# Stellar atmospheric parameters of FGK-type stars from high-resolution optical and near-infrared CARMENES spectra

E. Marfil<sup>®</sup>,<sup>1</sup>\* H. M. Tabernero,<sup>2,3</sup> D. Montes<sup>®</sup>,<sup>1</sup> J. A. Caballero,<sup>2</sup> M. G. Soto,<sup>4</sup> J. I. González Hernández,<sup>5,6</sup> A. Kaminski,<sup>7</sup> E. Nagel,<sup>8</sup> S. V. Jeffers,<sup>9</sup> A. Reiners,<sup>9</sup> I. Ribas,<sup>10,11</sup> A. Quirrenbach<sup>7</sup> and P. J. Amado<sup>12</sup>

<sup>1</sup> Facultad de Ciencias Físicas, Departamento de Física de la Tierra y Astrofísica & IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Universidad Complutense de Madrid, E-28040 Madrid, Spain

- <sup>3</sup>Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, P-4150-762 Porto, Portugal
- <sup>4</sup>School of Physics and Astronomy, Queen Mary, University of London, 327 Mile End Rd., E1 4NS London, UK
- <sup>5</sup>Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
- <sup>6</sup>Instituto de Astrofísica de Canarias, vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain
- <sup>7</sup>Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg, Germany
- <sup>8</sup>Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany

<sup>9</sup>Institut für Astrophysik, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

- <sup>10</sup>Institut de Ciències de l'Espai (CSIC), Campus UAB, C/ de Can Magrans s/n, E-08193 Cerdanyola del Vallès, Spain
- <sup>11</sup>Institut d'Estudis Espacials de Catalunya (IEEC), C/ Gran Capità 2-4, E-08034 Barcelona, Spain

<sup>12</sup>Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain

Accepted 2019 December 28. Received 2019 December 9; in original form 2019 October 4

## ABSTRACT

With the purpose of assessing classic spectroscopic methods on high-resolution and high signal-to-noise ratio spectra in the near-infrared wavelength region, we selected a sample of 65 F-, G-, and K-type stars observed with CARMENES, the new, ultra-stable, double-channel spectrograph at the 3.5 m Calar Alto telescope. We computed their stellar atmospheric parameters ( $T_{eff}$ , log g,  $\xi$ , and [Fe/H]) by means of the STEPAR code, a PYTHON implementation of the equivalent width method that employs the 2017 version of the MOOG code and a grid of MARCS model atmospheres. We compiled four Fe I and Fe II line lists suited to metal-rich dwarfs, metal-poor dwarfs, metal-rich giants, and metal-poor giants that cover the wavelength range from 5300 to 17 100 Å, thus substantially increasing the number of identified Fe I and Fe II lines up to 653 and 23, respectively. We examined the impact of the near-infrared Fe I and Fe II lines upon our parameter determinations after an exhaustive literature search, placing special emphasis on the 14 *Gaia* benchmark stars contained in our sample. Even though our parameter determinations remain in good agreement with the literature values, the increase in the number of Fe I and Fe II lines when the near-infrared region is taken into account reveals a deeper  $T_{eff}$  scale that might stem from a higher sensitivity of the near-infrared lines to  $T_{eff}$ .

**Key words:** line: identification – techniques: spectroscopic – stars: fundamental parameters – stars: solar-type – infrared: stars.

## **1 INTRODUCTION**

The homogeneous, automated computation of stellar atmospheric parameters from stellar spectra, i.e. effective temperature  $T_{\text{eff}}$ , surface gravity log *g*, stellar metallicity [M/H], and micro-turbulent velocity  $\xi$ , plays a crucial role in many astrophysical contexts. First, it leads to the analysis of the fundamental properties of individual

objects as well as of large stellar samples (Valenti & Fischer 2005; Adibekyan et al. 2014). In this regard, large stellar spectroscopic surveys such as RAVE (Steinmetz et al. 2006), APOGEE (Allende Prieto et al. 2008), the *Gaia*-ESO Survey (Gilmore et al. 2012), and GALAH (De Silva et al. 2015) have laid the foundations for our current understanding of the structure and evolution of the Milky Way. Secondly, exoplanetary studies also rely on stellar parameter determinations not only to enable the determination of both planetary radii and masses (e.g. Mann et al. 2019; Schweitzer et al. 2019) but also to characterize the habitable zones around

<sup>&</sup>lt;sup>2</sup>Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28691 Villanueva de la Cañada, Madrid, Spain

<sup>\*</sup> E-mail: emigom01@ucm.es

planet-harbouring stars (Kasting, Whitmire & Reynolds 1993; Kopparapu et al. 2013). Furthermore, correlations between the stellar metallicity and planet occurrence rates are now well established and shed light on planet formation mechanisms (Adibekyan et al. 2014; Delgado Mena et al. 2018; Montes et al. 2018).

The equivalent width (EW) method (see e.g. Sousa et al. 2008; Tabernero, Montes & González Hernández 2012; Mucciarelli et al. 2013; Tsantaki et al. 2013; Bensby, Feltzing & Oey 2014; Andreasen et al. 2016) is, along with the spectral synthesis method (see e.g. Valenti & Fischer 2005; Piskunov & Valenti 2017), one of the most widely used spectroscopic techniques for determining stellar atmospheric parameters. A full account of the key caveats of these two methods can be found in Jofré, Heiter & Soubiran (2019) and Blanco-Cuaresma (2019). The advent of high-resolution nearinfrared (NIR) spectrographs such as CARMENES (Quirrenbach et al. 2018), SPIRou (Artigau et al. 2014), GIANO (Origlia et al. 2014; Oliva et al. 2018), CRIRES+ (Hatzes & CRIRES + Team 2017), IRD (Kotani et al. 2014), HPF (Wright et al. 2018), and NIRPS (Wildi et al. 2017) allows us to revisit these techniques, originally applied in the optical, in order to assess the impact of the NIR wavelength range on stellar parameter computations. In this context, new observations of FGK-type stars carried out with CARMENES,<sup>1</sup> the double-channel spectrograph at the 3.5 m Calar Alto telescope open up a unique opportunity to test the reliability of such techniques on high-resolution and high signal-to-noise (S/N) ratio spectra in the optical and near-infrared windows.

In this work, we compute the spectroscopic parameters of 65 FGK-type stars selected from a CARMENES stellar library by means of the EW method, which relies on the strength (i.e the EW measurements) of Fe I and Fe II absorption lines to derive the stellar atmospheric parameters  $T_{\rm eff}$ , log g, [Fe/H], and  $\xi$  assuming local thermodynamic equilibrium. To do so, we followed the approach of Sousa et al. (2007) to automatically measure the EW of the iron lines, and the STEPAR code (Tabernero et al. 2019) to automatically compute the stellar atmospheric parameters imposing excitation and ionization equilibrium conditions on the Fe I and Fe II lines.

The wavelength coverage provided by CARMENES, from 5200 up to 17 100 Å, allowed us to substantially increase the number of FeI and FeII lines subject to analysis with the EW method with respect to previous studies restricted to the optical window (Meléndez & Barbuy 2009; Jofré et al. 2014). Furthermore, the high spectral resolution of CARMENES, which is  $R = 94\,600$  in the VIS channel and R = 80400 in the NIR channel (Quirrenbach et al. 2018), significantly improves both the line identification process and the EW measurements. Despite the availability of iron line lists optimized for the NIR region in the literature, the impact on stellar parameter determinations of FGK-type stars is still unknown, mostly due to the fact that such line lists have not as yet been systematically applied to significantly large samples covering a wide portion of the stellar parameter space. For instance, Andreasen et al. (2016) compiled a line list of Fe I and Fe II lines in the region 10000–25000 Å, but only tested it against the spectra of the Sun and the F8 IV star HD 20010.

Several other spectral libraries of high-resolution spectra in the near-infrared have been developed over the past few years. For example, Lebzelter et al. (2012) presented the CRIRES-POP spectral library, which provides high-resolution ( $R \sim 100\,000$ ) spectra for 25 stars between B and M spectral types at 1–5 µm. Furthermore, Nicholls et al. (2017) described the data reduction process and presented the first CRIRES-POP spectral atlas of the K giant 10 Leo. Although the resolution of the spectra in this library is comparable to that of CARMENES, the number of available spectra is significantly lower than the size of the library analysed in this work, and does not satisfactorily cover the parameter space of FGK-type stars. Another example is the IGRINS spectral library (Park et al. 2018), which contains spectra of 84 stars between O and M spectral types in the *H* (1.49–1.80 µm) and *K* (1.96–2.46 µm) bands with a resolution of R = 45000, which is almost half of that provided by CARMENES in the NIR channel. Finally, large surveys such as APOGEE (Zamora et al. 2015; Majewski et al. 2017) have obtained intermediate-resolution ( $R \sim 22500$ ) spectra for hundreds of thousands of stars, but with a narrow wavelength coverage in the *H* band (1.5–1.7 µm).

The analysis performed in this work is structured as follows. In Section 2, we describe the selection of the sample. In Section 3, we outline the main steps of our analysis, including the line selection process and the workflow of the STEPAR code. In Sections 4 and 5, we discuss the results and highlight the conclusions, respectively.

## 2 SAMPLE

We observed an extensive sample of dwarf, giant, and supergiant stars and brown dwarfs with spectral types from O4 to late L as part of the first open time proposal that used CARMENES. While further details on this stellar library will be provided in forthcoming publications (Caballero et al. in preparation), we start here its scientific exploitation.

From the stellar library we selected 65 stars with spectral types later than F5 and earlier than K4, and projected equatorial rotational velocities  $v \sin i < 15 \,\mathrm{km \, s^{-1}}$  (see Table A1). The restriction in spectral type stems from the general limitations of the EW method and hence, STEPAR, as explained in Tabernero et al. (2019), while stars with high rotational velocities have line profiles that cannot be properly fitted by a Gaussian shape, leading to less reliable EW measurements. None of the observed 65 FGK-type stars had a known visual (physical) or optical (non-physical) companion at less than 5 arcsec. However, we excluded from this analysis one of the giants found in the library, c Gem, with spectral type K4.5 III (Keenan & McNeil 1989), as it appeared as an SB2 binary system after cross-correlating its spectrum with the atlas spectrum of Arcturus, as explained in Section 3.1.

Our target list contains 14 *Gaia* benchmark stars (Jofré et al. 2014, 2018; Heiter et al. 2015), including the Sun. The spectrum of the Sun was obtained through the observation of the asteroid 1 Ceres due to the allocation of Calar Alto Director's discretionary time. According to their original purpose, the fact that the fundamental parameters of these stars have been computed independently from spectroscopy makes them suitable as a reference to assess any method aimed at the automated analysis of cool stars.

Table A1 displays the star names, Henry-Draper numbers, equatorial coordinates from 2MASS (Skrutskie et al. 2006), parallaxes from the *Gaia* Data Release 2 (Gaia Collaboration 2018) if available, and the *Hipparcos* mission (van Leeuwen 2007), along with the spectral types, the values of  $T_{\text{eff}}$ ,  $\log g$ ,  $\xi$ , [Fe/H] and the stellar projected rotational velocities,  $v \sin i$ , found in the literature for the selected sample. For the *Gaia* benchmark stars, we adopted the parameters from Jofré et al. (2014) and Heiter et al. (2015), with updated values from Jofré et al. (2018). For the remaining stars, we tabulate the stellar parameters from the most recent references found in the PASTEL catalogue (Soubiran et al. 2016).



**Figure 1.** Division of the parameter space in the sample according to the stellar atmospheric parameters found in the literature. The vertical and horizontal dashed black lines represent the boundaries at [Fe/H] = -0.3 dex and  $\log g = 4.0$  dex, respectively, for metal-rich dwarfs (MRDs, orange squares), metal-poor dwarfs (MPDs, blue squares), metal-rich giants (MRGs, orange triangles), and metal-poor giants (MPGs, blue triangles). The stars taken as a reference for each of these regions are shown in black.

Following Tabernero et al. (2019), we divided the parameter space into four different regions in terms of log *g* and [M/H], using [Fe/H] as a proxy of stellar metallicity, in order to simplify our search for iron lines in the CARMENES spectra, as explained in Section 3.2. We thus made a distinction between the dwarf regime, log  $g \ge 4.00$ , and the giant regime, log g < 4.00, and between metal-rich stars, [Fe/H] > -0.30, and metal-poor stars, [Fe/H]  $\le -0.30$ . We dubbed the four resulting line lists metal-rich dwarfs (MRDs), metal-poor dwarfs (MPDs), metal-rich giants (MRGs), and metal-poor giants (MPGs). We selected the following *Gaia* benchmark stars, all of which were observed with CARMENES, as a reference for the assembly of the corresponding Fe I and Fe II line lists: 18 Sco for the MRD,  $\mu$  Cas for the MPD,  $\epsilon$  Vir for the MRG, and Arcturus for the MPG. We show this division of the parameter space in Figs 1 and 2.

#### **3 ANALYSIS**

## 3.1 Data processing

The 65 pairs of VIS and NIR spectra were taken in service mode between 2016 March and 2016 June with the two CARMENES channels operating simultaneously. In general, exposure times were manually adjusted to reach an S/N between 100 and 300 in the *J* band. The observations were carried out without the simultaneous wavelength calibration of the Fabry–Pérot etalons since there was no particular interest in precise radial velocity determinations (i.e. better than ~20 m s<sup>-1</sup>) for these stars.

The spectra were taken in 'target + sky' mode, i.e. the stars were observed in fibre A and the sky in fibre B. Both fibres are identical but fibre B is located at 88 arcsec to the east. Star and sky spectra are available through the Calar Alto archive. In our work, we did not subtract the corresponding sky spectrum to each star spectrum, as this is an ongoing analysis (Nagel et al. in preparation).

The raw spectra were reduced with the CARACAL pipeline (Zechmeister, Anglada-Escudé & Reiners 2014; Caballero et al.



Figure 2. Same as Fig. 1, but for literature values of  $T_{\text{eff}}$  versus [Fe/H] in the sample. Only the boundary at [Fe/H] = -0.3 dex is shown.



**Figure 3.** CARACAL S/N of the CARMENES spectra of the reference stars (18 Sco,  $\mu$  Cas,  $\epsilon$  Vir, and Arcturus) as a function of the spectral order *m*. The blue circles are the orders in the VIS channel, while the orange and red circles are the two HgCdTe array detectors of the NIR channel. The dashed black lines mark the global S/N estimation given by iSpec.

2016), which is based on the IDL REDUCE package (Piskunov & Valenti 2002). CARACAL generates one fully reduced, wavelengthcalibrated, one-dimensional spectrum of the individual spectral orders. Fig. 3 displays the CARACAL S/N of the four reference spectra as a function of the diffraction order m. We estimated the global S/N of the spectra with the integrated Spectroscopic framework (iSpec, see Blanco-Cuaresma et al. 2014) in terms of the median of the flux values divided by their corresponding flux errors. The global S/N of the selected spectra can also be found in Table A2.



Figure 4. Distribution of the selected Fe I and Fe II absorption lines in the reference spectra. The Fe I and Fe II lines are shown as black and pink vertical lines, respectively, below the spectra. The VIS and NIR channels of the CARMENES instrument are shown in blue and red, respectively. The grey shaded areas show the regions severely affected by telluric absorption.

Next, we employed a wavelength grid to merge the spectral orders of both channels into one single spectrum. The wavelength grid, which is evenly spaced on a logarithmic scale, mirrors the natural wavelength spacing of the CARMENES spectrographs across the orders. In Fig. 4, we show the normalized, merged spectra of the four stars taken as a reference in this work.

Since the CARMENES instrument operates in vacuum, we performed a vacuum-to-air wavelength conversion of the order-merged, channel-merged, CARMENES spectra to provide the wavelengths of the Fe I and Fe II lines on an air scale, following the International Astronomical Union standard (Morton 2000):

$$\lambda_{\rm air} = \frac{\lambda_{\rm vacuum}}{n},\tag{1}$$

where n is the refraction index, which is given by the following expression:

$$n = 1 + 8.34254 \times 10^{-5} + \frac{2.406147 \times 10^{-2}}{130 - s^2} + \frac{1.5998 \times 10^{-4}}{38.9 - s^2},$$
(2)

where  $s = 10^4 / \lambda_{\text{vacuum}}$ , with  $\lambda_{\text{vacuum}}$  in Å.

