or
ignore the pressures received [102]. This is also the behavior
usually followed by firms in their internationalization strate-
gies. When looking for business partners in other countries,
firms try to improve their economic results [103] although on
certain occasions they may be affected by state restrictions
such as tariffs or quotas. Finally, in category IV (high α, low
β), the decision to connect is mainly due to self-interest, but
when the interests of the group are taken into account, it is
usually with those who are closest. Pairings via the internet
provide a clear example of this category: through the web,
individuals seek to find their ideal partner out of the physical
group to which they belong, even though this could affect the
dynamics among family or friends [104]. Category IV also
includes scientific collaborations, which are mainly driven by
the researchers’ aim to improve their position and the scope
of their research, but can sometimes take into consideration
the effect on their closest environment, such as their research
group or institution.

All these processes are characterized by the fact that inter-
connections between groups tend to show a clear positive as-
sortativity, widely observed in pairing from biological [105],
sociological [106,107], and economic perspectives [108,109],
as well as in import-export trade [110] and in the formation
of international work teams as a result of globalization [111].
Furthermore, the four categories shown in Fig. 6 can be an-
alyzed from a dynamic perspective in which social changes
gradually produce modifications in the α and β coefficients,
leading to societies that become more permeable to intergroup
connectivity with time [102].

VII. CONCLUSIONS

In this paper, we introduce a theoretical framework de-
scribing the process by which individual decisions, based
on a combination of self-interest and group-oriented behav-
ior, drive the transition from small structures to robust and
efficient, but also unequal, socioeconomic networks. One
strength of our approach is that it can be used to study
cases in which intra- and intercommunity links are qualita-
tively dissimilar and evolve at different rates, as happens in
many real systems. Importantly, the present framework does
not require that nodes in one network have prior informa-
tion about the nodes of other networks. In consequence, it
can be applied to scenarios in which nodes transiently ex-
plore new connections and abandon them if the result is not
satisfactory.

Starting from two or more isolated communities, pairs of
nodes from different communities can connect only if both
nodes increase their centrality—or importance—after the con-
nection. Likewise, old interactions are abandoned if the new
ones are more beneficial. These two basic local assumptions
are enough to produce a rich global process that first leads to a
disordered connecting regime and finally reaches a hierarchi-
cal stationary state, defined by a Nash equilibrium, where the
efficiency of the system—measured by the growth rate and the
time to equilibrium of the processes that take place on it—is
optimized.

The underdogs play a fundamental, but unrewarded role in
the creation of these complex networked societies. In a context
of competition among social or economic groups, sharing
information, technology or wealth with other groups is detri-
mental for the strong networks as a whole; however, their
weakest nodes receive such a little fraction of the total net-
work centrality that becoming a critical connection between
two groups overtakes the potential collective losses. While
this process initially improves the status of the weak agents,
the asymptotic establishment of an assortative connection pat-
tern ends up pushing them back to peripheral positions. A
parallel of this phenomenon has been pointed out by some re-
cent studies, according to which social inequality might have
its origin with the first farmers of Neolithic Europe [112], and
only effective wealth-equalizing institutions might counter its
otherwise inevitable growth in a globalized world [2].

Self-interest is not the only driving force that individuals
follow in their interaction with other people and environments.
However, when considering that payoffs are a linear combina-
tion of individual and collective interests, we still found that,
in most cases, just a small amount of self-interest is enough
for the system to evolve as if the group members were totally
disengaged from the fate of their community. Therefore, only
ensembles of small structures, sufficiently isolated from much
larger networks and with very homogeneous topologies—as
happens with small tribes or family businesses—where re-
sources and wealth can be equally distributed might remain
stable for long periods of time. Eventually, though, the growth
of just one of these structures beyond a critical size can make
the centrality of their nodes small enough to promote the
search for self-benefit in some individuals, therefore launch-
ing the connecting process to the rest of small structures and
destabilizing the system. This new perspective aligns with
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recent network-based explanations of the evolution and final
extinction of primitive societies [112,113], as it happened
during the transition from the politically egalitarian hunter-
gatherers to the more complex and unequally distributed
horticulturalist communities during the late Pleistocene and
early Holocene.

One of the most fruitful approaches to explaining the
emergence of social structures is based on the construction
of cultural niches [114–116]. From an evolutionary point
of view, the construction of niches is a process by which
organisms modify their environment, thus altering the selec-
tion pressures on themselves and on other species. In the
construction of cultural niches, social behaviors influence
the evolution of other cultural or biological features, for ex-
ample by modifying the transmissibility of certain cultural
traits [117–119]. Our model can be easily framed in the con-
text of cultural niche construction, regarding the integration
of social groups through nonrandom pairing of their mem-
bers. In particular, individual decisions on how to connect
eventually modify the connecting behavior and overall cen-
trality of the whole group. Assortative pairing, a ubiquitous
property of human social networks, spontaneously emerges
along the way. Assortative pairing is frequent not only in terms
of partner choice [120,121] but also in many other types of
cultural interactions, called assortative meetings [122], and
it has important implications as it facilitates the spread of
rare cultural or genetic variants in the population [117,123].
Several mechanisms have been proposed to explain assorta-
tive pairing, such as phenotypic assortment based on mate
choice [124,125], partner interaction and convergence in phe-
notype over time [126,127], and homogamy according to
social or environmental background [106,128,129]. In this
context, our results suggest that assortative pairing could be, at
least in part, an emergent property of the competitive mating
process.