After the vacuum-to-air wavelength conversion, we accounted for the barycentric velocity of the observatory at the time of observations. We then computed the radial velocities with iSpec by means of the cross-correlation function between the observed CARMENES spectra and a template spectrum provided by iSpec in the following way. In the dwarf regime, we set as the template a solar spectrum based on data from the NARVAL (Aurière 2003) and HARPS (Mayor et al. 2003) instruments (see Blanco-Cuaresma et al. 2014) covering the overlap region with CARMENES, i.e. the 5200–10480 Å range. Likewise, in the giant regime we set as the template spectrum an atlas of Arcturus covering the 5200-9260 Å range (Hinkle et al. 2000). Both template spectra were corrected from telluric absorption features, which makes them suitable for cross-correlation. This allowed us to correct the spectra from the corresponding Doppler shift. In Fig. 5, we compare the radial velocities thus computed against the literature values. Four stars exhibit a difference in radial velocity greater than 1 km s<sup>-1</sup> compared to literature values. These are all single-lined (SB1) spectroscopic binaries:  $\mu$  Cas (Worek & Beardsley 1977),  $\alpha$  CMi (Girard et al. 2000),  $\alpha$  UMa (Spencer Jones & Furner 1937), and  $\zeta$  Her (Scarfe et al. 1983). The radial velocities of our sample can also be found in Table A2. The average difference in the computed radial velocities of the sample with respect to the literature values is  $0.09 \pm 0.64$  km s<sup>-1</sup>.

## 3.2 Fe I and Fe II line selections

We requested four line lists from the Vienna Atomic Line Database (VALD3; Piskunov et al. 1995; Kupka et al. 2000,



Figure 5. Comparison between the radial velocities  $v_r$  of the sample obtained with iSpec and the literature values. Symbols are the same as in Fig. 1. The dotted blue and red lines are the average difference and the corresponding  $1\sigma$  dispersion, respectively.

1999; Ryabchikova et al. 2015), corresponding each to one of our four reference spectra. We used the option Extract stellar available at the VALD3 website,<sup>2</sup> with a wavelength range from 5300 to 17 100 Å, a minimum line depth of 5 per cent with respect to the continuum flux, and the corresponding input stellar parameters found in Table A1. We excluded the wavelength range 5200–5300 Å from this search because of the low S/N of the CARMENES spectra in this region.

Because of its user-friendly interface, we used iSpec to select the Fe I and Fe II spectral lines by visually projecting the VALD3 line list files on to the corresponding processed reference spectra. We rejected Fe I and Fe II lines that showed spectral blending with close atomic and molecular lines. Since telluric lines are ubiquitous in the near-infrared and at the red end of the optical (see e.g. Reiners et al. 2018), we computed a synthetic transmission spectrum via the telluric-correction tool molecfit (Kausch et al. 2015; Smette et al. 2015), which makes use of the line-by-line radiative transfer model (LBLRTM, Clough et al. 2005) and the HITRAN molecular line data base (Gordon et al. 2017), to model the Earth's atmospheric transmission spectrum. This allowed us to prevent wrong line identification throughout the visual inspection of the reference spectra. Further details on the telluric correction of the CARMENES spectra can be found in Passegger et al. (2019). A full description of the correction will appear in a forthcoming publication of the CARMENES series (Nagel et al. in preparation).

To expedite our analysis, we also looked for FeI and FeII line compilations found in the literature that overlap with the wavelength range covered by CARMENES. Since the careful analysis of the optical wavelength range up to  $\sim$ 6860 Å has already led to several line lists published in previous works that were specifically compiled to yield the best possible set of stellar atmospheric parameters for FGK-type stars (see e.g. Sousa et al. 2008; Jofré et al. 2014; Tabernero et al. 2019), we refrained from further refining the line selection in this window and adopted the iron lines given in Sousa et al. (2008). As to the near-infrared region, we checked our iron line selections from 10 000 to 17 100 Å against the ones tabulated in Andreasen et al. (2016). Despite our careful search for Fe II in the NIR region, we only found one Fe II line at  $\lambda = 10501.503$  Å. Finally, iron lines found in the region 6800-10000 Å were not compared with the literature due to the lack of line compilations in this spectral window. In Table 1, we show a summary of the number of iron lines listed in this work on a global and per-line list basis, i.e.

<sup>2</sup>http://vald.astro.uu.se

**Table 1.** Number of Fe I and Fe II lines reported in this work, Sousa et al. (2008, Sou08), Andreasen et al. (2016, And16), and Tabernero et al. (2019, Tab19), from 5300 to 17100 Å.

| Reference | Line list/region     | #liı | nes   |
|-----------|----------------------|------|-------|
|           | -                    | Fe I | Fe II |
| This work | MRD                  | 386  | 16    |
| This work | MPD                  | 295  | 9     |
| This work | MRG                  | 306  | 13    |
| This work | MPG                  | 379  | 4     |
| This work | CARMENES VIS channel | 437  | 21    |
| This work | CARMENES NIR channel | 216  | 2     |
| This work | Globally             | 653  | 23    |
| Tab19     | MRD                  | 112  | 8     |
| Tab19     | MPD                  | 82   | 8     |
| Tab19     | MRG                  | 72   | 7     |
| Tab19     | MPG                  | 95   | 5     |
| Tab19     | Globally             | 175  | 14    |
| Sou08     | _                    | 172  | 19    |
| And16     | -                    | 272  | 12    |

MRD, MPD, MRG, and MPG, in comparison with those tabulated in Sousa et al. (2008) and Andreasen et al. (2016) in the wavelength region covered by CARMENES.

Since we assembled the line lists considering four specific reference spectra, we removed the Fe I and Fe II line identifications that fall into any of the CARMENES inter- and intra-order gaps<sup>3</sup> as a consequence of the corresponding Doppler shift corrections in the remaining spectra of the sample.

In Fig. 4, we show the distribution of the selected Fe I and Fe II lines in the reference spectra. In addition, in Fig. A1 we give a close-up view of the spectrum of the reference, solar-type star 18 Sco along with the line selections. We give the central wavelength in air,  $\lambda_{air}$ , the excitation potential,  $\chi$ , and the oscillator strength, log *gf*, of the selected Fe I and Fe II lines in Tables A4 and A5, respectively.

#### 3.3 EW measurements

We computed the EWs by fitting Gaussian profiles to the absorption lines,<sup>4</sup> as shown in Fig 6. First, we selected a region approximately 6 Å wide centred at the selected absorption line, *l*, and performed a continuum normalization on the spectra following Sousa et al. (2007). Specifically, we fitted a third-degree polynomial to the data, selecting only the points that lie within rejt times the polynomial, where rejt =1 - 1/(S/N), and S/N is the signal-to-noise ratio of the region. We then identified the absorption lines present in the spectra by finding the points where the first derivative of the data was zero, and the second derivative was positive. Finally, we fitted Gaussian profiles to the lines detected, and integrated the profile corresponding to the selected line *l* to obtain the EW. The uncertainty in the EW was estimated by changing the Gaussian parameter estimates within  $1\sigma$  of their uncertainty for a total of 1000 iterations, and looking at the EW distribution.

As in Tabernero et al. (2019), we only considered lines with 10 mÅ < EW < 120 mÅ for all stars in the sample to avoid problems with line profiles of very intense lines and potentially bad EW measurements of extremely weak lines.

<sup>&</sup>lt;sup>3</sup>http://carmenes.caha.es/ext/instrument/ <sup>4</sup>The code is available at:https://github.com/msotov/EWComp utation



**Figure 6.** EW measurements of two Fe I lines in the spectrum of 18 Sco, at 5 641.434 Å (left) and 12 824.859 Å (right). The upper panels illustrate the continuum determination, where the points used for the final polynomial fit are highlighted in red. The bottom panels show the full fit performed for all detected lines, shown in green, and the Gaussian fit of the selected line, shown in red, parametrized by the central intensity in normalized units, *A*, the central wavelength in Å,  $\mu$ , and the Gaussian dispersion,  $\sigma$ . The shaded red area depicts the 1 $\sigma$  confidence intervals of the Gaussian fit, and the green square, the *EW* estimation, as explained in the text.

#### 3.4 STEPAR

The STEPAR code<sup>5</sup> is a PYTHON implementation of the EW method specifically designed for the automated and simultaneous computation of the stellar atmospheric parameters of FGK-type stars, namely  $T_{\rm eff}$ , log g, [Fe/H], and  $\xi$ . STEPAR is one of the 13 pipelines in the *Gaia*-ESO Survey used in the analysis of UVES U580 spectra of late-type, low-mass stars. A full description of its workflow and performance can be found in Tabernero et al. (2019). STEPAR is an iterative code that derives the stellar parameters and their associated uncertainties by imposing both excitation and ionization equilibrium conditions on a set of Fe I and Fe II lines, using the 2017 version of the MOOG<sup>6</sup> code (Sneden 1973) and a grid of plane-parallel and spherical MARCS<sup>7</sup> model atmospheres (Gustafsson et al. 2008).

For any given MOOG-compliant EW input file comprised of a significant number of Fe I and Fe II lines, STEPAR follows a Downhill Simplex minimization algorithm (Press et al. 2002) across the parameter space in order to find the stellar atmospheric parameters that best reproduce the observed EWs. The code takes  $T_{\rm eff} = 5777$  K,  $\log g = 4.44$  dex, and  $\xi = 1.0$  km s<sup>-1</sup> as the initial input values.

If we let  $\epsilon$ (Fe) represent the iron abundance retrieved from any given Fe line and  $\chi$  be the excitation potential of the line, STEPAR iterates until the slopes of  $\chi$  versus log  $\epsilon$  (Fe I) and log EW/ $\lambda$  versus  $\log \epsilon$  (Fe I) are zero, i.e. the iron atoms are in excitation equilibrium. It also imposes ionization equilibrium so that  $\log \epsilon$  (Fe I)  $= \log \epsilon$  (Fe II). Throughout this iterative process, the code verifies that the average [Fe/H] in the MOOG output is always compatible with the iron abundance of the input atmospheric model. Next, STEPAR performs an individual  $\sigma$  clipping on the Fe I and Fe II lines to remove the ones that imply an iron abundance,  $\log \epsilon$  (Fe), that exceeds the  $3\sigma$  limit with respect to the median abundance of all lines. After this step, STEPAR restarts the minimization algorithm with the remaining Fe I and Fe II lines, taking as initial input values the parameters computed in the first run. STEPAR computes the uncertainties in the stellar atmospheric parameters following the sequence:  $\delta \xi$ ,  $\delta T_{\text{eff}}$ ,  $\delta \log g$ , and  $\delta$ [Fe/H]. This computation relies on the retrieved FeI and FeII abundances and the uncertainties in the slopes that define the equilibria conditions. The code also propagates

<sup>5</sup>STEPAR is available at:https://github.com/hmtabernero/Ste Par

<sup>6</sup>https://www.as.utexas.edu/ chris/moog.html
<sup>7</sup>http://marcs.astro.uu.se



**Figure 7.** Kiel diagram (log *g* versus log  $T_{\text{eff}}$ ) of the sample along with the YaPSI isochrones at 0.1, 0.4, 0.6, 1, 4, and 13 Ga (for Z = 0.016, see Spada et al. 2017).

the uncertainties following the previous sequence. For example, the uncertainty in [Fe/H] is a quadrature between the standard deviation of the Fe I and Fe II abundances and the propagated uncertainties in the remaining stellar parameters. Further details on the computation of the uncertainties can be found in Tabernero et al. (2019).

## **4 RESULTS AND DISCUSSION**

In Table A2, we give the stellar atmospheric parameters of the sample computed with STEPAR. These were obtained after matching the corresponding Fe I and Fe II line lists to the stars according to their reference parameters reported in Table A1.

We also performed the analysis of the sample with the *EW* method taking into account only the Fe I and Fe II lines found in the optical region covered by the VIS channel of the CARMENES instrument. The parameters thus obtained can be found in Table A3. Unfortunately, we could not attempt to analyse the NIR in the same manner because of the scarcity of Fe II lines above 9600 Å.

In Fig. 7, we display a Kiel diagram, i.e.  $\log g$  versus  $\log T_{\text{eff}}$ , of our sample as computed with STEPAR, along with the Yale–Potsdam



**Figure 8.** Uncertainties in  $T_{\text{eff}}$ ,  $\delta T_{\text{eff}}$ , versus  $T_{\text{eff}}$  for our sample, as computed with STEPAR.



Figure 9. Line-to-line scatter in [Fe/H] versus  $T_{\rm eff}$  and S/N in the sample.

Stellar Isochrones (YaPSI, Spada et al. 2017) at solar metallicity, namely Z = 0.016. Overall, we found no disparity between our derived values and the region of the parameter space covered by the isochrones. As pointed out by Tabernero et al. (2019), STEPAR returns slightly higher effective temperatures for F-type dwarfs. Five luminous, G-type, giant stars ( $\beta$  Dra, F Hya,  $\epsilon$  Leo, 37 LMi, and  $\zeta$  Mon) are located at an anomalous position in the Kiel diagram. According to Luck (2014), these stars are thought to be the evolved counterparts of early F- to B-type main-sequence stars that have reached the He-burning evolutionary stage.

In the cool regime, i.e. K-type stars, where stellar spectra become increasingly more crowded, the continuum placement is more uncertain, and the iron lines are subject to blending with other spectral features. On the other hand, sufficiently strong iron lines become increasingly scarce towards early F-type stars. This has a strong impact on the computed errors in the stellar atmospheric parameters, in particular the effective temperature, and the line-to-line scatter in [Fe/H], as shown in Figs 8 and 9, respectively.

In Figs 10 and 11, we compare the stellar atmospheric parameters computed with STEPAR with values from the literature (McWilliam 1990; Heiter & Luck 2003; Allende Prieto et al. 2004; Valenti & Fischer 2005; Hekker & Meléndez 2007; Liu et al. 2007; Sousa et al. 2008; Takeda, Sato & Murata 2008; Lyubimkov et al. 2010; Wu et al. 2011; Thygesen et al. 2012; Santos et al. 2013; Jofré et al. 2014, 2015; Luck 2014; Morel et al. 2014; da Silva, Milone & Rocha-Pinto 2015; Jofré et al. 2018), taking into account the VIS and NIR channels simultaneously, and only the VIS channel, respectively. To explore possible sources of potential systematic trends or offsets, we followed the Monte Carlo method implemented in Tabernero et al. (2018). We generated 10 000 synthetic samples based on our derived stellar atmospheric parameters. We computed all data points in each of these artificial samples by means of a normal distribution centred at the original measurements, and took the uncertainties in each parameter as the width of the distribution. The summary of the Monte Carlo simulations can be found in Table 2. We computed the Pearson and Spearman correlation coefficients, which quantify the degree of correlation between any two given variables. We found a significant correlation in the differences between our own  $T_{\rm eff}$ values and the literature versus the literature values. However, no such correlation was found in the derived  $\log g$  and [Fe/H] values.

At first glance, it seems that our temperature scale has an intrinsic systematic error with respect to the literature values. The offset appears to be linked to the fact that we now include the NIR channel. given that the correlation diminishes when we restrict the analysis to the iron lines found in the VIS channel. Although the STEPAR code could be thought to be the underlying reason for this correlation, we are not comparing the same temperature scale. In other words, we now take into account iron absorption lines in a wavelength region that is different from most studies found in the literature. In addition, this offset is more noticeable for the coolest stars. The former result could arise from the fact that the NIR lines are more sensitive to the effective temperature than the optical lines, at least for the cool stars. In other words, although the inclusion of the NIR in the analysis does not bring extreme differences of the derived stellar parameters with respect to the analysis using the optical range, it seems to reveal a deeper  $T_{\rm eff}$  scale as suggested by the meaningful correlation found in Table 2 as well as Figs 10 and 11.

In Fig. 12, we show the values of log g derived with STEPAR against those obtained adopting the distances from *Gaia* DR2 (Gaia Collaboration 2018), if available, and the *Hipparcos* mission (van Leeuwen 2007). We computed the latter log g values by means of the PARAM web interface<sup>8</sup> (da Silva et al. 2006; Rodrigues et al. 2014, 2017), which employs a Bayesian approach to derive the stellar parameters, including stellar age, mass, and radius. The log g values obtained with PARAM can be found in Tables A2 and A3. Following the Monte Carlo method described above, we found a systematic offset of  $0.15 \pm 0.38$  dex. The Pearson and Spearman correlation coefficients, which are  $r_p = -0.302 \pm 0.093$  and  $r_s = 0.259 \pm 0.104$ , respectively, reveal a correlation of around 9 per cent, which is slightly lower than previous works (see e.g. Tabernero et al. 2017).

Regarding the micro-turbulent velocity, Fig. 13 shows the values of  $\xi$  obtained with STEPAR against the literature. Our derived values for  $\xi$  are compatible with the literature values to a large extent. However, six stars (i.e.  $\beta$  Dra, F Hya,  $\zeta$  Mon,  $\sigma$  Oph,  $\theta$  Her, and HD 77912), with computed  $\xi$  values larger than 3 km s<sup>-1</sup>, show larger deviations with respect to the literature, which can be as large

<sup>8</sup>http://stev.oapd.inaf.it/cgi-bin/param



Figure 10. Comparison between the stellar atmospheric parameters obtained with STEPAR including the VIS and NIR channels of CARMENES and the literature values. The blue filled circles are the *Gaia* benchmark stars in our sample. The remaining stars in the sample are shown with the blue open circles. The dashed black lines indicate the one-to-one relationship. From left to right:  $T_{\text{eff}}$ , log g, and [Fe/H].



Figure 11. Same as Fig. 10 but restricting the analysis to the FeI and FeII lines found in the optical wavelength region covered by the VIS channel of CARMENES.

**Table 2.** Summary of the Monte Carlo simulations carried out on the  $T_{\rm eff}$ , log *g*, and [Fe/H] values of the sample as computed with STEPAR. We show the average difference on each parameter and the values of the Pearson ( $r_p$ ) and Spearman ( $r_s$ ) correlation coefficients.

| Parameter         | Difference       | rp               | rs               |
|-------------------|------------------|------------------|------------------|
|                   | VIS and N        | IR channels      |                  |
| $T_{\rm eff}$ [K] | $-100 \pm 166$   | $0.40~\pm~0.07$  | $0.41 \pm 0.07$  |
| $\log g$ [dex]    | $-0.03 \pm 0.38$ | $0.10 \pm 0.10$  | $0.07 \pm 0.11$  |
| [Fe/H] [dex]      | $0.00 \pm 0.11$  | $-0.09 \pm 0.06$ | $-0.12 \pm 0.07$ |
|                   | VIS chai         | nnel only        |                  |
| $T_{\rm eff}$ [K] | $-92 \pm 135$    | $0.21 \pm 0.08$  | $0.21 \pm 0.09$  |
| $\log g$ [dex]    | $-0.01 \pm 0.38$ | $-0.01 \pm 0.10$ | $0.00 \pm 0.10$  |
| [Fe/H] [dex]      | $-0.04 \pm 0.10$ | $-0.01 \pm 0.08$ | $-0.07 \pm 0.09$ |

as 1.6 km s<sup>-1</sup>, as in the case of the star  $\zeta$  Mon. In addition, we retrieved a significantly lower  $\xi$  value for the star  $\upsilon$  Boo compared to the literature. Although  $\xi$  and [Fe/H] are thought to be partially degenerate (Valenti & Fischer 2005), we fail to identify the impact that such high or low  $\xi$  values have on [Fe/H] for these stars in our analysis. For example, a difference of 1.6 km s<sup>-1</sup> in  $\xi$  for the star  $\zeta$  Mon leads to a difference of only 0.07 dex in [Fe/H] between the literature and the analysis with STEPAR, and both computed and literature values are compatible within error bars.

A closer look at the comparison between our parameter determinations and the *Gaia* benchmark star parameters from Heiter et al. (2015), with updated values from Jofré et al. (2018), can be found in Fig 14. We find good agreement between our derived values and the fundamental  $T_{\rm eff}$  and log g, i.e. derived from the fundamental relations  $L = 4\pi R^2 \sigma T_{\rm eff}^4$  and  $g = GM/R^2$ , respectively, by means of specific information that is available for these stars, such as the parallax, the angular diameter, and the bolometric flux. None the less, we note four outliers in  $T_{\rm eff}$  ( $\Delta T_{\rm eff} > 200$  K) and two in log g



**Figure 12.** Surface gravities,  $\log g$ , derived for the sample with STEPAR versus those obtained with the code PARAM, adopting the distances from *Gaia* DR2.



**Figure 13.** Micro-turbulent velocity derived for the sample with STEPAR,  $\xi_{\text{StePar}}$ , versus literature values. Symbols are the same as in Fig. 1.

 $(\Delta \log g > 0.25 \text{ dex})$ . Among the outliers in log g are Arcturus and 7 Psc. According to Heiter et al. (2015), the log g value of Arcturus remains uncertain, with literature values ranging from 1.4 up to 2.0 dex, while both the  $T_{\text{eff}}$  and log g values for the star 7 Psc are, in fact, not recommended for use as reference values. Among the outliers in  $T_{\text{eff}}$  are the stars HD 49933,  $\mu$  Leo,  $\epsilon$  Vir, and 7 Psc. As stated by Heiter et al. (2015), the fundamental  $T_{\text{eff}}$  value for the stars  $\epsilon$  Vir and  $\mu$  Leo is significantly lower (~3 per cent) than the value derived in spectroscopic studies. Lastly, at the hot regime, the typical spectroscopic  $T_{\text{eff}}$  values computed for the star HD 49933 are generally larger.

Lastly, in Fig. 15, we show the final Fe I and Fe II abundances versus the excitation potential and the reduced EW of the lines, for the four reference CARMENES spectra (18 Sco,  $\mu$  Cas,  $\epsilon$  Vir, and Arcturus).



**Figure 14.** Differences in  $T_{\text{eff}}$  and  $\log g$  between this work and Heiter et al. (2015), with updated values from Jofré et al. (2018), for the *Gaia* benchmark stars in our sample. Symbols are the same as in Fig. 1.

#### **5** CONCLUSIONS

In this work, we have expanded previous optical Fe I and Fe II line lists into the wavelength range covered by CARMENES, i.e. from 5300 to 17 100 Å. The line lists are suited for FGK-type stars and relate to MRDs, MPDs, MRGs, and MPGs. For the first time, we provide Fe I and Fe II lines in the wavelength region between 6800 and 10 000 Å. Altogether, these new line lists contain 653 Fe I and 23 Fe II lines, of which 351 and eight are new additions to the line lists compiled in Tabernero et al. (2019), respectively. This implies more than doubling the number of Fe I and Fe II lines useful for abundance and radial-velocity analyses. The availability of these Fe I and Fe II line lists is also an asset for other new high-resolution near-infrared spectrographs such as SPIRou, GIANO, CRIRES+, IRD, HPF, and NIRPS that also provide wavelength coverage in the near-infrared wavelength region.

We have reported that the star c Gem (HD 62285) is a new SB2 system, as shown by the cross-correlation with an atlas spectrum of Arcturus.

In addition, we have computed a homogenized set of stellar atmospheric parameters for a sample of 65 FGK-type stars observed with CARMENES by means of the EW method. We made a comprehensive comparison of our  $T_{\text{eff}}$ , log g, and [Fe/H] values with those of virtually all relevant determinations of stellar atmospheric parameters of FGK-type stars. Our parameter determinations are in good agreement with the literature values in general, particularly with the region of the parameter space covered by the YaPSI isochrones (Spada et al. 2017) and the Gaia benchmark stars (Jofré et al. 2014, 2018; Heiter et al. 2015). The scarcity of Fe II lines in the NIR wavelength range covered by CARMENES prevented us from performing the stellar parameter determinations using this spectral region alone. However, when using both VIS and NIR CARMENES channel data, we found a broader  $T_{\rm eff}$  scale that seems to be linked to a higher sensitivity to effective temperature of the iron lines found in the NIR region.

The line selections provided in this work will be useful for the spectroscopic analysis of any FGK-type star simultaneously observed in the optical and near-infrared wavelength regions. Finally,



**Figure 15.** *From top to bottom:* line iron abundance retrieved by STEPAR for the final solution of the four reference stars: 18 Sco,  $\mu$  Cas,  $\epsilon$  Vir, and Arcturus. log  $\epsilon$  (Fe I) stands for the Fe abundance returned by the Fe lines, while log (EW/ $\lambda$ ) is their reduced EWs. The open black dots represent Fe I lines, whereas the pink dots are Fe II lines. The dashed black lines represent the least-squares fit to the data points.

in a forthcoming publication we plan to expand optical line lists of additional chemical species into the NIR covered by CARMENES and thus assess the impact of the near-infrared wavelength region upon chemical abundance computations for FGK-type stars.

## ACKNOWLEDGEMENTS

CARMENES is an instrument for the Centro Astronómico Hispano en Andalucía at Calar Alto (CAHA). CARMENES is funded by the German Max-Plank Gesellschaft (MPG), the Spanish Conseio Superior de Investigaciones Científicas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Plank-Institut für Astronomie, Instituto de Astrofísica de Andalucía, Landessternwarte Königstuhl, Institut de Ciències de l'Espai, Institut für Astrophysik Göttingen, Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenberg, Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astrobiología and Centro Astronómico Hispano en Andalucía), with additional contributions by the Ministerio de Asuntos Económicos y Transformación Digital, the German Research Foundation (DFG) through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 'Blue Planets around Red Stars', the Klaus Tschira Stiftung, the states of Baden-Württemberg and Niedersachsen, and by the Junta de Andalucía. The authors acknowledge financial support from the Fundação para a Ciência e a Tecnologia (FCT) through national funds (PTDC/FIS-AST/28953/2017) and by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI-01-0145-FEDER-028953), the Ministerio de Ciencia e Innovación through fellowship FPU15/01476, and projects AYA2016-79425-C3-1/2/3-P, and the Universidad Complutense de Madrid. JIGH acknowledges financial support from the Ministerio de Ciencia e Innovación under the 2013 Ramón y Cajal programme RYC-2013-14875, and from the project AYA2017-86389-P. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna. We thank Calar Alto Observatory for the allocation of director's discretionary time to this programme. EM would also like to warmly thank the staff at the Hamburger Sternwarte for their hospitality during his stay funded by project EST18/00162 from the Ministerio de Ciencia e Innovación. Based on data from the CARMENES data archive at CAB (INTA-CSIC).

## REFERENCES

- Adibekyan V. Z., González Hernández J. I., Delgado Mena E., Sousa S. G., Santos N. C., Israelian G., Figueira P., Bertran de Lis S., 2014, A&A, 564, L15
- Allende Prieto C., Barklem P. S., Lambert D. L., Cunha K., 2004, A&A, 420, 183
- Allende Prieto C. et al., 2008, Astron. Nachr., 329, 1018
- Andreasen D. T., Sousa S. G., Delgado Mena E., Santos N. C., Tsantaki M., Rojas-Ayala B., Neves V., 2016, A&A, 585, A143
- Artigau É. et al., 2014, in Ramsay S. K., McLean I. S., Takami H., eds, Proceedings SPIE Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, Proceedings SPIE Conference Series, Bellingham, p. 914715
- Aurière M., 2003, in Arnaud J., Meunier N., eds, EAS Publ. Ser. Vol. 9, Magnetism and Activity of the Sun and Stars. Cambridge Univ. Press, Cambridge, p. 105
- Bensby T., Feltzing S., Oey M. S., 2014, A&A, 562, A71

Blanco-Cuaresma S., 2019, MNRAS, 486, 2075

- Blanco-Cuaresma S., Soubiran C., Heiter U., Jofré P., 2014, Astrophysics Source Code Library, record ascl:1409.006
- Caballero J. A. et al., 2016, in Peck A. B., Seaman R. L., Benn C. R., eds, Proc. SPIE Conf. Ser. Vol. 9910, Observatory Operations: Strategies, Processes, and Systems VI. SPIE, Bellingham, p. 99100E
- Clough S. A., Shephard M. W., Mlawer E. J., Delamere J. S., Iacono M. J., Cady-Pereira K., Boukabara S., Brown P. D., 2005, J. Quant. Spectrosc. Radiat. Transfer, 91, 233
- da Silva L. et al., 2006, A&A, 458, 609
- da Silva R., Milone A. d. C., Rocha-Pinto H. J., 2015, A&A, 580, A24
- De Medeiros J. R., do Nascimento J. D. J., Sankarankutty S., Costa J. M., Maia M. R. G., 2000, A&A, 363, 239
- De Medeiros J. R., Udry S., Burki G., Mayor M., 2002, A&A, 395, 97
- De Silva G. M. et al., 2015, MNRAS, 449, 2604
- Delgado Mena E. et al., 2018, A&A, 619, A2
- dos Santos L. A. et al., 2016, A&A, 592, A156
- Famaey B., Jorissen A., Luri X., Mayor M., Udry S., Dejonghe H., Turon C., 2005, A&A, 430, 165
- Gaia Collaboration, 2018, A&A, 616, A1
- Gilmore G. et al., 2012, The Messenger, 147, 25
- Girard T. M. et al., 2000, AJ, 119, 2428
- Gontcharov G. A., 2006, Astron. Lett., 32, 759
- Gordon I. E., Rothman L. S., Tan Y., Kochanov R. V., Hill C., 2017, 72nd International Symposium on Molecular Spectroscopy, p. TJ08
- Gray D. F., 2018, ApJ, 869, 81
- Gray D. F., Toner C. G., 1986, ApJ, 310, 277
- Gustafsson B., Edvardsson B., Eriksson K., Jørgensen U. G., Nordlund Å., Plez B., 2008, A&A, 486, 951
- Hatzes A., CRIRES + Team, 2017, American Astronomical Society Meeting Abstracts #230, p. 117.02
- Hayes C. R. et al., 2018, ApJ, 852, 49
- Heiter U., Luck R. E., 2003, AJ, 126, 2015
- Heiter U., Jofré P., Gustafsson B., Korn A. J., Soubiran C., Thévenin F., 2015, A&A, 582, A49
- Hekker S., Meléndez J., 2007, A&A, 475, 1003
- Hinkle K., Wallace L., Valenti J., Harmer D., 2000, Visible and Near Infrared Atlas of the Arcturus Spectrum 3727–9300 A, Astronomical Society of the Pacific, San Francisco
- Jofré P. et al., 2014, A&A, 564, A133
- Jofré E., Petrucci R., Saffe C., Saker L., de la Villarmois E. A., Chavero C., Gómez M., Mauas P. J. D., 2015, A&A, 574, A50
- Jofré P., Heiter U., Tucci Maia M., Soubiran C., Worley C. C., Hawkins K., Blanco-Cuaresma S., Rodrigo C., 2018, Res. Notes Am. Astron. Soc., 2, 152
- Jofré P., Heiter U., Soubiran C., 2019, ARA&A, 57, 5
- Karataş Y., Bilir S., Eker Z., Demircan O., 2004, MNRAS, 349, 1069
- Kasting J. F., Whitmire D. P., Reynolds R. T., 1993, Icarus, 101, 108
- Kausch W. et al., 2015, A&A, 576, A78
- Keenan P. C., McNeil R. C., 1989, ApJS, 71, 245
- Kopparapu R. K. et al., 2013, ApJ, 765, 131
- Kotani T. et al., 2014, in Ramsay S. K., McLean I. S., Takami H., eds, Proc. SPIE Conf. Ser. Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V. SPIE, Bellingham, p. 914714
- Kupka F., Piskunov N., Ryabchikova T. A., Stempels H. C., Weiss W. W., 1999, A&AS, 138, 119
- Kupka F. G., Ryabchikova T. A., Piskunov N. E., Stempels H. C., Weiss W. W., 2000, Balt. Astron., 9, 590
- Lèbre A., de Laverny P., Do Nascimento J. D. J., de Medeiros J. R., 2006, A&A, 450, 1173
- Lebzelter T. et al., 2012, A&A, 539, A109
- Liu Y. J., Zhao G., Shi J. R., Pietrzyński G., Gieren W., 2007, MNRAS, 382, 553
- Luck R. E., 2014, AJ, 147, 137
- Lyubimkov L. S., Lambert D. L., Rostopchin S. I., Rachkovskaya T. M., Poklad D. B., 2010, MNRAS, 402, 1369
- Lyubimkov L. S., Lambert D. L., Kaminsky B. M., Pavlenko Y. V., Poklad D. B., Rachkovskaya T. M., 2012, MNRAS, 427, 11