Beyond the context of pairing in religious, economic, so-
cial, or ethnic groups, the phenomenology described in this
paper is compatible with the asymptotic topology of business
affinity networks and friendship networks in rural commu-
nities, and with the evolution of scientific collaborations in
an emergent area of research. Some other real networks
whose evolution with time has already been studied in liter-
ature, such as the social contacts and mixing among students
throughout elementary, middle, and high school in the context
of the transmission of influenza [130], the school networks
from the National Longitudinal Study of Adolescent Health
(AddHealth) [131] or the 12-year (1988-1999) monitoring of
the collaboration among institutions in the field of biotech-
nology [132], could become promising applications of this
methodology. Furthermore, it would be of interest to test the
effect of assigning a cost to (i) creating links—to account for
the effort, time, and money invested in building new social or
economic relationships—and (ii) rewiring links—to account
for punishment to social climbers, a behavior that is frowned
on in many social environments [133,134]. All in all, our
framework highlights the relevance of eigenvector centrality
for the analysis of socioeconomic networks and may inspire
further studies about how social, technological, or economic
networks interact to give rise to the complex structures that
surround us.
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APPENDIX A: BASIC DEFINITIONS AND ANALYTICAL
TREATMENT OF THE PHENOMENOLOGY

The eigenvector centrality gives a score to every node
within a network that is proportional to the importance of its
neighbors. The eigenvector centrality xi of node i in network
G follows

xi = λ−1
1

∑
j

Gi jx j , (A1)

where Gi j are the components of the adjacency matrix G and
λ1 its largest eigenvalue. The eigenvector centrality coincides
with the eigenvector �u1 of G.

Let us focus on the simplest case of m = 2 networks, A
and B from now on, with NA and NB nodes, respectively,
and λA,1 > λB,1, such that A and B interconnect through a
set {cl} of n connector links to give rise to a total intercon-
nected network T of nodes NT = NA + NB, largest eigenvalue
λT,1, and an associated eigenvector �uT,1 normalized such that∑NT

k=1(�uT )2
k = 1. The weights of connector links ε might be

equal or different to those of the intralinks in A and B.
The centrality of each network as a whole is calculated

accumulating that of all its nodes

Cα =
∑
i∈α

Ci, (A2)

where Ci = (�uT )i/‖�uT ‖ is the centrality of node i in network
α. In the numerical simulations developed in this paper, Ci is
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L1-normalized, that is,

‖�uT ‖ = ‖�uT ‖1 =
NT∑

k=1

(�uT )k, (A3)

and therefore
∑NT

k=1 Ci = 1. To simplify the analytical calcu-
lations of this Appendix, however, we will use an alternative
definition for the centrality of a node where Ci is L2-
normalized, that is,

‖�uT ‖ = ‖�uT ‖2 =
√√√√ NT∑

k=1

(�uT )2
k = 1, (A4)

and therefore Ci = (�uT )i and
∑NT

k=1 C2
k = 1. The results should

be qualitatively equivalent, as proved in Ref. [37].
As shown in Ref. [76], the distribution of the centrality

between two networks A and B that interconnect through a
set {cl} of connector links to give rise to an interconnected
network T is extremely dependent on the connector nodes, as
well as on the largest eigenvalues λA,1 and λB,1 of the isolated
networks A and B. The first eigenvalue and its associated
eigenvector of T, expressed as quantities that are only depen-
dent on the isolated networks A and B, can be approximated
to second order by

�uT,1 = �uA,1+ε
∑NB

j=1 a j �uB, j+ε2 ∑NA
i=2

∑NB
j=1 bi j �uA,i√

1+ε2
∑NB

j=1 a2
j

+ o(ε3), (A5)

λT,1 = λA,1 + ε2 ∑NB
j=1(�uA,1P�uB, j )a j + o(ε3) , (A6)

where a j = (�uA,1P�uB, j )/(λA,1 − λB, j ), bi j = a j (�uA,iP
�uB, j )/(λA,1 − λA,i ), ε is the strength (weight) of the connector
links and P is a matrix formed by Ppq = Pqp = 1 if nodes
p of A and q of B are connected through a connector link,
and Ppq = Pqp = 0 elsewhere. �uT,1, �uA,i, and �uB, j are vectors

of L2-norm ‖�uT ‖2 = ‖�uA,i‖2 = ‖�uB, j‖2 = 1, and length
NA + NB; the first NA elements of �uA,i are equal to the i
eigenvector of network A isolated, and the last NB elements
of �uB, j are equal to the j eigenvector of network B isolated.
The rest are equal to zero.

Equation (A5) is very accurate to obtain the centrality of all
nodes in two networks connected through a limited number of
links, with the exception of the connector nodes, because they
have an extra link with the opposite network that benefits them
over the rest of the nodes of the network [37,76]. Combining
Eqs. (A1), (A5), and (A6), we can approximate the centrality
of a connector node l in network A linked to node m in B
when both networks are interconnected through a set {cl} of
connector links by

C{cl},l∈A = (�uT,1)l∈A + ε
(�uT,1)m∈B

λT,1
+ o(ε3) . (A7)

In a similar way, we can approximate the centrality of a
connector node m in network B linked to node l in A when
both networks are interconnected through a set {cl} of con-
nector links by

C{cl},m∈B = (�uT,1)m∈B + ε
(�uT,1)l∈A

λT,1
+ o(ε3) . (A8)

In Eqs. (A7) and (A8), (�uT,1)l and λT,1 are obtained from
Eqs. (A5) and (A6).

If we neglect the j > 1 elements in Eqs. (A5) and (A6)
because they are far less relevant than the first element of the
summations as λA,1 − λB, j > λA,1 − λB,1 for j > 1, and we
neglect the term

∑NA
i=2

∑NB
j=1 bi j �uA,i because it only depends

on the eigenvectors of A of order i > 1 and are negligible in
comparison to �uA,1, we obtain

C{cl},l∈A ∼
[

(�uA,1)l + ε2a1,n(�uB,1)m

λA,1 + ε2a1,n(�uA,1P�uB,1)

]/√
1 + ε2a2

1,n , (A9)

C{cl},m∈B ∼ ε

[
a1,n(�uB,1)m + (�uA,1)l

λA,1 + ε2a1,n(�uA,1P�uB,1)

]/√
1 + ε2a2

1,n , (A10)

where

a1,n = Sn

λA,1 − λB,1

and

Sn = �uA,1P�uB,1 =
∑

cl

(�uA,1)p · (�uB,1)q ,

being p ∈ A, q ∈ B the n pairs of nodes connected through
connector links. Therefore, the strength of connections Sn

represents the strength of the union of both networks through
n links, as it is the sum of the products of the eigenvector cen-
tralities of all connector nodes measured when the networks
are disconnected.

A development in powers of ε of Eqs. (A9) and (A10) helps
to analyze the results and yields

(i) Centrality of node l in A when there are n connector
links between networks A and B and l is not connected to

network B:

C{cl},l∈A ∼ (�uA,1)l − ε2 a2
1,n(�uA,1)l

2
. (A11)

(ii) Centrality of node l in A when there are n connector
links between networks A and B and l is connected to node m
in network B:

C{cl}∪{lm},l∈A ∼ (�uA,1)l + ε2 a1,n(�uB,1)m

λA,1
− ε2 a2

1,n(�uA,1)l

2
.

(A12)

(iii) Centrality of node m in B when there are n connector
links between networks A and B and m is not connected to
network A:

C{cl},m∈B ∼ εa1,n(�uB,1)m . (A13)
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(iv) Centrality of node m in B when there are n connector
links between networks A and B and m is connected to node
A in network A:

C{cl}∪{lm},m∈B ∼ ε
[
a1,n(�uB,1)m + (�uA,1)l

λA,1

]
. (A14)

Summary

When a node from network A contacts a node from net-
work B, the new centrality of the node in A depends on the
centrality it had in its original network isolated from the other
and the addition of two quantities: one is always positive be-
cause it is the increase of its centrality due to a new connection
[see Eq. (A1)] and the second is negative due to the change
that its whole network suffers due to the addition of this new
connection [see Eq. (A5) and Ref. [76], where it was shown
that the addition of connector links between two isolated
networks transmits centrality from the strong network to the
weak one]. On the other hand, the payoff of the connector
node in network B will always be positive when connecting
to A because it increases due to the new connection and the
transmission of centrality from A to B.

Finally, the payoff of a certain node l of A or m of B at time
t will then be �C = C(t ) − C(t − 1), being these expressions
the corresponding from Eqs. (A11)—(A14). Only when node
l in A and m in B receive a �C > 0 will the link lm be
accepted in the system.

APPENDIX B: NUMERICAL TEST OF THE ANALYTICAL
RESULTS

Let us measure the quantitative precision of the analytic re-
sults presented above. We connect two scale-free networks of
50 nodes each by one single connector link in all possible con-
figurations. For each connection between one node of network
A and one of network B, we plot in Fig. 7 the connecting mo-
tivation for the connector node of network A, (�uT,1)l/(�uA,1)l .
As this quantity represents the ratio between the centrality
of the node obtained after connecting to network B and the
centrality it had in network A isolated from B, only when it
is larger than 1 will the new connector link be accepted. The
result is calculated numerically in Fig. 7(a) and analytically
in Fig. 7(b) following Eq. (A9). The connection boundaries
(�uT,1)l/(�uA,1)l = 1 are plotted in red. These boundaries show
that only nodes in A of low centrality, i.e., peripheral nodes,
accept to connect to network B, while central nodes would
prefer to remain isolated. The reason is that when two net-
works are connected through peripheral nodes, the system is
weakly perturbed and only a low quantity of centrality is trans-
ferred from network A to B, as shown in Fig. 7(c). Therefore,
this low loss can be balanced out by the connector node with
the personal winnings due to obtaining a new connection. On
the other hand, connecting through central nodes is highly
detrimental for all nodes in the strong network, and therefore
the extra centrality obtained by the hub for obtaining a new
neighbor does not balance out its loss. Note that, in spite of
the severe approximations done to obtain Eq. (A9), where
instead of all the eigenspectra of A and B only the largest
eigenvalues and their associated eigenvectors were used, the
main properties of the phenomenology are recovered.

FIG. 7. Numerical test of the theoretical approach of the phe-
nomenology. Two Barabási-Albert networks of 50 nodes each,
λA,1 = 5.960 and λB,1 = 5.952, are connected through one single
connector link of weight ε = 0.5 in all possible configurations (50 ×
50). The axes represent the connector nodes in networks A and B,
and nodes are numbered according to their network centrality rank.
Central nodes (C) and peripheral nodes (P) are, respectively, those
with higher and lower eigenvector centralities. (a), (b) show the
connecting motivation of every node in strong network A when it
is connected to a node in network B (numerically and analytically
calculated, respectively). The connection boundaries (red curves)
delimit the accepted connections. Only the peripheral nodes in A
accept connecting to network B. In (c), the total centrality of network
A, CA, is plotted.

APPENDIX C: ANALYSIS OF THE THREE STAGES
OF THE PROCESS

1. Stage 1: The approaching stage

The networks are disconnected

Let us suppose the process is in its first step and therefore
networks A and B are isolated, that is, n = 1, the strength
of connections Sn = �uA,1P�uB,1 = (�uA,1)l · (�uB,1)m, and
Sn−1 = 0.
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Network A. For node l in A, we obtain from Eq. (A12)

�Cl∈A = ε2

[
a1,n(�uB,1)m

λA,1
− a2

1,n(�uA,1)l

2

]
, (C1)

where a1,n = Sn/(λA,1 − λB,1) = (�uA,1)l (�uB,1)m because there
is only one connector link.