- Majewski S. R. et al., 2017, AJ, 154, 94
- Maldonado J., Martínez-Arnáiz R. M., Eiroa C., Montes D., Montesinos B., 2010, A&A, 521, A12
- Mann A. W. et al., 2019, ApJ, 871, 63
- Martínez-Arnáiz R., Maldonado J., Montes D., Eiroa C., Montesinos B., 2010, A&A, 520, A79
- Massarotti A., Latham D. W., Stefanik R. P., Fogel J., 2008, AJ, 135, 209
- Mayor M. et al., 2003, The Messenger, 114, 20
- McCarthy K., Wilhelm R. J., 2014, AJ, 148, 70
- McWilliam A., 1990, ApJS, 74, 1075
- Meléndez J., Barbuy B., 2009, A&A, 497, 611
- Montes D. et al., 2018, MNRAS, 479, 1332
- Morel T. et al., 2014, A&A, 564, A119
- Morton D. C., 2000, ApJS, 130, 403
- Mucciarelli A., Pancino E., Lovisi L., Ferraro F. R., Lapenna E., 2013, ApJ, 766, 78
- Nicholls C. P. et al., 2017, A&A, 598, A79
- Nidever D. L., Marcy G. W., Butler R. P., Fischer D. A., Vogt S. S., 2002, ApJS, 141, 503
- Oliva E., Sanna N., Rainer M., Massi F., Tozzi A., Origlia L., 2018, in Evans C. J., Simard L., Takami H., eds, Proc. SPIE Conf. Ser. Vol. 7015, Ground-based and Airborne Instrumentation for Astronomy VII. SPIE, Bellingham, p. 1070274
- Origlia L. et al., 2014, in Ramsay S. K., McLean I. S., Takami H., eds, Proc. SPIE Conf. Ser. Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V. SPIE, Bellingham, p. 91471E
- Park S. et al., 2018, ApJS, 238, 29
- Passegger V. M. et al., 2019, A&A, 627, A161
- Pavlenko Y. V., Jenkins J. S., Jones H. R. A., Ivanyuk O., Pinfield D. J., 2012, MNRAS, 422, 542
- Piskunov N. E., Valenti J. A., 2002, A&A, 385, 1095
- Piskunov N., Valenti J. A., 2017, A&A, 597, A16
- Piskunov N. E., Kupka F., Ryabchikova T. A., Weiss W. W., Jeffery C. S., 1995, A&AS, 112, 525
- Pourbaix D. et al., 2004, A&A, 424, 727
- Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 2002, Numerical Recipes in C++ : The Art of Scientific Computing. Cambridge Univ. Press, Cambridge
- Quirrenbach A. et al., 2018, in Evans C. J., Simard L., Takami H., eds, Proc. SPIE Conf. Ser. Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII. SPIE, Bellingham, p. 107020W
- Reiners A. et al., 2018, A&A, 612, A49
- Rodrigues T. S. et al., 2014, MNRAS, 445, 2758
- Rodrigues T. S. et al., 2017, MNRAS, 467, 1433
- Ryabchikova T., Piskunov N., Kurucz R. L., Stempels H. C., Heiter U., Pakhomov Y., Barklem P. S., 2015, Phys. Scr., 90, 054005
- Santos N. C. et al., 2013, A&A, 556, A150
- Scarfe C. D., Funakawa H., Delaney P. A., Barlow D. J., 1983, J. R. Astron. Soc. Can., 77, 126
- Schweitzer A. et al., 2019, A&A, 625, A68
- Skrutskie M. F. et al., 2006, AJ, 131, 1163
- Smette A. et al., 2015, A&A, 576, A77
- Sneden C. A., 1973, PhD thesis, The University of Texas at Austin
- Soubiran C., Jasniewicz G., Chemin L., Crifo F., Udry S., Hestroffer D., Katz D., 2013, A&A, 552, A64
- Soubiran C., Le Campion J.-F., Brouillet N., Chemin L., 2016, A&A, 591, A118
- Sousa S. G., Santos N. C., Israelian G., Mayor M., Monteiro M. J. P. F. G., 2007, A&A, 469, 783
- Sousa S. G. et al., 2008, A&A, 487, 373
- Spada F., Demarque P., Kim Y.-C., Boyajian T. S., Brewer J. M., 2017, ApJ, 838, 161
- Spencer Jones H., Furner H. H., 1937, MNRAS, 98, 92
- Steinmetz M. et al., 2006, AJ, 132, 1645
- Tabernero H. M., Montes D., González Hernández J. I., 2012, A&A, 547, A13
- Tabernero H. M., Montes D., González Hernández J. I., Ammler-von Eiff M., 2017, A&A, 597, A33

- Tabernero H. M., Dorda R., Negueruela I., González-Fernández C., 2018, MNRAS, 476, 3106
- Tabernero H. M., Marfil E., Montes D., González Hernández J. I., 2019, A&A, 628, A131
- Takeda Y. et al., 2005, PASJ, 57, 13
- Takeda Y., Sato B., Murata D., 2008, PASJ, 60, 781
- Thygesen A. O. et al., 2012, A&A, 543, A160
- Tsantaki M., Sousa S. G., Adibekyan V. Z., Santos N. C., Mortier A., Israelian G., 2013, A&A, 555, A150
- Valenti J. A., Fischer D. A., 2005, ApJS, 159, 141
- van Leeuwen F., 2007, A&A, 474, 653
- Wildi F. et al., 2017, Shaklan S., ed., Proc. SPIE Conf. Ser. Vol. 10400, Techniques and Instrumentation for Detection of Exoplanets VIII. SPIE, Bellingham, p. 1040018
- Worek T. F., Beardsley W. R., 1977, ApJ, 217, 134
- Wright J. T. et al., 2018, American Astronomical Society Meeting Abstracts #231, p. 246.45

Wu Y., Singh H. P., Prugniel P., Gupta R., Koleva M., 2011, A&A, 525, A71 Zamora O. et al., 2015, AJ, 149, 181

Zechmeister M., Anglada-Escudé G., Reiners A., 2014, A&A, 561, A59

#### SUPPORTING INFORMATION

Supplementary data are available at MNRAS online.

Fig. A1. CARMENES spectrum of 18 Sco.

**Table A2.** Stellar atmospheric parameters of the selected sample under STEPAR and  $\log g$  values obtained with PARAM assuming parallaxes from Gaia DR2 and the *Hipparcos* mission.

**Table A3.** Stellar atmospheric parameters of the selected sample under STEPAR restricted to the optical and  $\log g$  values obtained with PARAM assuming parallaxes from *G*aia DR2 and the *Hipparcos* mission.

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

## **APPENDIX A: APPENDIX**

In Table A1, we give the literature values of the stellar atmospheric parameters for the selected sample. In Tables A2 and A3, we give the stellar atmospheric parameters computed with STEPAR in the whole VIS + NIR region and VIS region, respectively. In Tables A4 and A5, we list the FeI and FeII lines along with their parameters, respectively, for MRDs, MPDs, MRGs, and MPGs. Finally, we include the CARMENES spectrum of the reference, MRD 18 Sco in Fig. A6, along with the FeI and FeII lines indicated in red and green, respectively.

| Name                              | HD     | $\alpha$ (J2000) | § (J2000)         | $\pi$ [mas]           | Ref. <sup>a</sup> | $^{\rm spT^b}$ | $v_{ m r}$ [km s <sup>-1</sup> ] | Ref. <sup>c</sup><br>[] | <i>v</i> sin <i>i</i><br>km s <sup>-1</sup> ] | Ref. <sup>d</sup> | $T_{ m eff}$<br>[K] | $\log g$ [dex]  | ξ<br>[km s <sup>-1</sup> ] | [Fe/H]<br>[dex]  | Ref. <sup>e</sup> |
|-----------------------------------|--------|------------------|-------------------|-----------------------|-------------------|----------------|----------------------------------|-------------------------|-----------------------------------------------|-------------------|---------------------|-----------------|----------------------------|------------------|-------------------|
|                                   |        |                  |                   |                       |                   |                | Metal-rich dwa                   | rfs (MRD)               |                                               |                   |                     |                 |                            |                  |                   |
| $Sun^{f}$                         | I      | I                | I                 | I                     | Ι                 | G2 V           | 0.00                             |                         | 1.6                                           | Pav12             | $5771 \pm 1$        | $4.44 \pm 0.00$ | $1.20\pm0.18$              | $+0.03 \pm 0.05$ | Jof18             |
| HD 3765                           | 3765   | 00 40 49.29      | $+40\ 11\ 13.3$   | $55.7562 \pm 0.1002$  | U                 | K2 V           | -63.11 Sol                       | u13                     | 9.2                                           | Mar10             | $5032 \pm 44$       | $4.59 \pm 0.06$ | $0.85 \pm -$               | $+0.18 \pm 0.03$ | Val05             |
| HD 100167                         | 100167 | 11 31 53.92      | $+41\ 26\ 21.5$   | $28.4793 \pm 0.1513$  | G                 | F8 V           | – 29.49 Ni                       | d02                     | 5.0 1                                         | McC14             | $5915 \pm 44$       | $4.38 \pm 0.06$ | $0.85 \pm -$               | $+0.06 \pm 0.03$ | Val05             |
| 61 UMa                            | 101501 | 11 41 03.01      | $+34\ 12\ 06.4$   | $104.3904 \pm 0.1287$ | IJ                | G8 V           | – 5.18 Ni                        | d02                     | 3.3                                           | Mar10             | 5488 土 44           | $4.43 \pm 0.06$ | $0.85 \pm -$               | $-0.03 \pm 0.03$ | Val05             |
| $\beta \operatorname{Vir}^{f}$    | 102870 | 11 50 41.73      | +014552.8         | $89.9258 \pm 0.5195$  | IJ                | F9 V           | +4.71 Nic                        | d02                     | 3.4                                           | Mar10             | $5083 \pm 41$       | $4.10\pm0.02$   | $1.40\pm0.09$              | $+0.24 \pm 0.07$ | Jof18             |
| $\beta CVn$                       | 109358 | 12 33 44.54      | $+41\ 21\ 27.0$   | $116.1298 \pm 0.6776$ | IJ                | GOV            | +6.52 Nic                        | d02                     | 3.2                                           | Mar10             | $5930 \pm 44$       | $4.44 \pm 0.06$ | $0.85 \pm -$               | $-0.16 \pm 0.03$ | Val05             |
| $\beta$ Com                       | 114710 | 13 11 52.38      | +275241.1         | $108.8951 \pm 0.3487$ | IJ                | F9.5 V         | +5.46 Ni                         | d02                     | 4.7                                           | Mar10             | $5075 \pm 44$       | $4.57 \pm 0.06$ | $0.85 \pm -$               | $+0.07 \pm 0.03$ | Val05             |
| ξ Boo                             | 131156 | 14 51 23.28      | $+19\ 06\ 03.4$   | $148.5195 \pm 0.2436$ | IJ                | G7 Ve +        | +1.59 Ka                         | r04                     | 3.3                                           | Mar10             | 5570 ± 44           | $4.65 \pm 0.06$ | $0.85 \pm -$               | $-0.04 \pm 0.03$ | Val05             |
| λ Ser                             | 141004 | 15 46 26.61      | $+07\ 21\ 10.9$   | $84.6121 \pm 0.2559$  | IJ                | G0IV-V         | – 66.07 Nic                      | d02                     | 3.2                                           | Mar10             | $5936 \pm 44$       | $4.30 \pm 0.06$ | $0.85 \pm -$               | $+0.05 \pm 0.03$ | Val05             |
| $18 \operatorname{Sco}^{f}$       | 146233 | 16 15 37.26      | $-08\ 22\ 09.6$   | $70.7675 \pm 0.1119$  | IJ                | G2 Va          | +11.90 Ga                        | ia                      | 2.1                                           | San16             | $5810 \pm 80$       | $4.44 \pm 0.03$ | $1.20 \pm 0.20$            | $+0.03 \pm 0.03$ | Jof18             |
| HD 166620                         | 166620 | 18 09 37 45      | +38 27 28.8       | $90.1264 \pm 0.0200$  | IJ                | K2 V           | - 19.47 Sol                      | u13                     | 4.8                                           | Mar10             | $5000 \pm 44$       | $4.47 \pm 0.06$ | $0.85 \pm -$               | $-0.18 \pm 0.03$ | Val05             |
| HD 182488                         | 182488 | 19 23 34.01      | +33 13 19.1       | $64.0623 \pm 0.0218$  | IJ                | G9 V           | -21.47 Sol                       | u13                     | 0.6                                           | Fek97             | 5453 ± 44           | $4.67 \pm 0.06$ | $0.85 \pm -$               | $+0.22 \pm 0.03$ | Val05             |
| $\sigma$ Dra                      | 185144 | 19 32 21.53      | $+69\ 39\ 41.3$   | $173.2405 \pm 0.2070$ | IJ                | $G_{9}V$       | +26.78 Nic                       | d02                     | 6.8                                           | Mar10             | $5218 \pm 96$       | $4.61\pm0.05$   | $1.07 \pm -$               | $-0.25 \pm 0.02$ | A1104             |
| HD 219134                         | 219134 | 23 13 16.92      | +57 10 05.9       | $153.0808 \pm 0.0895$ | IJ                | K3 V           | – 18.83 Nie                      | d02                     | 6.9                                           | Mar10             | 4743 土 86           | $4.63 \pm 0.04$ | $1.00 \pm -$               | $+0.12 \pm 0.02$ | A1104             |
|                                   |        |                  |                   |                       |                   |                | Metal-poor dwa                   | urfs (MPD)              | -                                             |                   |                     |                 |                            |                  |                   |
| $\eta$ Cas                        | 4614   | 00 49 06.22      | +57 48 54.5       | $171.2861 \pm 0.5815$ | U                 | F9V +          | +8.44 Ni                         | d02                     | 3.2                                           | Mar10             | $5900 \pm 50$       | $4.50 \pm 0.05$ | $0.90 \pm 0.05$            | $-0.35 \pm 0.04$ | Hei03             |
| $\mu \operatorname{Cas}^{f}$      | 6582   | 01 08 15.97      | +545514.8         | $132.38 \pm 0.82$     | Η                 | KIV            | - 98.10 Poi                      | u04                     | 4.2                                           | Mar10             | $5308 \pm 29$       | $4.41 \pm 0.06$ | $1.10 \pm 0.29$            | $-0.81 \pm 0.03$ | Jof18             |
| HD 49933 <sup>7</sup>             | 49933  | 06 50 49.83      | -003227.0         | $33.4441 \pm 0.0891$  | IJ                | F3 V           | – 12.65 Ga                       | ia                      | 5.0                                           | Tak05             | $5635 \pm 91$       | $4.20 \pm 0.03$ | $1.90\pm0.35$              | $-0.41 \pm 0.08$ | Jof18             |
| CF UMa <sup>f</sup>               | 103095 | 11 52 58.80      | $+37\ 43\ 06.0$   | $108.9551 \pm 0.0490$ | IJ                | G8 Vp          | — 97.49 На                       | y18                     | 9.3                                           | Mar10             | $5140 \pm 55$       | $4.60 \pm 0.03$ | $1.10\pm0.57$              | $-1.46 \pm 0.39$ | Jof18             |
| HD 154363                         | 154363 | 17 03 07.86      | $+14\ 05\ 31.0$   | $95.5499 \pm 0.0651$  | IJ                | K4V            | +34.22 Mc                        | on18                    | 1.9                                           | Mar10             | 4723 土 89           | $4.41 \pm 0.24$ | I                          | $-0.62 \pm 0.04$ | Sou08             |
|                                   |        |                  |                   |                       |                   |                | Metal-rich gian                  | its (MRG)               |                                               |                   |                     |                 |                            |                  |                   |
| ı Gem                             | 58207  | 07 25 43.59      | +27 47 52.9       | $24.8793 \pm 0.3562$  | IJ                | G9 IIIb        | +7.26 Ma                         | as08                    | 0.0                                           | Mas08             | $4912 \pm 56$       | $2.82 \pm 0.28$ | $1.47 \pm 0.09$            | $-0.03 \pm 0.10$ | Sil15             |
| $\alpha \text{ CMi}^{\prime}$     | 61421  | 07 39 18.05      | +05 13 29.8       | $284.56 \pm 1.26$     | Η                 | F5 IV-V        | -4.10 M <sup>6</sup>             | al10                    | 5.4                                           | Mar10             | $5554 \pm 84$       | $4.00 \pm 0.02$ | $1.80 \pm 0.11$            | $+0.01 \pm 0.08$ | Jof18             |
| k Gem                             | 62345  | 07 44 26.84      | $+24\ 23\ 52.6$   | $23.6199 \pm 0.3954$  | IJ                | G8 IIIa        | +20.15 Sol                       | u08                     | 3.3                                           | Mas08             | $5120 \pm 28$       | $2.98 \pm 0.16$ | $1.56 \pm 0.04$            | $+0.03 \pm 0.05$ | Sil15             |
| $\beta \operatorname{Gem}^{f}$    | 62509  | 07 45 18.91      | $+28\ 01\ 34.0$   | $96.54 \pm 0.27$      | Η                 | K0 IIIb        | +3.23 Jof                        | :15                     | 2.3                                           | Jof15             | $4858 \pm 60$       | $2.90 \pm 0.08$ | $1.10 \pm 0.21$            | $+0.13 \pm 0.16$ | Jof18             |
| ζ Mon                             | 67594  | 08 08 35.65      | -025901.5         | $4.7723 \pm 0.3259$   | IJ                | G2 Iab/b       | +31.20 Ga                        | ia                      | 6.7                                           | Med02             | $5210 \pm 100$      | $1.75 \pm 0.07$ | $3.3\pm0.5$                | $+0.01 \pm 0.12$ | Lyu10             |
| $\beta$ Cnc                       | 69267  | 08 16 30.90      | $+09\ 11\ 08.0$   | $11.0443 \pm 0.6561$  | IJ                | K4 III         | +22.94 Fai                       | m05                     | 6.9                                           | Mas08             | 4200 ± -            | $2.05 \pm -$    | $2.30 \pm -$               | $-0.19 \pm -$    | Hek07             |
| F Hya                             | 74395  | 08 43 40.37      | -07 14 01.2       | $1.8273 \pm 0.2985$   | U                 | G0/2 Ib        | +27.68 Ga                        | ia                      | 7.5                                           | Med02             | $5370 \pm 100$      | $2.08 \pm 0.06$ | $3.5\pm0.5$                | $-0.03 \pm 0.13$ | Lyu10             |
| ζ Hya                             | 76294  | 08 55 23.62      | +055644.1         | $20.7182 \pm 0.3925$  | U                 | G9 III–III     | +22.30 Go                        | n06                     | 2.5                                           | Mas08             | $5049 \pm 55$       | $2.88 \pm 0.30$ | $1.67 \pm 0.08$            | $+0.01 \pm 0.11$ | Sil15             |
| HD 77912                          | 77912  | 09 06 31.77      | $+38\ 27\ 08.0$   | $5.0045 \pm 0.1977$   | U                 | G7 II          | +16.04 Ga                        | ia                      | 1.5                                           | Med02             | $5001 \pm -$        | $2.03 \pm -$    | $2.16 \pm -$               | $+0.12 \pm -$    | Luc14             |
| $\alpha$ Hya                      | 81797  | 09 27 35.24      | -08 39 30.8       | $18.09 \pm 0.18$      | Η                 | K3 IIIa        | – 4.27 Jof                       | 15                      | 4.0                                           | Jof15             | $4395 \pm 37$       | $2.09 \pm 0.11$ | $1.76 \pm 0.12$            | $-0.11 \pm 0.05$ | Jof15             |
| DK UMa                            | 82210  | 09 34 28.88      | $+69 \ 49 \ 49.0$ | $30.9269 \pm 0.1621$  | U                 | G5 III-IV      | – 27.07 Ga                       | ia                      | 5.5                                           | Med00             | $5343 \pm 33$       | $3.49 \pm 0.08$ | I                          | $-0.21 \pm 0.07$ | Wu11              |
| 10 LMi                            | 82635  | 09 34 13.38      | $+36\ 23\ 51.3$   | $18.1458 \pm 0.2345$  | U                 | G8.5 III       | – 11.94 Ma                       | as08                    | 6.5                                           | Mas08             | $5195 \pm 40$       | $3.26 \pm 0.26$ | $1.56 \pm 0.06$            | $-0.02 \pm 0.07$ | Sil15             |
| € Leo                             | 84441  | 09 45 51.08      | +23 46 27.3       | $11.1759 \pm 0.9166$  | IJ                | G1II           | +4.48 Soi                        | u08                     | 8.1                                           | Mas08             | 5383 ± -            | 2.17 ± -        | $2.09 \pm -$               | $+0.04 \pm -$    | Luc14             |
| $\mu \operatorname{Leo}^{f}$      | 85503  | 09 52 45.85      | $+26\ 00\ 24.8$   | $30.6493 \pm 0.4219$  | IJ                | K2 III         | +13.63 Fai                       | m05                     | 4.5                                           | Mas08             | $4474 \pm 60$       | $2.51 \pm 0.11$ | I                          | $+0.25 \pm 0.15$ | Jof18             |
| $\beta$ LMi                       | 90537  | 10 27 53.02      | +364225.9         | $21.19 \pm 0.50$      | Η                 | G9 IIIb        | +8.52 Ga                         | ia                      | 7.1                                           | Mas08             | $5060 \pm -$        | $2.95 \pm -$    | $2.1 \pm -$                | $0.00 \pm 0.10$  | McW90             |
| 37 LMi                            | 92125  | 10 38 43.21      | +315834.6         | $5.2136 \pm 0.4108$   | U                 | G3 Ib–II       | – 7.71 Ga                        | ia                      | 9.5                                           | Lyu12             | $5475 \pm 50$       | $2.36 \pm 0.04$ | $2.7 \pm 0.5$              | $+0.02 \pm 0.11$ | Lyu10             |
| α UMa                             | 95689  | 11 03 43.64      | +61 45 03.4       | $26.54 \pm 0.48$      | Η                 | G8 III +       | – 9.40 Go                        | n06                     | 2.7                                           | Gra18             | $4660 \pm -$        | 2.46 ± -        | $2.2 \pm -$                | $-0.20 \pm 0.07$ | McW90             |
| ψ UMa                             | 96833  | 11 09 39.79      | +44 29 54.4       | $21.0443 \pm 0.5249$  | U                 | K1 III         | — 3.39 Fai                       | m05                     | 5.5                                           | Mas08             | $4600 \pm 22$       | $1.95 \pm 0.08$ | I                          | $+0.03 \pm 0.08$ | Thy12             |
| $\nu$ UMa                         | 98262  | 11 18 28.74      | $+33\ 05\ 39.3$   | $14.2521 \pm 0.5672$  | U                 | K3 III         | – 9.63 Fai                       | m05                     | 2.7                                           | Med00             | $4120 \pm -$        | $1.86 \pm -$    | $2.4 \pm -$                | $-0.20 \pm 0.12$ | McW90             |
| 56 UMa                            | 98839  | 11 22 49.58      | $+43\ 28\ 57.7$   | $5.8742 \pm 0.1937$   | U                 | G8 IIIa        | +1.01 Po                         | u04                     | 4.0                                           | Leb06             | $4936 \pm 25$       | $2.30 \pm 0.08$ | $1.78 \pm 0.10$            | $-0.05 \pm 0.04$ | Tak08             |
| $\epsilon \operatorname{Vir}^{f}$ | 113226 | 13 02 10.59      | +105732.9         | $30.5624 \pm 0.4379$  | IJ                | G8 III         | – 14.29 Jof                      | 15                      | 1.4                                           | Jof15             | $4983 \pm 61$       | $2.77 \pm 0.02$ | $1.10\pm0.25$              | $+0.15 \pm 0.16$ | Jof18             |

Table A1. Reference stellar parameters of the selected CARMENES sample.

| Ref.'                               | Jof15                         | CIIIS<br>Wii11                           | Sill5                | Jof15                | Liu07                | Jof15                | San13                | Mor14                | A1104            | Hek07                | Hek07               | Hek07               | Lyu10               | Hek07                | Jof15                 | Sil15                | Hek07               | Sil15                | Jof15                |              | Jof18               | Hek07                  | Jof18                 | Jof15                | Jof14               |                           |                            | 0 et al. (2010);                                         | z-Arnáiz et al.          |                     | é et al. (2018);                  | (00000) |
|-------------------------------------|-------------------------------|------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------|----------------------|---------------------|---------------------|---------------------|----------------------|-----------------------|----------------------|---------------------|----------------------|----------------------|--------------|---------------------|------------------------|-----------------------|----------------------|---------------------|---------------------------|----------------------------|----------------------------------------------------------|--------------------------|---------------------|-----------------------------------|---------|
| [Fe/H]<br>[dex]                     | $+0.32 \pm 0.08$              | $-0.13 \pm 0.12$<br>$-0.13 \pm 0.05$     | $-0.23 \pm 0.06$     | $+0.03 \pm 0.04$     | $+0.17 \pm -$        | $+0.17 \pm 0.05$     | $-0.22 \pm 0.03$     | $-0.04 \pm 0.10$     | $-0.01 \pm 0.02$ | $+0.07 \pm -$        | $+0.01 \pm -$       | $-0.07 \pm -$       | $+0.02 \pm 0.10$    | $+0.13 \pm -$        | $+0.28 \pm 0.05$      | $+0.12 \pm 0.14$     | $-0.11 \pm -$       | $+0.06 \pm 0.09$     | $+0.05 \pm 0.07$     |              | $-0.33 \pm 0.16$    | $-0.57 \pm -$          | $-0.52 \pm 0.08$      | $-0.30 \pm 0.03$     | $-0.74 \pm 0.13$    |                           |                            | Mal 10: Maldonad                                         | ); Mar10: Martíne        | 3da et al. (2005).  | 2015); Jof18: Jofn                |         |
| ξ<br>[km s <sup>-1</sup> ]          | $1.92 \pm 0.03$               | $1.59 \pm 0.12$                          | $1.44 \pm 0.04$      | $1.41 \pm 0.07$      | $1.5 \pm 0.2$        | $0.83 \pm 0.06$      | $1.68 \pm 0.06$      | $1.43 \pm 0.06$      | $1.38 \pm \dots$ | $1.82 \pm -$         | $2.26 \pm -$        | 2.54 ± -            | $3.0 \pm 0.5$       | $2.02 \pm -$         | $1.02 \pm 0.07$       | $1.41 \pm 0.21$      | $2.75 \pm -$        | $1.62 \pm 0.08$      | $1.60\pm0.05$        |              | $1.20\pm0.26$       | $2.60 \pm -$           | $1.30 \pm 0.12$       | $1.36\pm0.05$        | $1.30 \pm 0.14$     |                           |                            | re et al. (CIUZ) .ie                                     | kov et al. (2012)        | 12); Tak05: Take    | 5: Jofré et al. (2                |         |
| $\log g$ [dex]                      | $3.79 \pm 0.02$               | $1.85 \pm 0.36$<br>$1.70 \pm 0.11$       | $2.89 \pm 0.19$      | $2.52 \pm 0.07$      | 2.52 ± -             | $3.23 \pm 0.04$      | $1.94 \pm 0.15$      | $2.64\pm0.06$        | $3.67 \pm 0.12$  | $2.70 \pm -$         | $1.90 \pm -$        | $1.52 \pm -$        | $1.86 \pm 0.04$     | $2.95 \pm -$         | $3.98 \pm 0.05$       | $2.94 \pm 0.33$      | $1.25 \pm -$        | $3.28 \pm 0.26$      | $2.84 \pm 0.09$      |              | $2.09\pm0.13$       | $1.60 \pm -$           | $1.60\pm0.20$         | $2.55 \pm 0.04$      | $1.43 \pm 0.12$     |                           |                            | 10f :C110f ;(400)                                        | Lyu12: Lyubim            | vlenko et al. (20   | t al. (2014); Jof1                |         |
| $T_{ m eff}$<br>[K]                 | $6099 \pm 28$                 | $4258 \pm 65$                            | $4982 \pm 28$        | $4504 \pm 16$        | 4496 ± -             | $4803\pm25$          | $4436 \pm 56$        | $4940\pm55$          | $5655 \pm 148$   | 4655 ± -             | $4170 \pm -$        | $4080 \pm -$        | $5160 \pm 150$      | $4680 \pm -$         | $5562 \pm 35$         | $4702 \pm 76$        | 4255 ± -            | $5220 \pm 51$        | $4997~\pm~56$        |              | $4496\pm59$         | $4170 \pm -$           | $4286 \pm 35$         | $4786 \pm 13$        | $4266\pm 60$        |                           |                            | Karataş et al. (2<br>(2013).                             | re et al. (2006);        | 02); Pav12: Pa      | ; Jof14: Jofré e                  |         |
| Ref. <sup>d</sup>                   | Jof15                         | Mas08                                    | Mas08                | Jof15                | Mas08                | Jof15                | Mas08                | Mas08                | Mar10            | Mas08                | Leb06               | Leb06               | Leb06               | Mas08                | Jof15                 | Mas08                | Gra86               | Mas08                | Jof15                |              | Mas08               | Mas08                  | Mas08                 | Jof15                | Med00               |                           |                            | ; Kar∪4:<br>an et al.                                    | 06: Lèbi                 | et al. (20          | z (2007)                          |         |
| $v \sin i$<br>[km s <sup>-1</sup> ] | 12.3                          | 0.c<br>9.l                               | 3.6                  | 1.9                  | 4.3                  | 1.4                  | 2.4                  | 3.6                  | 3.1              | 4.7                  | 1.3                 | 4.2                 | 10.7                | 5.4                  | 1.7                   | 2.3                  | 3.4                 | 2.8                  | 2.8                  | (Dc          | 1.9                 | 5.1                    | 4.2                   | 1.6                  | 1.0                 |                           |                            | et al. (2018)<br>ou13: Soubii                            | (2018); Let              | be Medeiros         | & Melénde                         |         |
| Ref. <sup>c</sup>                   | Jof15                         | Mas08<br>Fam05                           | Sou08                | Gaia                 | Fam05                | Jof15                | Fam05                | Mas08                | Gon06            | Mas08                | Fam05               | Fam05               | Sou08               | Fam05                | Mon18                 | Mas08                | Fam05               | Fam05                | Jof15                | giants (MI   | Gaia                | Fam05                  | Mas08                 | Jof15                | Gaia                |                           |                            | 8: науеs<br>(2004): So                                   | a18: Gray                | Med02: I            | 7: Hekker                         |         |
| $v_{\rm r}$ [km s <sup>-1</sup> ]   | +0.70                         | - 13.57<br>± 16.96                       | - 12.29              | -12.31               | +2.63                | -23.16               | -32.42               | -9.18                | -67.80           | -55.85               | -25.57              | -27.81              | -21.00              | -12.53               | -17.69                | -26.46               | -28.32              | -1.72                | +13.19               | Metal-poor g | +36.66              | -5.85                  | -5.19                 | -26.71               | +40.46              | <b>7</b> ).               |                            | (2000); Hay1<br>urbaix et al.                            | er (1986); Gra           | et al. (2000);      | 2003); Hek0'                      |         |
| $\mathrm{SpT}^b$                    | G0IV                          | K3III<br>K4III                           | G8IV                 | K2 III               | K2 IIIb              | K0 III-IV            | K2 III               | G9.5 IIIb            | GIIV             | K2 III               | K3 II               | K2 III              | G2 Ib–IIa           | K2 III               | G5IV                  | K2 III               | K1 II +             | G8 III               | K1 III               |              | K0 IIIb             | K5.5 III               | K1.5 III              | G8.5 III             | K1IV                | Leeuwen 200               |                            | Contcharov                                               | Gray & Ton               | De Medeiros         | iter & Luck (                     |         |
| Ref. <sup>a</sup>                   | Н                             | בכ                                       | : 0                  | IJ                   | IJ                   | IJ                   | IJ                   | IJ                   | Η                | IJ                   | U                   | IJ                  | IJ                  | IJ                   | IJ                    | IJ                   | IJ                  | IJ                   | IJ                   |              | IJ                  | IJ                     | Η                     | IJ                   | IJ                  | os (van                   | č                          | uconuo:<br>al. (200                                      | Gra86:                   | fed00: I            | i03: He                           |         |
| $\pi$ [mas]                         | $87.75 \pm 1.24$              | $21.9348 \pm 0.3952$<br>$24.01 \pm 0.12$ | $26.7797 \pm 0.3806$ | $31.5727 \pm 0.2959$ | $39.3696 \pm 0.8514$ | $33.2328 \pm 0.1083$ | $14.2898 \pm 0.2149$ | $30.2620 \pm 0.7915$ | $93.32 \pm 0.47$ | $36.8142 \pm 0.4578$ | $9.1810 \pm 0.4201$ | $3.8431 \pm 0.2836$ | $8.1882 \pm 0.5562$ | $40.0945 \pm 0.6752$ | $119.1128 \pm 0.4848$ | $29.8654 \pm 0.3051$ | $2.7547 \pm 0.2684$ | $25.2599 \pm 0.3303$ | $23.0524 \pm 0.4626$ |              | $9.7577 \pm 0.2536$ | $14.2758 \pm 0.3494$   | $88.83 \pm 0.54$      | $21.0823 \pm 0.4010$ | $9.5042 \pm 0.1880$ | on 2018); H: Hipparc      | ration).                   | Collaboration (2018);<br>8): Nid02: Nidever et           | 5: Jofré et al. (2015);  | & Wilhelm (2014); N | rieto et al. (2004); He           |         |
| δ (J2000)                           | $+18\ 23\ 51.4$               | +30 22 16.9<br>±74 00 10 0               | +33 18 53.7          | +58 57 57.7          | $+06\ 25\ 32.4$      | $+35\ 39\ 26.4$      | +265240.0            | $-04\ 41\ 32.7$      | $+31\ 36\ 09.3$  | $+09\ 22\ 29.9$      | +364832.9           | $+04\ 08\ 25.2$     | $+52\ 18\ 05.1$     | +04 34 02.2          | +27 43 14.2           | +565221.6            | +37 15 01.9         | +29 1452.3           | $-09\ 46\ 24.9$      |              | +03 1845.3          | +154752.3              | $+19\ 10\ 55.8$       | $-14\ 47\ 22.2$      | $+05\ 22\ 52.8$     | Gaia Collaborati          | o et al. (in prepar        | 1000); Uaia: Uaia<br>[00168 et al. (2018                 | et al. (2016); Jofl      | cC14: McCarthy      | All04: Allende Pr                 |         |
| $\alpha$ (J2000)                    | 13 54 41.06                   | 14 31 49.77<br>14 50 42 35               | 15 15 30.15          | 15 24 55.78          | 15 44 16.05          | 15 51 13.94          | 15 57 35.23          | 16 18 19.28          | 16 41 17.28      | 16 57 40.07          | 17 15 02.85         | 17 26 30.87         | 17 30 25.97         | 17 43 28.35          | 17 46 27.52           | 17 53 31.73          | 17 56 15.17         | 17 57 45.88          | 17 59 01.60          |              | 12 20 20.99         | 13 49 28.67            | 14 15 39.68           | 15 35 31.57          | 23 20 20.58         | : G:Gaia DR2 (            | e, SpT: Caballer           | ramaey et al. (2)<br>08): Mon18: M                       | 16: dos Santos e         | et al. (2008); M    | ξ, and [Fe/H]: 1                  |         |
| HD                                  | 121370                        | 12/665                                   | 135722               | 137759               | 140573               | 142091               | 143107               | 146791               | 150680           | 153210               | 156283              | 157999              | 159181              | 161096               | 161797                | 163588               | 163770              | 163993               | 163917               |              | 107328              | 120477                 | 124897                | 138905               | 220009              | or parallax, $\pi$        | or spectral type           | or <i>v</i> <sub>r</sub> : FamU5: I<br>arotti et al. (20 | or v sin <i>i</i> : San1 | )8: Massarotti      | For $T_{\text{eff}}$ , $\log g$ , |         |
| Mame                                | $\eta \operatorname{Boo}^{f}$ | ρ Boo<br>β ITMi                          | β Boo                | t Dra                | a Ser                | $\kappa$ CrB         | € CrB                | € Oph                | ζ Her            | k Oph                | $\pi$ Her           | σ Oph               | $\beta$ Dra         | $\beta$ Oph          | $\mu$ Her             | ξ Dra                | $\theta$ Her        | ξ Her                | v Oph                |              | c Vir <sup>f</sup>  | $v \operatorname{Boo}$ | Arcturus <sup>f</sup> | $\gamma$ Lib         | 7 Psc <sup>f</sup>  | <sup>a</sup> References 1 | <sup>b</sup> Reference for | <sup>v</sup> Kererence I(<br>Mas08: Mass                 | dReference fo            | (2010); MasC        | eReferences 1                     |         |