Equalizing such payoff to zero yields the critical connect-
ing centrality (�uA,1)crit for every node in network A: Only
those with centrality (measured when network A is isolated
from B) under that critical value will connect to network B.
We obtain that

(�uA,1)crit =
√

2
(

1 − λB,1

λA,1

)
. (C2)

Network B. For node m in network B, we obtain from
Eq. (A14)

�Cm∈B = ε

[
a1,n(�uB,1)m + (�uA,1)l

λA,1

]
. (C3)

Therefore, �Cm∈B > 0 for all (�uA,1)l and (�uB,1)m, that is,
any node in B will accept the connection with a node in A
when both networks are mutually disconnected because the
initial centrality of all nodes in B is zero.

Summary. The first accepted connection between two net-
works A and B will necessarily go from any node of the weak
network B to a peripheral node of the strong network A.

First connections between networks A and B

Let us study the potential connection between nodes l in A
and m in B when both networks are connected through a low
number n − 1 > 0 links, but nodes l and m are not connected
with any node of the opposite network.

Network A. For node l in A, we obtain from Eqs. (A11)
and (A12)

�Cl∈A = ε2

[
a1,n(�uB,1)m

λA,1
− (�uA,1)l

2
(a2

1,n − a2
1,n−1)

]
, (C4)

where a1,n = Sn/(λA,1 − λB,1), a1,n−1 = Sn−1/(λA,1 − λB,1),
and Sn = Sn−1 + (�uA,1)l (�uB,1)m.

From here it is easy to obtain that node l in A will accept
the connection with node m in B (i.e. �Cl∈A > 0) if

F (x) = x3 + 2μx2 − 2cx − 2μc < 0 , (C5)

where x = (�uA,1)l , μ = Sn−1/(�uB,1)m, and c = �λ/λA,1.
Throughout the calculations �λ = λA,1 − λB,1.

We need to know the solutions of F (x) = 0 to know the
values of (�uA,1)l that verify F (x) < 0. They can be obtained
explicitly but are very complex expressions, so let us obtain
as much information as possible about them and their relation
to the parameters of the system. It is easy to verify that

(1) F (0) = −2cμ < 0.
(2) F ′(0) = −2c < 0.
(3) limx→∞ F (x) = ∞.
(4) One root of F ′(x) = 3x2 + 2μx − 2c = 0 is positive

and one is negative.
All this yields that there is only one x0 > 0 that veri-

fies F (x0) = 0, and it verifies that F (x) � 0 for x < x0 and
F ′(x0) > 0. Therefore, that unique positive solution will be

the critical connecting centrality x0 = (�uA,1)crit such that the
nodes in A will connect to network B if (�uA,1)l < (�uA,1)crit.
Let us analyze its dependency on μ and c:

∂F (x)

∂μ
= 3x2

0
∂x0

∂μ
+ 2x2

0 + 4μx0
∂x0

∂μ
− 2c

∂x0

∂μ
− 2c = 0

⇒ ∂x0

∂μ
= 2(c − x2

0 )

3x2
0 + 4μx0 − 2c

.

Note that

F ′(x0) = 3x2
0 + 4μx0 − 2c ⇒ ∂x0

∂μ
= 2(c − x2

0 )

F ′(x0)
.

We have already shown that F ′(x0) > 0, therefore the sign of
∂x0
∂μ

is that of c − x2
0. From F (x0) = 0, we obtain that

c − x2
0 = x0(x2

0 − 2c)

2μ

⇒ c − x2
0 = −cx0/2μ

1 + x0/2μ
.

As c > 0, μ > 0, and x0 > 0, we obtain that c − x2
0 < 0 and

therefore ∂x0
∂μ

< 0.
In a similar way, we obtain for c the following:

∂F (x)

∂c
= 3x2

0
∂x0

∂c
+ 4μx0

∂x0

∂c
− 2x0 − 2c

∂x0

∂c
− 2μ = 0

⇒ ∂x0

∂c
= 2(x0 + μ)

3x2
0 + 4μx0 − 2c

= 2(x0 + μ)

F ′(x0)
.

As x0 + μ > 0 and F ′(x0), we obtain that ∂x0
∂c > 0.

In summary, as x = (�uA,1)crit, μ = Sn−1/(�uB,1)m, and c =
�λ/λA,1, we finally obtain that ∂ (�uA,1 )crit

∂Sn
< 0, ∂ (�uA,1 )crit

∂ (�uB,1 )m
> 0 and

∂ (�uA,1 )crit

∂ (λB,1/λA,1 ) < 0.
Network B. For node m in network B, we obtain from

Eqs. (A13) and (A14)

�Cm∈B = ε
[
a1,n(�uB,1)m + (�uA,1)l

λA,1

]
− εa1,n−1(�uB,1)m

= ε
[ (�uB,1)2

m

�λ
+ 1

λA,1

]
, (C6)

where a1,n = Sn/(λA,1 − λB,1), a1,n−1 = Sn−1/(λA,1 − λB,1),
and Sn = Sn−1 + (�uA,1)l (�uB,1)m. Therefore, �Cm∈B > 0 for all
nodes m in B that connect to any node of A when there are
n − 1 links between A and B.

Summary. The more similar the eigenvalues λA,1 and λB,1

of both networks, the more and more central connector links
existing between them (Sn−1) and the lower the centrality
of node m in B, the weaker must be the connector node in
network A to accept the connection.