 Table A1 - continued

MNRAS 492, 5470-5507 (2020)

Tak08: Takeda et al. (2008); Thy12: Thygesen et al. (2012); Val05: Valenti & Fischer (2005); Wu11: Wu et al. (2011).

fGaia benchmark star (Jofré et al. 2014, 2018; Heiter et al. 2015).

| Name        | $v_r$<br>[km s <sup>-1</sup> ] | S/N | T <sub>eff</sub><br>[K] | log g<br>[dex]  | log g <sub>PARAM</sub><br>[dex] | $\xi$ [km s <sup>-1</sup> ] | [Fe/H]<br>[dex]  |
|-------------|--------------------------------|-----|-------------------------|-----------------|---------------------------------|-----------------------------|------------------|
|             |                                | Me  | etal-rich dwarfs (      | MRD)            |                                 |                             |                  |
| Sun         | $0.00\pm0.00$                  | 249 | $5768~\pm~58$           | $4.45 \pm 0.12$ | _                               | $1.31 \pm 0.09$             | $-0.01 \pm 0.04$ |
| HD 3765     | $-63.18 \pm 0.50$              | 138 | $5310 \pm 81$           | $4.63 \pm 0.24$ | $4.55 \pm 0.02$                 | $1.43 \pm 0.10$             | $+0.12 \pm 0.03$ |
| HD 100167   | $-29.41 \pm 0.52$              | 98  | $5898~\pm~57$           | $4.47 \pm 0.12$ | $4.43 \pm 0.02$                 | $1.27 \pm 0.09$             | $+0.01 \pm 0.04$ |
| 61 UMa      | $-5.47 \pm 0.46$               | 248 | $5555~\pm~59$           | $4.59 \pm 0.13$ | $4.52~\pm~0.02$                 | $1.36 \pm 0.10$             | $-0.07 \pm 0.03$ |
| $\beta$ Vir | $+4.58 \pm 0.65$               | 345 | $6199~\pm~63$           | $4.23 \pm 0.13$ | $4.09 \pm 0.02$                 | $1.53 \pm 0.08$             | $+0.17 \pm 0.04$ |
| $\beta$ CVn | $+6.34 \pm 0.49$               | 241 | $5902~\pm~61$           | $4.41 \pm 0.13$ | $4.37 \pm 0.03$                 | $1.22 \pm 0.10$             | $-0.20 \pm 0.04$ |
| $\beta$ Com | $+5.41 \pm 0.57$               | 198 | $6000~\pm~58$           | $4.44 \pm 0.12$ | $4.42 \pm 0.01$                 | $1.30\pm0.08$               | $+0.04 \pm 0.04$ |
| ξ Βοο       | $+1.81 \pm 0.40$               | 67  | $5403~\pm~52$           | $4.48 \pm 0.12$ | $4.54 \pm 0.02$                 | $1.45  \pm  0.08$           | $-0.19 \pm 0.03$ |
| λ Ser       | $-66.22 \pm 0.60$              | 109 | $5835~\pm~54$           | $4.00 \pm 0.14$ | $4.22~\pm~0.02$                 | $1.34 \pm 0.07$             | $-0.04 \pm 0.04$ |
| 18 Sco      | $+11.93 \pm 0.59$              | 298 | $5774~\pm~58$           | $4.43 \pm 0.13$ | $4.41 \pm 0.04$                 | $1.30~\pm~0.08$             | $0.00~\pm~0.04$  |

**Table A2.** Stellar atmospheric parameters of the selected sample under STEPAR and  $\log g$  values obtained with PARAM assuming parallaxes from *G*aia DR2 and the *Hipparcos* mission.

**Table A3.** Stellar atmospheric parameters of the selected sample under STEPAR restricted to the optical and log *g* values obtained with PARAM assuming parallaxes from *G*aia DR2 and the *Hipparcos* mission.

| Name        | $v_{\rm r}$ [km s <sup>-1</sup> ] | S/N | T <sub>eff</sub><br>[K] | log g<br>[dex]  | log g <sub>PARAM</sub><br>[dex] | $\xi [km s^{-1}]$ | [Fe/H]<br>[dex]  |
|-------------|-----------------------------------|-----|-------------------------|-----------------|---------------------------------|-------------------|------------------|
|             |                                   | ]   | Metal-rich dwarf        | s (MRD)         |                                 |                   |                  |
| Sun         | $0.00 \pm 0.00$                   | 249 | $5787~\pm~54$           | $4.42 \pm 0.11$ | _                               | $0.98 \pm 0.08$   | $+0.02 \pm 0.03$ |
| HD 3765     | $-63.18 \pm 0.50$                 | 138 | $5206 \pm 84$           | $4.62 \pm 0.22$ | $4.55 \pm 0.02$                 | $1.17 \pm 0.12$   | $+0.16 \pm 0.04$ |
| HD 100167   | $-29.41 \pm 0.52$                 | 98  | $5942 \pm 54$           | $4.49 \pm 0.10$ | $4.43 \pm 0.02$                 | $1.04 \pm 0.09$   | $+0.04 \pm 0.04$ |
| 61 UMa      | $-5.47 \pm 0.46$                  | 248 | $5576~\pm~56$           | $4.56 \pm 0.12$ | $4.52 \pm 0.02$                 | $1.07 \pm 0.09$   | $-0.01 \pm 0.03$ |
| $\beta$ Vir | $+4.58 \pm 0.65$                  | 345 | $6255~\pm~64$           | $4.20 \pm 0.12$ | $4.09 \pm 0.02$                 | $1.45 \pm 0.08$   | $+0.23 \pm 0.04$ |
| β CVn       | $+6.34 \pm 0.49$                  | 241 | $5967~\pm~57$           | $4.40 \pm 0.12$ | $4.37 \pm 0.03$                 | $0.96 \pm 0.09$   | $-0.14 \pm 0.04$ |
| $\beta$ Com | $+5.41 \pm 0.57$                  | 198 | $6105~\pm~56$           | $4.42 \pm 0.11$ | $4.42 \pm 0.01$                 | $1.18 \pm 0.07$   | $+0.02 \pm 0.04$ |
| ξ Βοο       | $+1.81 \pm 0.40$                  | 67  | $5536~\pm~55$           | $4.50 \pm 0.12$ | $4.54 \pm 0.02$                 | $1.25 \pm 0.09$   | $-0.15 \pm 0.03$ |
| λ Ser       | $-66.22 \pm 0.60$                 | 109 | $5950~\pm~56$           | $4.31 \pm 0.14$ | $4.22~\pm~0.02$                 | $1.22~\pm~0.08$   | $+0.05 \pm 0.04$ |
| 18 Sco      | $+11.93 \pm 0.59$                 | 298 | $5786~\pm~54$           | $4.40~\pm~0.10$ | $4.41~\pm~0.04$                 | $0.99\pm0.09$     | $+0.02 \pm 0.04$ |

Table A4.
 Merged Fe I line lists.

| 1.                     | 24.5                 | log af  |      | Line | lista |       | Pafaranca <sup>b</sup> |
|------------------------|----------------------|---------|------|------|-------|-------|------------------------|
| م <sub>ar</sub><br>[Å] | [eV]                 | 10g gj  | MRD  | MPD  | MRG   | MPG   | Reference              |
|                        | [0,1]                |         | inte |      |       | iin o |                        |
| 5307.361               | 1.61                 | -2.912  | ٠    | •    |       | •     | Sou08                  |
| 5321.108               | 4.44                 | -1.089  |      |      |       | •     | Sou08                  |
| 5322.041               | 2.28                 | -2.802  | •    |      |       | ٠     | Sou08                  |
| 5339.929               | 3.27                 | -0.635  |      |      |       | ٠     | Sou08                  |
| 5364.871               | 4.45                 | +0.228  |      |      | •     | ٠     | Sou08                  |
| 5373.709               | 4.47                 | -0.710  | •    | •    |       |       | Sou08                  |
| 5379.574               | 3.70                 | -1.514  | •    | •    | •     | •     | Sou08                  |
| 5386.333               | 4.15                 | -1.670  | •    |      | •     | ٠     | Sou08                  |
| 5389.479               | 4.42                 | -0.410  |      | •    | •     |       | Sou08                  |
| 5397.618               | 3.63                 | -2.528  |      |      | •     |       | Sou08                  |
| 5398.279               | 4.45                 | -0.630  | •    | •    | •     |       | Sou08                  |
| 5400.501               | 4.37                 | -0.160  | •    | •    |       |       | Sou08                  |
| 5401.266               | 4.32                 | -1.820  | •    |      | •     |       | Sou08                  |
| 5409.133               | 4.37                 | -1.200  | •    | •    |       |       | Sou08                  |
| 5417.033               | 4.42                 | -1.580  | •    |      | •     |       | Sou08                  |
| 5424.068               | 4.32                 | +0.520  |      | •    |       |       | Sou08                  |
| 5436 295               | 4 39                 | -1440   |      |      |       |       | Sou08                  |
| 5436 588               | 2.28                 | - 2 964 | •    |      |       | •     | Sou08                  |
| 5441 339               | 4 31                 | -1.630  | •    |      |       | •     | Sou08                  |
| 5445 042               | 4.30                 | - 1.030 | •    |      | •     | •     | Sou08                  |
| 5460.873               | 4.59                 | - 0.020 |      | •    |       | •     | Soula                  |
| 5461 550               | J.07                 | - 3.420 |      |      | •     | •     | Soulos                 |
| 5461.550               | 4.43                 | - 1.800 | •    |      | •     |       | Soulo                  |
| 5464 280               | 4.44                 | +0.070  |      |      | •     | •     | Soulos                 |
| 5464.280               | 4.14                 | - 1.402 |      |      | •     |       | Sou08                  |
| 5466.396               | 4.37                 | - 0.630 | •    | •    |       | •     | Sou08                  |
| 5470.093               | 4.45                 | - 1./10 | •    |      | •     |       | Sou08                  |
| 5472.709               | 4.21                 | - 1.495 | •    |      |       |       | Sou08                  |
| 5473.900               | 4.15                 | -0.720  | •    | •    |       |       | Sou08                  |
| 5483.099               | 4.15                 | - 1.392 | •    |      |       | •     | Sou08                  |
| 5501.465               | 0.96                 | - 3.047 |      | •    |       | ٠     | Sou08                  |
| 5506.778               | 0.99                 | -2.797  |      | •    |       |       | Sou08                  |
| 5522.446               | 4.21                 | -1.550  | •    | ٠    |       |       | Sou08                  |
| 5536.580               | 2.83                 | -3.810  |      |      |       | •     | Sou08                  |
| 5539.280               | 3.64                 | -2.660  |      |      |       | •     | Sou08                  |
| 5543.147               | 3.69                 | -1.570  |      | ٠    |       |       | Sou08                  |
| 5543.935               | 4.22                 | -1.140  | •    | •    | •     | ٠     | Sou08                  |
| 5546.505               | 4.37                 | -1.310  |      | •    |       |       | Sou08                  |
| 5549.949               | 3.69                 | -2.910  |      |      | •     |       | Sou08                  |
| 5554.894               | 4.55                 | -0.440  |      | •    |       |       | Sou08                  |
| 5560.211               | 4.43                 | -1.190  | •    | •    | •     |       | Sou08                  |
| 5572.842               | 3.40                 | -0.275  |      |      |       | ٠     | Sou08                  |
| 5576.089               | 3.43                 | -1.000  |      | •    | •     | •     | Sou08                  |
| 5618.632               | 4.21                 | -1.276  | •    | •    | •     | •     | Sou08                  |
| 5619.595               | 4.39                 | -1.700  | •    |      |       | •     | Sou08                  |
| 5633.946               | 4.99                 | -0.270  |      | •    |       |       | Sou08                  |
| 5635.822               | 4.26                 | -1.890  | •    |      |       |       | Sou08                  |
| 5636.695               | 3.64                 | -2.610  | •    |      | •     |       | Sou08                  |
| 5638.262               | 4.22                 | -0.870  | •    | •    |       |       | Sou08                  |
| 5641.434               | 4.26                 | -1.180  | •    | •    |       |       | Sou08                  |
| 5649.987               | 5.10                 | -0.920  | •    | -    |       | •     | Sou08                  |
| 5651 468               | 4 47                 | -2.000  | •    |      |       | -     | Sou08                  |
| 5652 317               | 4.26                 | - 1 950 | •    |      |       |       | S0108                  |
| 5653 864               | 4 30                 | - 1.640 | -    |      |       | •     | Soulog                 |
| 5655 176               | т. <i>37</i><br>5 06 | = 0.640 | •    |      |       | •     | Soulo                  |
| 5661 344               | 1 28                 | - 1 736 | •    |      |       | •     | Soulo                  |
| 5662 516               | 4.20                 | - 1./30 | •    | _    |       | •     | Soulos                 |
| 5670 022               | 4.18                 | - 0.5/5 | •    | •    | _     | •     | Soulos                 |
| 5019.023               | 4.00                 | - 0.920 | •    | •    | •     | •     | 50008                  |
| 5091.496               | 4.30                 | - 1.520 |      | •    |       |       | Sou08                  |
| 5701 542               | 4.55                 | - 1.720 | ٠    |      |       |       | Sou08                  |
| 5705.43                | 2.56                 | -2.216  | •    | •    |       |       | Sou08                  |
| 5/05.464               | 4.30                 | - 1.355 | •    |      |       |       | Sou08                  |
| 5/1/.832               | 4.28                 | - 1.130 | ٠    | •    | •     | •     | Sou08                  |
| 5720.886               | 4.55                 | -1.950  | •    |      | •     | •     | Sou08                  |