Note that the critical value for the centrality of node l in

A is (�uA,1)crit =
√

2�λ
λA,1

for the first connector link and then

decreases toward
√

�λ
λA,1

when Sn → ∞. That is, the first con-

nector links will hinder the connection from A to B and will
only enable the connection of the most peripheral nodes in
A to any node in B. As a consequence, the system will be
dissortative during the first steps of the process.
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2. Stage 2: The connecting stage

As mentioned above, the approaching stage leads to net-
works A and B connected through a limited number of links
that connect nodes of any centrality in B with the peripheral
nodes in A. Let us show here how the nonperipheral nodes in
A enter the game. To do this, we will study the potential con-
nection between a node l in A that is not connected with any
node of B, and a node m in B such that is already connected
with a node l ′ of A and faces breaking this link to connect to
l . Note that A and B are connected through n links before and
after the rewiring.

a. Network A

For node l in A, we obtain from Eqs. (A11) and (A12)

�Cl∈A = ε2
[a1,n(�uB,1)m

λA,1
− (�uA,1)l

2
(a2

1,n − a2
1,n′ )

]
, (C7)

where a1,n = Sn/(λA,1 − λB,1), a1,n′ = Sn′/(λA,1 − λB,1), and
Sn = Sn′ + (�uA,1)l (�uB,1)m − (�uA,1)l ′ (�uB,1)m. l ′ is the node of A
that is initially connected to m, n′ refers to the links before
the rewiring and n to the links after the rewiring. (Note that
the connector links after the rewiring are the same as before
but where the connector link that connected l ′ and m has been
replaced by the connection between l and m).

Neglecting terms of fourth order on the centrality terms,
we approximate

S2
n − S2

n′ ∼ 2Sn′ (�uB,1)m[(�uA,1)l − (�uA,1)l ′].

From here, it is easy to obtain that node l in A will accept the
connection with node m in B (i.e., �Cl∈A > 0) if

(�uA,1)l < (�uA,1)crit

= (�uA,1)l ′

2
+ c

2μ
+

√[
(�uA,1)l ′

2
+ c

2μ

]2
+c

[
1 − (�uA,1)l ′

μ

]
.

(C8)

Regarding c = �λ/λA,1 > 0 and μ = Sn′/(�uB,1)m > 0, it is
clear that (�uA,1)crit − (�uA,1)l ′ > 0 if (�uA,1)l ′ < μ, and this con-
dition is verified for all (�uA,1)l ′ because (�uA,1)l · (�uB,1)m < Sn′

when networks A and B are connected through n > 1 link.
Therefore, node l in A will accept to connect to a node
m in B already connected to a node l ′ of centrality lower
than that of l (that is, when ��uA,1 = (�uA,1)l − (�uA,1)l ′ > 0)
if (�uA,1)l ′ < (�uA,1)l < (�uA,1)crit.

Let us analyze the dependency of (�uA,1)crit on Sn′ :

∂ (�uA,1)crit

∂μ
= − c

2μ

(
1 + K√

K2 + c

)
,

where K = (�uA,1 )l′
2 − c

2μ
. Independently of the sign and value

of K , it is easy to see that | K√
K2+c

| < 1, and therefore
∂ (�uA,1 )crit

∂μ
< 0. In summary, as μ = Sn′/(�uB,1)m, ∂ (�uA,1 )crit

∂Sn′ < 0

for all values of the parameters, and (�uA,1)crit → (�uA,1 )l′
2 +√

�λ
λA,1

+ ( (�uA,1 )l′
2 )2 when Sn′ → ∞.

Regarding the dependency of (�uA,1)crit on (�uA,1)l ′ , we ob-
tain

∂ (�uA,1)crit

∂ (�uA,1)l ′
= 1

2

(
1 + K√

K2 + c

)
.

Once again, | K√
K2+c

| < 1 for all K . As a consequence,
∂ (�uA,1 )crit

∂ (uA,1 )l′
> 0 for all values of the parameters, and (�uA,1)crit →

(�uA,1)l ′ when (�uA,1)l ′ → ∞.

b. Network B

For node m in B, we obtain from Eqs. (A13) and (A14)

�Cm∈B = ε

[
(�uB,1)m(a1,n − a1,n′ ) + ��uA,1

λA,1

]

= ε��uA,1

[
(�uB,1)2

m

�λ
+ 1

λA,1

]
.

It is clear that �Cm∈B > 0 if ��uA,1 > 0, that is, node m in
B will only rewire its connection from l ′ to l in A if its new
neighbor l has a larger centrality (measured in A isolated) than
the old one, that is, if ��uA,1 > 0.

Summary

The nodes l in A that are not connected to B and the nodes
m in B that are already connected to nodes l ′ in A will connect
through a new connector link as far as (�uA,1)l ′ < (�uA,1)l <

(�uA,1)crit, where (�uA,1)crit is given by Eq. (C8). When the
number of connector links grows sufficiently (i.e., Sn′ grows),
this inequality becomes

(�uA,1)l ′ < (�uA,1)l <
(�uA,1)l ′

2
+

√
�λ

λA,1
+

[
(�uA,1)l ′

2

]2

. (C9)

This result yields that at the beginning of the connecting
stage, nodes in B connecting peripheral nodes in A will tend to
change their connector links to nodes with a centrality slightly
larger than their former connections. The critical centrality
(�uA,1)crit now increases with (�uA,1)l ′ , which means that every
new rewiring increases the value of the critical centrality, and
leads to a cascade of new rewirings that ends with the majority
of nodes in A and B interconnected in a disordered manner
of null assortativity (see Sec. IV A of the main text for more
details).

3. Stage 3: The optimization stage

At the beginning of this regime, networks A and B are
already disorderly connected through a large number n of
connector links. Let us show here how these connector links
self-organize as an emergent process to yield a new total
network that is optimal in dynamical properties such as the
growth rate or the time to equilibrium. To do this, we will
study the potential connection between a node l in A that is
already connected to a node m′, and a node m in B that that is
already connected with a node l ′ of A. This leads to

Sn = Sn′ + (�uA,1)l (�uB,1)m − (�uA,1)l ′ (�uB,1)m − (�uA,1)l (�uB,1)m′ .

Note that n′ refers to the n links before the new connection and
n to the n − 1 links after the new connection and the deletion
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of two old links, but as the number of connector links n is
now of the order of the size of the smallest network, we can
approximate Sn ∼ Sn′ .

a. Network A

For a node l in A already connected to a node m′ in B that
changes its link toward node m, we obtain from Eq. (A12)

�Cl∈A = ε2 a1,n��uB,1

λA,1
= ε2 Sn��uB,1

λA,1�λ
, (C10)

where ��uB,1 = (�uB,1)m − (�uB,1)m′ . It is clear that �Cl∈A > 0
if ��uB,1 > 0.

b. Network B

For a node m in B already connected to a node l ′ in A that
changes its link toward node l , we obtain from Eq. (A14)

�Cm∈B = ε
��uA,1

λA,1
, (C11)

where ��uA,1 = (�uA,1)l − (�uA,1)l ′ . It is clear that �Cm∈B > 0 if
��uA,1 > 0.

Summary

During the optimization stage any node in A or B will
accept a new connection to the opposite network as far as the
centrality of the new neighbor is larger than that of the old
one. This systematic acceptance of more central connections
and rejection of more peripheral ones by the nodes of both
networks yields to a systematic ordering of the connector
links such that, after an intensive rewiring process, nodes in
A become connected to nodes in B of the same position in
the ranking of their network centralities (i.e., the most central
node in A will become connected to the most central node
in B, the second to the second, and successively, and only
the most peripheral nodes will remain disconnected to the
opposite network). In consequence, the assortativity grows to
its maximum positive value at the end of this stage.

A Nash equilibrium is the solution of a noncooperative
game involving two or more players, in which each player
is assumed to know the equilibrium strategies of the other
players, and no player has anything to gain by changing only
their own strategy. According to this definition, it is straight-
forward to see that the final configuration achieved by the
system is a Nash equilibrium, as once all connector links are
ordered according to the centrality of both networks, it will
be impossible to find a rewiring that enables the simultaneous
improvement of the centrality of both nodes.

APPENDIX D: THE EQUILIBRIUM STATE OPTIMIZES
THE DYNAMICAL PROPERTIES OF THE SYSTEM

Let us prove in this Appendix that the Nash equilibrium
reached at the end of the optimization stage optimizes both
the growth rate and the time to equilibrium of the potential
processes that could take place on the system.

The first and second eigenvalues associated to two net-
works A and B that connect through a set {cl} of connector
links to give rise to an interconnected network T, expressed as

quantities that are only dependent on the isolated networks A
and B, can be approximated to second order by (see Ref. [76])

λT,1 = λA,1 + ε2 (�uA,1P�uB,1)2

λA,1 − λB,1
+ O(ε2) , (D1)

λT,2 = λB,1 − ε2 (�uA,1P�uB,1)2

λA,1 − λB,1
+ O(ε2) . (D2)

As the growth rate of the process is given by λT,1 and the
time to equilibrium teq is proportional to [ln(λT,1/λT,2)]−1, it
is clear that λT,1 will be maximum and teq minimum when
�uA,1P�uB,1 is maximum. We will show that this happens at the
Nash equilibrium.

First, let us recall that the strength of connections Sn veri-
fies

Sn = �uA,1P�uB,1 =
∑

cl

(�uA,1)p · (�uB,1)q,

being p ∈ A, q ∈ B the n pairs of nodes connected through
connector links. That is, Sn is the sum of the products of the
eigenvector centralities of all connector nodes measured when
the networks are disconnected.

Let us define vector �x such that xi = (�uA,1)i if node i in
A is connected to B and xi = 0 otherwise, and vector �y such
that yi = (�uB,1)i if node i in B is connected to A and xi = 0
otherwise. Without any loss of generality let us suppose that �x
is sorted to verify xi � xi+1 and �y is sorted in a way that node
i in A is connected to node i for i � n. Note that vectors �x
and �y have n positive elements because there are n connector
links between A and B. According to these definitions, Sn =
�uA,1P�uB,1 = �x · �y.

Our target is to find the sorting of �x and �y (that is, the
configuration of connector links between A and B) that max-
imizes Sn. As there are (NA + NB)! different permutations of
the elements of �y, there are (NA + NB)! different configura-
tions. If we start with a generic configuration 1 and permute
two connections (i.e., two nodes j and k such that k > j of
one network swap their connector links to the other network)
to reach a new configuration 2, the change in the quantity Sn

is

�Sn = (Sn)2 − (Sn)1 = −(x j − xk )(y j − yk ) = −�x�y .

(D3)
Regarding Eq. (D3), it is straightforward that the only

configuration that verifies �Sn < 0 for all values of j and
k > j is the ordered configuration such that xi � xi+1 and
yi � yi+1 ∀ i, and therefore this configuration is a local maxi-
mum. Furthermore, any other configuration has at least two
crossing connector links—that is, that verify �x�y < 0—
such that, when they are swapped, �Sn > 0. In consequence,
all configurations with the exception of the ordered one are
not local maxima and can increase their value of Sn uncrossing
one by one all their crossed connector links, until they reach
the ordered configuration and maximize Sn.