 Table A4
 - continued

| 1.          | 24.7                | log af  |     | Line | lista |     | Pafarancab |
|-------------|---------------------|---------|-----|------|-------|-----|------------|
| ∧air<br>rÅ1 | χι<br>Γ- <b>Ν</b> Ί | log gj  | MDD | MDD  | MDC   | MDC | Reference  |
| [A]         | [ev]                |         | MRD | MPD  | MRG   | MPG |            |
| 5731 761    | 1 26                | - 1 300 | •   | •    |       | •   | Sou08      |
| 5732.206    | 4.20                | 1.560   | •   | •    |       | •   | Soull      |
| 5732.290    | 4.99                | - 1.500 | •   |      |       |     | 50008      |
| 5750 262    | 4.20                | - 1.634 | •   |      |       |     | Soulos     |
| 5759.262    | 4.05                | - 2.070 |     |      | •     |     | Sou08      |
| 5778.453    | 2.59                | - 3.430 |     |      | •     |     | Sou08      |
| 5784.658    | 3.40                | -2.532  |     |      | •     |     | Sou08      |
| 5844.918    | 4.15                | -2.940  |     |      | •     |     | Sou08      |
| 5849.683    | 3.69                | -2.990  |     |      |       | ٠   | Sou08      |
| 5852.218    | 4.55                | -1.330  | •   |      | •     |     | Sou08      |
| 5853.148    | 1.48                | -5.280  |     |      | •     | •   | Sou08      |
| 5855.075    | 4.61                | -1.478  | •   |      | •     |     | Sou08      |
| 5856.088    | 4.29                | -1.328  |     |      | •     |     | Sou08      |
| 5858.778    | 4.22                | -2.260  |     |      | •     |     | Sou08      |
| 5861.108    | 4.28                | -2.450  |     |      | •     | •   | Sou08      |
| 5883.816    | 3.96                | -1.360  | •   | •    |       | •   | Sou08      |
| 5902.472    | 4.59                | - 1.810 |     |      |       |     | Sou08      |
| 5905 671    | 4 65                | -0.730  |     |      |       |     | Sou08      |
| 5909.972    | 3.21                | - 2 587 |     | •    |       |     | Sou08      |
| 5016 247    | 2.45                | 2.004   | •   |      | •     | •   | Sou08      |
| 5007 799    | 2.45                | - 2.994 | •   |      | •     | •   | Soulos     |
| 5921.188    | 4.05                | - 1.090 | •   |      | •     |     | 50008      |
| 5929.676    | 4.55                | - 1.462 | •   |      | •     |     | Sou08      |
| 5930.180    | 4.65                | - 0.230 | •   | •    | •     |     | Sou08      |
| 5934.654    | 3.93                | -1.170  | •   | •    |       | •   | Sou08      |
| 5940.991    | 4.18                | -2.150  |     |      |       | ٠   | Sou08      |
| 5952.718    | 3.98                | -1.440  |     |      |       | ٠   | Sou08      |
| 5956.693    | 0.86                | -4.605  | •   | •    | •     | •   | Sou08      |
| 6003.011    | 3.88                | -1.120  | •   | •    | •     | •   | Sou08      |
| 6012.209    | 2.22                | -4.038  |     |      |       | •   | Sou08      |
| 6019.365    | 3.57                | - 3.360 |     |      |       | •   | Sou08      |
| 6024.057    | 4.55                | -0.120  | •   | •    |       | •   | Sou08      |
| 6027.051    | 4.08                | -1.089  | •   | •    | •     | •   | Sou08      |
| 6056 004    | 4 73                | -0.460  |     | •    |       |     | Sou08      |
| 6065.481    | 2.61                | - 1 530 |     |      | •     |     | Sou08      |
| 6079.007    | 4.65                | - 0.729 | •   |      |       | •   | Sou08      |
| 6082 710    | 1.05<br>1.11        | 3 573   | •   | •    |       | •   | Soull      |
| 6002.642    | 1.22                | - 5.575 | •   |      | •     | •   | 50008      |
| 0095.042    | 4.01                | - 1.300 | •   |      | •     | •   | S0008      |
| 6094.372    | 4.05                | - 1.940 |     |      |       | •   | Sou08      |
| 6096.664    | 3.98                | - 1.930 | •   |      |       | •   | Sou08      |
| 6098.243    | 4.56                | -1.880  | •   |      | •     | •   | Sou08      |
| 6120.246    | 0.91                | - 5.950 |     |      | •     | ٠   | Sou08      |
| 6127.906    | 4.14                | - 1.399 | •   | •    |       | ٠   | Sou08      |
| 6136.614    | 2.45                | -1.400  |     | ٠    |       |     | Sou08      |
| 6136.993    | 2.20                | -2.950  |     | •    |       |     | Sou08      |
| 6137.691    | 2.59                | -1.403  |     | •    |       |     | Sou08      |
| 6151.617    | 2.18                | - 3.299 | •   | •    |       | •   | Sou08      |
| 6165.359    | 4.14                | -1.474  | •   | •    |       | •   | Sou08      |
| 6170.506    | 4.80                | -0.440  | •   | •    |       |     | Sou08      |
| 6173.334    | 2.22                | -2.880  | •   | •    | •     | •   | Sou08      |
| 6180.202    | 2.73                | -2.586  | •   |      |       |     | Sou08      |
| 6187 989    | 3.94                | -1.720  |     |      |       |     | Sou08      |
| 6191 557    | 2 43                | - 1 417 | •   | •    | •     | •   | Sou08      |
| 6199 506    | 2.15                | - 1 130 |     | •    |       | •   | Sou08      |
| 6200 312    | 2.50                | - 4.430 |     |      |       | •   | Sou08      |
| 6212 420    | 2.01                | - 2.437 | •   | •    |       | •   | 50008      |
| 6210.429    | 2.22                | - 2.402 | •   | •    |       | •   | Soude      |
| 0219.280    | 2.20                | - 2.433 | •   | •    |       | •   | Sou08      |
| 0220.779    | 5.88                | - 2.460 |     |      |       | •   | Sou08      |
| 0226.734    | 3.88                | - 2.220 | •   |      |       |     | Sou08      |
| 6229.225    | 2.85                | - 2.805 | •   |      | •     | •   | Sou08      |
| 6230.722    | 2.56                | - 1.281 | •   | ٠    |       |     | Sou08      |
| 6240.646    | 2.22                | - 3.233 | •   | •    | •     | •   | Sou08      |
| 6246.318    | 3.60                | -0.733  | •   | •    | •     |     | Sou08      |
| 6252.555    | 2.40                | -1.687  | •   | •    | •     | •   | Sou08      |
| 6265.132    | 2.18                | -2.550  | •   | •    | •     | •   | Sou08      |

Table A4 – continued

| $\lambda_{air}$ | χı   | log gf  |     | Line | e list <sup>a</sup> |     | Reference <sup>b</sup> |
|-----------------|------|---------|-----|------|---------------------|-----|------------------------|
| [Å]             | [eV] |         | MRD | MPD  | MRG                 | MPG |                        |
| 6270 223        | 2.86 | 2 464   | •   |      | •                   |     | Soull                  |
| 6270.223        | 2.00 | -2.404  | •   |      | •                   | •   | Sou08                  |
| 6280 617        | 0.96 | - 2.703 |     | _    | •                   | •   | 50008                  |
| 6280.017        | 0.80 | - 4.387 |     | •    |                     |     | Sou08                  |
| 6290.545        | 2.59 | - 4.330 |     |      |                     | •   | Sou08                  |
| 6297.792        | 2.22 | - 2.740 |     | •    |                     | •   | Sou08                  |
| 6301.499        | 3.65 | -0./18  |     |      | •                   | •   | Sou08                  |
| 6311.499        | 2.83 | - 3.141 | •   |      |                     | •   | Sou08                  |
| 6315.811        | 4.08 | - 1.710 | •   |      |                     | •   | Sou08                  |
| 6322.685        | 2.59 | - 2.426 | •   | •    | •                   | •   | Sou08                  |
| 6335.329        | 2.20 | -2.177  | ٠   | ٠    | ٠                   | •   | Sou08                  |
| 6336.823        | 3.69 | -0.856  | ٠   | ٠    | •                   | •   | Sou08                  |
| 6338.875        | 4.80 | -1.060  | ٠   |      |                     |     | Sou08                  |
| 6344.147        | 2.43 | -2.923  |     | ٠    |                     |     | Sou08                  |
| 6355.028        | 2.85 | -2.350  |     | ٠    |                     |     | Sou08                  |
| 6380.743        | 4.19 | -1.376  | ٠   |      |                     | •   | Sou08                  |
| 6393.600        | 2.43 | -1.432  |     | ٠    | •                   |     | Sou08                  |
| 6400.316        | 0.91 | -4.318  | •   | •    |                     |     | Sou08                  |
| 6411.648        | 3.65 | -0.595  |     | ٠    |                     |     | Sou08                  |
| 6421.350        | 2.28 | -2.027  | ٠   | •    |                     |     | Sou08                  |
| 6430.845        | 2.18 | -2.006  | ٠   | •    |                     |     | Sou08                  |
| 6469.192        | 4.83 | -0.770  | ٠   | ٠    |                     |     | Sou08                  |
| 6475.623        | 2.56 | -2.942  | •   | •    |                     |     | Sou08                  |
| 6481.869        | 2.28 | -2.984  | •   | •    |                     | •   | Sou08                  |
| 6494.980        | 2.40 | -1.273  |     | •    |                     |     | Sou08                  |
| 6495.741        | 4.83 | -0.940  | ٠   |      |                     |     | Sou08                  |
| 6496.465        | 4.80 | -0.570  | •   | •    |                     | •   | Sou08                  |
| 6498.938        | 0.96 | - 4.699 | •   |      |                     | •   | Sou08                  |
| 6518.365        | 2.83 | -2.460  |     |      |                     | •   | Sou08                  |
| 6533.928        | 4.56 | -1.460  | •   | •    | •                   | •   | Sou08                  |
| 6546.237        | 2.76 | - 1.536 |     | •    | •                   | •   | Sou08                  |
| 6574.226        | 0.99 | -5.023  | •   |      |                     |     | Sou08                  |
| 6581.209        | 1.48 | -4.679  |     |      |                     | •   | Sou08                  |
| 6591.312        | 4.59 | -2.070  |     |      | •                   | •   | Sou08                  |
| 6592.912        | 2.73 | -1.473  | •   | •    |                     | •   | Sou08                  |
| 6593.869        | 2.43 | -2.422  | •   | •    |                     | •   | Sou08                  |
| 6597.561        | 4.80 | -1.070  |     |      |                     | •   | Sou08                  |
| 6608.025        | 2.28 | -4.030  |     |      |                     | •   | Sou08                  |
| 6609 109        | 2.20 | - 2 692 |     | •    |                     |     | Sou08                  |
| 6627 543        | 4 55 | -1.680  |     | •    |                     | •   | Sou08                  |
| 6633 412        | 4.83 | -1.490  |     |      |                     |     | Sou08                  |
| 6633 748        | 4.56 | _ 0 799 |     |      |                     |     | Sou08                  |
| 6648 079        | 1.01 | - 5 429 | •   |      |                     | •   | Sou08                  |
| 6703 565        | 2.76 | 3 160   | •   |      |                     | •   | Soula                  |
| 6710 318        | 2.70 | - 5.100 | •   |      | •                   |     | Soula                  |
| 6713 742        | 1.40 | - 4.000 | •   |      | -                   |     | Soulo                  |
| 6716 226        | 4.00 | - 1.000 | •   |      | •                   |     | Soulos                 |
| 6725 255        | 4.30 | - 1.920 | •   |      | _                   | -   | Soulos                 |
| 0123.333        | 4.10 | - 2.300 |     |      | •                   | •   | S0008                  |
| 0/30.131        | 2.42 | - 2.621 | ٠   | ٠    | ٠                   | •   | 20008                  |
| 6/52.707        | 4.64 | - 1.204 | •   | ٠    |                     |     | Sou08                  |
| 6/83./03        | 2.59 | - 3.980 | •   | ٠    | ٠                   |     | This work              |
| 6/86.858        | 4.19 | - 2.070 | •   | ٠    | ٠                   | •   | This work              |
| 6793.258        | 4.08 | - 2.326 | •   | •    | •                   |     | This work              |
| 6793.619        | 4.80 | - 1.329 | ٠   | •    | •                   |     | This work              |
| 6796.123        | 4.14 | - 2.530 | ٠   |      | ٠                   |     | This work              |
| 6801.865        | 1.61 | -4.829  |     |      |                     | •   | This work              |
| 6803.999        | 4.65 | -1.496  | ٠   | •    |                     |     | This work              |
| 6804.270        | 4.58 | -1.813  | ٠   | ٠    |                     |     | This work              |
| 6806.842        | 2.73 | -3.210  | ٠   | ٠    | ٠                   | •   | This work              |
| 6810.262        | 4.61 | -0.986  | ٠   | •    | ٠                   | •   | This work              |
| 6819.588        | 4.10 | -2.764  | •   |      | •                   |     | This work              |
| 6820.371        | 4.64 | -1.320  | •   | ٠    | •                   | •   | This work              |
| 6828.591        | 4.64 | -0.920  | •   | ٠    | •                   | •   | This work              |
| 6833.225        | 4.64 | -2.080  | ٠   |      | •                   |     | This work              |

 Table A4
 - continued

| 1.            | 24.5         | log af   |      | Lina  | lista |       | Pafarancab |
|---------------|--------------|----------|------|-------|-------|-------|------------|
| مair<br>۲ Å آ | XI<br>[eV]   | log gj   | MRD  | MPD   | MRG   | MPG   | Kelefellee |
|               | [0 ]         |          | MIKD | WII D | WIKO  | WII U |            |
| 6837.005      | 4.59         | -1.687   | •    | •     | •     | •     | This work  |
| 6838.827      | 5.84         | -0.361   | •    | •     | •     |       | This work  |
| 6839.829      | 2.56         | -3.450   | •    | •     | •     | •     | This work  |
| 6841.338      | 4.61         | -0.750   | •    | ٠     | •     |       | This work  |
| 6842.685      | 4.64         | -1.320   | •    | ٠     | ٠     | •     | This work  |
| 6843.655      | 4.55         | -0.930   | •    | ٠     | •     | •     | This work  |
| 6850.435      | 5.46         | -1.053   | •    |       | •     |       | This work  |
| 6851.635      | 1.61         | -5.320   |      |       |       | •     | This work  |
| 6854.823      | 4.59         | -1.926   | •    | ٠     |       |       | This work  |
| 6855.161      | 4.56         | -0.742   | •    | ٠     | ٠     |       | This work  |
| 6855.712      | 4.61         | - 1.820  | •    | ٠     | ٠     |       | This work  |
| 6857.249      | 4.08         | - 2.150  | •    | ٠     | ٠     | •     | This work  |
| 6858.148      | 4.61         | - 0.930  | •    | •     | •     |       | This work  |
| 6859.479      | 2.85         | - 4.520  |      |       |       | •     | This work  |
| 6861.937      | 2.42         | - 3.890  |      | •     |       |       | This work  |
| 6862.480      | 4.56         | - 1.570  |      | •     |       | •     | This work  |
| 0804.311      | 4.56         | -2.320   |      |       |       | •     | This work  |
| 0885./54      | 4.05         | - 1.380  |      | •     |       | •     | This work  |
| 6016 680      | 2.42         | - 4.040  |      |       |       | •     | This work  |
| 6022 617      | 4.15         | - 1.430  |      |       |       | •     | This work  |
| 6045 204      | 2.45         | - 3.380  |      | •     |       |       | This work  |
| 6047.488      | 2.42<br>4.58 | - 2.462  |      |       |       | •     | This work  |
| 6951 245      | 4.56         | - 0.908  |      | •     |       |       | This work  |
| 6971 932      | 3.02         | -3.340   |      |       | •     | •     | This work  |
| 6975 426      | 5.83         | -0.215   |      | •     | •     | •     | This work  |
| 6977.428      | 4.59         | - 1.564  | •    | •     |       | •     | This work  |
| 6978.850      | 2.48         | -2.500   | •    | •     | •     |       | This work  |
| 6988.523      | 2.40         | - 3.660  |      | •     |       | •     | This work  |
| 6999.883      | 4.10         | -1.560   | •    | •     | •     |       | This work  |
| 7000.614      | 4.14         | -2.386   | •    |       | •     | •     | This work  |
| 7007.965      | 4.18         | -2.060   | •    | •     | •     |       | This work  |
| 7011.343      | 4.59         | - 1.316  |      | •     | •     | •     | This work  |
| 7014.986      | 2.45         | -4.250   |      |       |       | •     | This work  |
| 7016.055      | 2.42         | -3.210   |      | ٠     |       |       | This work  |
| 7022.390      | 4.30         | -2.290   | •    |       | ٠     | •     | This work  |
| 7022.952      | 4.19         | -1.250   |      | ٠     |       | •     | This work  |
| 7024.050      | 4.08         | -2.208   | •    | ٠     | •     |       | This work  |
| 7024.641      | 4.56         | -1.080   |      | ٠     |       |       | This work  |
| 7038.220      | 4.22         | -1.300   | •    | ٠     | ٠     |       | This work  |
| 7038.769      | 4.26         | -1.990   | •    | ٠     | ٠     |       | This work  |
| 7057.953      | 3.65         | - 3.380  |      |       |       | •     | This work  |
| 7069.531      | 2.56         | - 4.340  |      |       |       | •     | This work  |
| 7071.860      | 4.61         | - 1.700  |      |       |       | •     | This work  |
| 7072.791      | 5.90         | -0.882   | •    |       |       |       | This work  |
| 7072.818      | 4.08         | - 2.840  |      |       | •     |       | This work  |
| 7083.394      | 4.91         | - 1.202  | •    | •     | •     | •     | This work  |
| 7086.724      | 3.60         | - 2.356  | •    | •     | •     | •     | This work  |
| 7090.385      | 4.23         | - 1.210  | •    | •     | •     |       | This work  |
| 7091.921      | 4.90         | - 1.298  | •    |       | •     | •     | This work  |
| 7100 103      | 4.21         | - 2.020  | •    | •     | •     |       | This work  |
| 7107.195      | 2.75<br>4 10 | - 1 3/13 |      | •     |       | -     | This work  |
| 7112 167      | 2 99         | - 2 998  | •    | -     | •     | •     | This work  |
| 7114 548      | 2.69         | -4.010   |      |       |       |       | This work  |
| 7118.096      | 5.01         | - 1.570  | •    |       | •     | •     | This work  |
| 7120.021      | 4.56         | - 1.936  | •    |       | -     | -     | This work  |
| 7127.567      | 4.99         | - 1.046  | •    | •     | •     |       | This work  |
| 7130.921      | 4.22         | -0.790   | •    | •     | •     |       | This work  |
| 7132.986      | 4.08         | - 1.628  | •    |       | •     | •     | This work  |
| 7142.517      | 4.96         | -0.848   |      | •     |       | •     | This work  |
| 7145.306      | 4.61         | - 1.145  | •    | •     |       |       | This work  |
| 7151.469      | 2.48         | -3.730   | •    | •     | •     | •     | This work  |