In summary, Sn = �uA,1P�uB,1 reaches a global maximum
when the matrix P connects the nodes of A and B that share
the same position in the ranking of centrality in �uA,1 and �uB,1.
This yields that λT,1 will be maximum and teq minimum when
the most central nodes of A and B are interconnected, the
second most central too, and successively.
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APPENDIX E: WHEN INDIVIDUAL AND COLLECTIVE
INTERESTS COMPETE

In many social and economic networks, the individuals
make decisions based on both group and individual motiva-
tions. To study this situation, here we analyze what happens
if the centrality of an individual is redefined as a mixture of
individual and collective interests. Following Ref. [84], we
propose

C{cl},l∈A = α
(�uT,1)l∈A

‖�uT,1‖ + (1 − α)

∑
i∈A,i �=l (�uT,1)i

(NA − 1)‖�uT,1‖ , (E1)

where C{cl},l∈A is the centrality of node l of A when A and
B are connected through the set {cl} of n connector links to
form the total network T, and �uT,1 is the eigenvector associ-
ated to the maximum eigenvalue of the adjacency matrix of
T. α is the self-interest parameter, and Eq. (E1) represents
Eq. (2) where the normalized social reach β = 1. α = 1 is
the situation in which the payoff is that of the connector node
individually—the case studied above—and α = 0 is the case
in which the payoff is that of the whole network A (excluding
the connector node). Note that, while in the former Appen-
dices the centralities were L2-normalized for simplicity (see
Appendix A for details), in this Appendix we will make use
of the same normalization used in the numerical simulations
[L1-norm, see Eq. (A3)]. While it is more troublesome be-
cause it includes the term ‖�u‖1 = ∑

i ui in the equations, we
do it because the L1-norm of vectors is deeply related to the
topology of the networks, and we will see that such topology
strongly influences the phenomenology.

If networks A and B were initially disconnected, and then
they connect through a single connector link that joins node l
in A with node m in B, the payoff obtained by node l in A is

�Cl∈A = C{cl}∪{lm},l∈A − C{cl},l∈A , (E2)

where

C{cl},l∈A = α
(�uA,1)l

‖�uA,1‖1

+ (1 − α)

∑
i∈A,i �=l (�uA,1)i

(NA − 1)‖�uA,1‖1

(E3)

is the centrality of node l in A when networks A and B are
still disconnected, and

C{cl}∪{lm},l∈A = α(�uT,1)l,l + (1 − α)

∑
i∈A,i �=l (�uT,1)i,l

NA − 1
(E4)

is the centrality of node l in A after its connection with node m
in B (the second subindex of (uT,1) remarks that the networks
are connected through node l in A). Note that ‖�uT,1‖1 = 1.

Following Eq. (A9), we obtain

(�uT,1)l,l ∼
(�uA,1)l + ε2a1,n (�uB,1 )m

λA,1+ε2a1,n (�uA,1P�uB,1 )

‖�uA,1‖1 + εa1,n‖�uB,1‖1

, (E5)

(�uT,1)i �=l,l ∼ (�uA,1)l

‖�uA,1‖1 + εa1,n‖�uB,1‖1

, (E6)

where a1,n = (�uA,1P�uB,1)/(λA,1 − λB,1) and �uA,1P�uB,1 =
(�uA,1)l (�uA,1)m because there is only one connector link, lm.

If we introduce Eqs. (E5) and (E6) in Eq. (E4), and
Eqs. (E3) and (E4) in Eq. (E2), we obtain an analytical ex-
pression for the payoff �C. Developing �C in series of ε, and
equalizing it to zero, we finally obtain the critical value of αcrit

such that the connection between both networks is possible if
and only if α > αcrit,

αcrit ∼ ‖�uB,1‖1(‖�uA,1‖1 − (uA,1)l )M1

‖�uB,1‖1M1M2 + ε‖�uA,1‖1�λ(NA − 1)(uB,1)m
,

(E7)

where

M1 = λA,1�λ + ε2(uA,1)2
l (uB,1)2

m ,

M2 = ‖�uA,1‖1 − NA(uA,1)l .

1. Dependency of the critical self-interest parameter αcrit

on the main parameters of the system

The complexity of the explicit solution for αcrit makes the
analysis of its dependency on the different parameters of the
system a nontrivial task. Note, in addition, that in most types
of networks varying one parameter implies varying some of
the rest.

a. Dependency on the maximum eigenvalues

The analysis of ∂αcrit
∂λA,1

implies that αcrit grows with λA,1

for λA,1 > λB,1 + ε(uA,1)l (uB,1)m, and α → ‖�uA,1‖1−(uA,1 )l

‖�uA,1‖1−NA(uA,1 )l
>

1 when λA,1 → ∞. On the other hand, ∂αcrit
∂λB,1

implies that αcrit

is approximately constant for low values of λB,1 and α → ∞
in λB,1 = λA,1 + L, where

L = ε2‖�uB,1‖1M2(uA,1)2
l (uB,1)2

m

λA,1‖�uB,1‖1M2 + ε(NA − 1)(uA,1)l (uB,1)m
. (E8)

In summary, αcrit grows with λA,1 (toward a maximum
bounded value) and with λB,1 (toward infinity for a finite value
of λB,1). This is in qualitative agreement with the numerical
results shown in Figs. 3(e) and 3(g).

b. Dependency on the centrality of the nodes of the strong network

Let us study the dependency of αcrit on the normalized
centrality of the nodes of the strong network (uA,1)l/‖�uA,1‖1.
If we neglect the terms in Eq. (E7) that are proportional to
ε2((uA,1)l )2((uB,1)m)2 because they are much smaller than the
rest, we obtain

αcrit ∼ λA,1
(
1 − (uA,1)∗l

)
λA,1

(
1 − NA(uA,1)∗l

) + ε(NA − 1)(uB,1)∗l
, (E9)

where (uA,1)∗l = (uA,1)l/‖�uA,1‖1 and (uB,1)∗l =
(uB,1)l/‖�uB,1‖1.

The analysis of ∂αcrit
∂ (uA,1 )∗l

implies that αcrit grows with (uA,1)∗l
for λA,1 > ε(uB,1)∗m, which is always true. Furthermore,
αcrit → [1 + ε(NA − 1)(uB,1)∗m/λA,1]−1 when (uA,1)∗l → 0,
and grows to ∞ when (uA,1)∗l → 1/NA + ε(uB,1)∗m/λA,1. In
summary, αcrit does not depend strongly on (uA,1)∗l for small
values of (uA,1)∗l , grows with (uA,1)∗l and tends to infinity
for a finite value of (uA,1)∗l . All these results agree with the
numerical calculations plotted in Fig. 6 of the Supplemental
Material [83].
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c. Dependency on the topology of the networks

The strongly unequal distribution of centrality between
the different nodes of scale-free networks makes the quan-
tity (uA,1)∗l = (uA,1)l/‖�uA,1‖1 applied to the most peripheral
node (i.e., the one that will more easily connect to network
B) be close to zero in general. Random (Erdős-Rényi) net-
works, less unbalanced than scale-free, show intermediate
values of (uA,1)∗l for their most peripheral node. On the other
hand, in regular networks (i.e., networks where all nodes
have the same degree) and cliques (i.e., networks where all
nodes are connected to the totality of the rest of the nodes),
the eigenvector associated to the largest eigenvalue is �u1 =
(
√

NA)−1(1, 1, 1...) and therefore (uA,1)∗l reaches the very
large value of 1/NA for every node of network A. In summary,
regarding the dependency of αcrit on (uA,1)∗l studied in the
former subsection and in Fig. 6 of the Supplemental Mate-
rial [83], we conclude that scale-free networks will show low
values of αcrit , random (Erdős-Rényi) networks intermediate
values of αcrit and cliques and regular networks large values
of αcrit.

2. Summary of the dependency of αcrit on the main parameters
of the system

Networks of similar strength (λ1) will connect more rarely
(i.e., will have a larger αcrit associated, or in other words will
need a payoff with a larger amount of self-interest) than cases
in which the strong network is large and/or clearly stronger
than the weak one. As increasing the size of a network in
general increases its largest eigenvalue and diminishes the
centrality of its most peripheral node (because the centrality
is distributed among a larger number of nodes), increasing NA

will increase the probability of connection (i.e., decrease αcrit,
as shown in Fig. 3). Furthermore, the central nodes of a strong
network will always be more reluctant to connect than its
peripheral nodes, and networks with large minimum centrality
(such as regular networks or cliques) will also resist to connect
more strongly than networks with small minimum centralities,
such as scale-free networks. Random (Erdős-Rényi) networks
will be an intermediate case between these two extremal
topologies.

APPENDIX F: NETWORK OF COLLABORATIONS IN
GRAPHENE RESEARCH

We retrieved from Scopus [135] the bibliographical infor-
mation of all the articles published between 2007 and 2018
that contain the word graphene in the title, abstract, or key-
word list. This period covers the rapid development recently
experienced by that field, which rocketed from around 600
articles published in 2007 to more than 16 000 in 2018. To
deal with redundant author names, we relied on Scopus’s
author IDs. We manually checked the author IDs of the 100
most prolific researchers in the field for consistency, and found
that author IDs typically correspond to single researchers and
that the vast majority of publications from the same researcher
were indexed under a single author ID. In total, our dataset
included 104 670 articles and 193 675 different authors.

To assess the overall importance of each researcher, we
built a global collaboration network by connecting pairs of

researchers that had coauthored at least one article between
2007 and 2018, with researchers as nodes and connections
weighted by the number of coauthored articles. The network
provides a representation of the strength of collaborations
among different authors since the field of graphene began
developing. Accordingly, we quantified the researchers’
global influence by means of their eigenvector centrality in the
collaboration network. In this context, the eigenvector
centrality provides a measure of importance that depends not
only on the number of publications but also on the importance
of one’s collaborators.

To facilitate further analyses, we focused on the collabora-
tions among the top 100 researchers in the global centrality
rank. Of those, two researchers from the National Institute
for Materials Science, each with more than 350 coauthored
articles in 11 years, were identified as outliers in a preliminary
inspection of collaborations among the top 100 authors. A
more careful analysis revealed that those two authors con-
tributed to a large number of worldwide experimental studies
by providing high-quality graphene samples. Due to their
high connectivity, the inclusion of those two authors strongly
affected the topology of the collaboration network, masking
any underlying modular structure that could result from geo-
graphical, strategic and or scientific affinity association among
groups of researchers. To prevent this effect, we removed
those two outliers from the network.

We studied the temporal evolution of the graphene
coauthorship network by considering articles published in
five-year windows. Because most of the top 100 researchers
(75 out of 100) were already active in 2007–2012, and that
timing approximately corresponds with the beginning of
the “graphene boom”, we chose the 2007–2012 window as
the initial state of the collaboration network. To allow for
consistent comparison across time windows, we excluded the
25 authors that were not already present in that initial state.
In agreement with our model, the initial state of the graphene
coauthorship network consisted of several disconnected
or weakly connected subnetworks, each representing a
community of researchers that preferentially collaborated
with each other. We used Infomap [85] to identify such
communities in a nonsupervised, objective way. In many
cases, it was possible to correlate network communities with
pioneering graphene research groups of institutes. Moreover,
we checked that the modular structure of the collaboration
network remained approximately stable along successive
time windows, and therefore the communities detected in the
initial state constitute meaningful units for the analysis of the
interconnected network.

For each community, we defined the relative centrality
of its members as the quotient between the centrality of a
researcher and the sum of centralities of all the researchers
in the community. Relative centralities were calculated using
the global collaboration network (including all authors and all
articles from 2007 and 2018), so they can be compared across
time windows in a consistent manner. For each time window,
the relative centralities of the connector nodes were used to
calculate the assortativity of connections. To evaluate the sig-
nificance of the trends observed in the graphene collaboration
network, we performed 100 randomizations of the connector
links while fixing the internal topology of each community.
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