Table A4 – continued

| <u> </u>                | 24-          | log of  |      | Lin   | lieta |      | Pafaranaab |
|-------------------------|--------------|---------|------|-------|-------|------|------------|
| ∧ <sub>air</sub><br>[Å] | XI<br>[eV]   | 10g gj  | MRD  | MPD   | MRG   | MPG  | Reference  |
|                         |              |         | MIXD | NII D | MIKO  | WI O |            |
| 7155.630                | 5.01         | -0.725  |      | •     |       |      | This work  |
| 7162.343                | 5.02         | -1.064  |      |       |       | ٠    | This work  |
| 7179.994                | 1.48         | -4.780  | •    |       | •     |      | This work  |
| 7212.435                | 4.96         | -0.825  | •    |       | •     |      | This work  |
| 7219.682                | 4.08         | - 1.690 | •    | •     | •     | ٠    | This work  |
| 7221.202                | 4.56         | - 1.184 | •    | •     | •     |      | This work  |
| 7223.657                | 3.02         | -2.225  |      |       |       | ٠    | This work  |
| 7228.695                | 2.76         | - 3.380 | •    | •     | •     |      | This work  |
| 7239.866                | 4.21         | - 1.852 |      |       |       | ٠    | This work  |
| 7256.134                | 4.96         | - 1.590 |      |       |       | ٠    | This work  |
| 7284.834                | 4.14         | - 1.750 | •    |       | •     | •    | This work  |
| 1283.213                | 4.01         | - 1.700 | •    |       | •     |      | This work  |
| 7206 562                | 4.22         | - 1.055 |      | •     |       |      | This work  |
| 7300.302                | 4.10         | - 1.740 | •    |       | •     | •    | This work  |
| 7376 480                | 4.20         | - 0.907 |      |       | •     |      | This work  |
| 7381 333                | 5.35         | +0.089  | •    | •     | •     |      | This work  |
| 7386 333                | J.55<br>4 01 | -0.267  |      |       |       |      | This work  |
| 7396 507                | 1 00         | -1.640  | •    |       |       |      | This work  |
| 7401 683                | 4 19         | -1.599  |      |       | •     |      | This work  |
| 7401.005                | 4.19         | -0.299  |      | •     | •     |      | This work  |
| 7418.666                | 4.20         | -1.376  |      |       |       | •    | This work  |
| 7421.559                | 4.64         | -1.800  |      |       |       | •    | This work  |
| 7430 538                | 2.59         | - 3.860 | ·    | •     | •     |      | This work  |
| 7430.855                | 4.61         | -1.539  |      | •     |       |      | This work  |
| 7435.591                | 5.31         | -0.716  | •    | •     | •     | •    | This work  |
| 7440.911                | 4.91         | -0.573  |      | •     | •     |      | This work  |
| 7443.022                | 4.19         | -1.820  |      | •     |       | •    | This work  |
| 7445.748                | 4.26         | -0.102  |      | •     |       |      | This work  |
| 7447.393                | 4.96         | -0.846  | •    | •     | •     | •    | This work  |
| 7453.997                | 4.19         | -2.410  | •    |       |       | •    | This work  |
| 7461.519                | 2.56         | -3.580  | •    | •     | •     | ٠    | This work  |
| 7463.382                | 5.06         | -1.720  | •    |       | •     |      | This work  |
| 7464.293                | 5.41         | -1.066  | •    |       | •     |      | This work  |
| 7472.750                | 5.35         | -0.994  | •    |       |       |      | This work  |
| 7473.554                | 4.61         | -1.870  | •    |       | •     |      | This work  |
| 7477.506                | 3.88         | -3.045  |      |       |       | ٠    | This work  |
| 7484.297                | 5.09         | -1.700  | •    |       |       |      | This work  |
| 7491.647                | 4.30         | -0.900  | •    | •     | •     |      | This work  |
| 7495.065                | 4.22         | +0.052  |      | •     |       |      | This work  |
| 7498.530                | 4.14         | - 2.250 | •    | •     | •     | ٠    | This work  |
| 7504.270                | 5.39         | - 1.006 | •    |       | •     |      | This work  |
| 7506.013                | 5.06         | - 1.219 | •    |       |       |      | This work  |
| /50/.265                | 4.42         | - 1.485 | •    | •     | •     | •    | This work  |
| /511.018                | 4.18         | +0.099  | •    | •     | •     | •    | This work  |
| 7514.198                | 5.39         | -0.874  | •    |       | •     | •    | This work  |
| 7531.145                | 4.57         | - 0.931 |      |       |       | •    | This work  |
| 7540.429                | 2.75         | -5.830  | •    |       | •     | •    | This work  |
| 7551 104                | 5.00         | - 1.330 | •    |       | •     | •    | This work  |
| 7550 710                | 5.09         | -1.030  |      | •     |       |      | This work  |
| 7563.010                | 4.83         | -2.047  | •    | •     | •     | •    | This work  |
| 7568 898                | 4.05         | -0.773  | •    | •     |       | •    | This work  |
| 7573 413                | 6.58         | +0.302  | •    | •     | •     | ·    | This work  |
| 7582.121                | 4.96         | -1.750  | •    |       | •     |      | This work  |
| 7583.788                | 3.02         | - 1.885 | •    | •     | •     | •    | This work  |
| 7586.017                | 4.31         | -0.470  | •    | -     | •     | •    | This work  |
| 7588.844                | 5.10         | - 1.672 | •    |       | -     | -    | This work  |
| 7620.513                | 4.73         | -0.664  |      | •     |       |      | This work  |
| 7689.036                | 5.10         | -1.370  |      |       |       | •    | This work  |
| 7710.363                | 4.22         | - 1.113 |      | •     |       | •    | This work  |
| 7719.048                | 5.03         | - 1.153 | •    | •     | •     | •    | This work  |
| 7723.207                | 2.28         | - 3.617 |      | •     |       | •    | This work  |

 Table A4
 - continued

| 2        | γı   | log af  |      | Line  | lista |     | Reference <sup>b</sup> |
|----------|------|---------|------|-------|-------|-----|------------------------|
| ۲Å1      | [eV] | log gj  | MRD  | MPD   | MRG   | MPG | Reference              |
|          |      |         | MIKD | WII D | MIKO  | MIG |                        |
| 7733.723 | 5.06 | -1.536  | •    |       | ٠     | •   | This work              |
| 7745.513 | 5.09 | -1.170  | •    | ٠     | ٠     | •   | This work              |
| 7746.595 | 5.06 | -1.284  | •    | ٠     | ٠     | •   | This work              |
| 7748.269 | 2.95 | -1.751  |      | ٠     | ٠     | •   | This work              |
| 7751.108 | 4.99 | -0.754  | •    | ٠     | •     | •   | This work              |
| 7780.556 | 4.47 | +0.030  | •    | ٠     | ٠     | •   | This work              |
| 7802.473 | 5.09 | - 1.335 | •    |       | •     | •   | This work              |
| 7807.908 | 4.99 | -0.542  | •    | ٠     | •     | •   | This work              |
| 7832.195 | 4.43 | +0.112  | •    | ٠     | •     | •   | This work              |
| 7844.558 | 4.83 | -1.810  | •    |       | ٠     | •   | This work              |
| 7855.399 | 5.06 | -1.017  |      | ٠     |       |     | This work              |
| 7869.609 | 4.37 | -1.880  |      | ٠     |       |     | This work              |
| 7879.756 | 5.03 | -1.650  | •    |       | •     | •   | This work              |
| 7912.866 | 0.86 | -4.848  |      | ٠     |       |     | This work              |
| 7937.139 | 4.31 | +0.228  |      | ٠     |       | •   | This work              |
| 7941.087 | 3.27 | -2.286  | •    | ٠     | •     | •   | This work              |
| 7945.846 | 4.39 | +0.227  |      | ٠     |       | •   | This work              |
| 7954.934 | 2.99 | -3.675  | •    |       |       |     | This work              |
| 7959.142 | 5.03 | -1.212  | •    | ٠     | ٠     |     | This work              |
| 7998.944 | 4.37 | +0.151  |      | ٠     |       | •   | This work              |
| 8028.312 | 4.47 | -0.689  |      | •     |       |     | This work              |
| 8046.046 | 4.42 | +0.032  |      | •     |       |     | This work              |
| 8047.617 | 0.86 | -4.787  | •    | •     | •     | •   | This work              |
| 8075.149 | 0.91 | -5.062  |      | •     | •     | •   | This work              |
| 8085.171 | 4.45 | -0.121  |      | •     |       | •   | This work              |
| 8089.353 | 5.07 | -1.147  | •    |       |       |     | This work              |
| 8090.325 | 4.58 | -1.912  | •    |       |       |     | This work              |
| 8096.875 | 4.08 | -1.776  |      | •     |       | •   | This work              |
| 8198.920 | 4.43 | -0.566  |      | ٠     |       |     | This work              |
| 8204.936 | 0.96 | -5.058  |      | •     |       |     | This work              |
| 8207.741 | 4.45 | -0.856  | •    | •     | •     | •   | This work              |
| 8220.377 | 4.32 | +0.275  |      |       |       | •   | This work              |
| 8239.127 | 2.42 | -3.180  |      |       |       | •   | This work              |
| 8248.128 | 4.37 | -0.892  |      | •     |       | •   | This work              |
| 8293.512 | 3.30 | -2.175  |      | •     |       | •   | This work              |
| 8327.055 | 2.20 | -1.525  |      | •     |       | •   | This work              |
| 8340.502 | 5.07 | -1.701  | •    |       | •     |     | This work              |
| 8342.856 | 4.99 | -1.468  | •    |       | •     |     | This work              |
| 8349.045 | 0.91 | -5.705  |      |       |       | •   | This work              |
| 8358.520 | 2.99 | -3.145  | •    |       | •     |     | This work              |
| 8360.793 | 4.47 | -1.688  |      |       |       | •   | This work              |
| 8365.631 | 3.25 | -2.047  | •    |       | •     | •   | This work              |
| 8387.771 | 2.18 | - 1.493 |      | •     |       | •   | This work              |
| 8404.395 | 5.79 | -0.705  | •    |       |       |     | This work              |
| 8419.271 | 6.18 | -0.231  | •    |       |       |     | This work              |
| 8422.913 | 4.14 | -2.002  |      | •     |       |     | This work              |
| 8424.141 | 4.96 | -1.156  | •    | ٠     | •     |     | This work              |
| 8439.570 | 4.55 | -0.591  |      | •     |       | •   | This work              |
| 8447.636 | 0.96 | - 6.699 |      |       |       | •   | This work              |
| 8453.657 | 5.54 | -1.043  | •    |       | •     |     | This work              |
| 8468.406 | 2.22 | -2.072  |      | •     |       |     | This work              |
| 8471.743 | 4.96 | -1.019  |      | ٠     |       | •   | This work              |
| 8481.980 | 4.19 | - 1.999 |      | •     |       | •   | This work              |
| 8514.071 | 2.20 | -2.229  | •    | •     | •     | •   | This work              |
| 8515.108 | 3.02 | -2.073  | •    | •     | •     |     | This work              |
| 8517.305 | 6.13 | -0.259  | •    |       |       |     | This work              |
| 8526.669 | 4.91 | -0.760  |      | •     |       | •   | This work              |
| 8571.804 | 5.01 | - 1.391 |      |       |       | •   | This work              |
| 8582.257 | 2.99 | -2.134  | •    | •     | •     | •   | This work              |
| 8592.951 | 4.96 | -1.086  |      | •     |       | •   | This work              |
| 8598.828 | 4.39 | -1.089  |      | •     |       | •   | This work              |
| 8607.080 | 5.01 | -1.557  |      |       |       | •   | This work              |
| 8611.803 | 2.85 | -1.926  | •    | •     | •     | •   | This work              |

Table A4 – continued

|                      |              |                    |     |      |                     |     | h                             |
|----------------------|--------------|--------------------|-----|------|---------------------|-----|-------------------------------|
| $\lambda_{air}$      | XΙ           | log gf             |     | Line | e list <sup>a</sup> |     | Reference <sup><i>b</i></sup> |
| [Å]                  | [eV]         |                    | MRD | MPD  | MRG                 | MPG |                               |
| 8612 020             | 4.00         | 1 246              |     |      |                     |     | This work                     |
| 8616 280             | 4.99         | - 1.240            |     |      |                     | •   | This work                     |
| 8621 601             | 4.91         | -0.707             |     | •    |                     | •   | This work                     |
| 8021.001             | 2.95         | -2.321             | •   | •    | •                   | •   | This work                     |
| 8032.413             | 4.10         | - 2.409            |     |      |                     | •   | This work                     |
| 8667.366             | 2.45         | - 4.939            |     |      |                     | •   | This work                     |
| 8674.746             | 2.83         | - 1.800            | •   | •    | •                   | •   | This work                     |
| 8678.930             | 2.45         | - 5.418            |     |      |                     | •   | This work                     |
| 86/9.632             | 4.97         | - 1.276            | •   | •    | •                   |     | This work                     |
| 8688.623             | 2.18         | - 1.212            | •   | •    | •                   | •   | This work                     |
| 8698.706             | 2.99         | - 3.442            |     |      |                     | •   | This work                     |
| 8699.454             | 4.96         | -0.380             |     | •    |                     | •   | This work                     |
| 8710.392             | 4.91         | -0.532             |     | •    | •                   |     | This work                     |
| 8713.187             | 2.95         | -2.467             |     | •    |                     | •   | This work                     |
| 8729.143             | 3.41         | -2.872             |     | ٠    |                     | ٠   | This work                     |
| 8747.425             | 3.02         | -3.174             | •   | ٠    | •                   | •   | This work                     |
| 8757.187             | 2.85         | -2.059             | •   | •    | •                   | •   | This work                     |
| 8763.966             | 4.65         | -0.146             | •   | •    | •                   | •   | This work                     |
| 8784.440             | 4.96         | - 1.593            | •   | •    | •                   | •   | This work                     |
| 8793.341             | 4.61         | -0.092             |     | •    |                     |     | This work                     |
| 8796.484             | 4.96         | -1.229             | •   |      | •                   | •   | This work                     |
| 8804.624             | 2.28         | -3.234             | •   | •    | •                   | •   | This work                     |
| 8824.219             | 2.20         | -1.540             | •   | •    | •                   | •   | This work                     |
| 8828.091             | 4.96         | -2.240             |     |      |                     | •   | This work                     |
| 8834 016             | 4 22         | -2.590             |     |      |                     |     | This work                     |
| 8838 428             | 2.86         | -2.050             |     |      |                     | •   | This work                     |
| 8846 740             | 5.01         | -0.781             |     |      |                     |     | This work                     |
| 8863 587             | 4 97         | -1519              | •   | •    | •                   |     | This work                     |
| 8866 931             | 4.57         | +0.083             |     | •    |                     |     | This work                     |
| 8868 430             | 3.02         | 2 000              | •   | •    | •                   | •   | This work                     |
| 8876 024             | 5.02         | - 2.909            | •   | •    | •                   | •   | This work                     |
| 8870.024             | 2.00         | - 1.052            | •   | •    | •                   |     | This work                     |
| 8878.230             | 2.99         | - 5.365            |     |      |                     | •   | This work                     |
| 8002 024             | 4.91         | - 1.937            |     |      |                     | •   | This work                     |
| 8902.924             | 4.99         | - 2.100            |     |      |                     | •   | This work                     |
| 8920.013             | 3.00         | -0.413             | •   | •    | •                   |     | This work                     |
| 8922.030             | 4.99         | - 1.098            | •   |      | •                   | •   | This work                     |
| 8929.075             | 5.09         | - 0.893            |     | •    |                     | •   | This work                     |
| 8931.776             | 3.05         | - 3.216            |     |      |                     | •   | This work                     |
| 8943.065             | 2.83         | - 3.346            | •   | •    |                     | •   | This work                     |
| 8945.189             | 5.03         | - 0.220            | •   |      | •                   | •   | This work                     |
| 8946.260             | 2.85         | - 3.509            |     |      |                     | •   | This work                     |
| 8950.188             | 4.15         | -2.425             |     |      |                     | •   | This work                     |
| 8975.401             | 2.99         | -2.233             | •   |      | •                   |     | This work                     |
| 8978.198             | 3.41         | -3.457             |     |      |                     | •   | This work                     |
| 8984.886             | 5.10         | -0.922             | •   |      | •                   | •   | This work                     |
| 8994.628             | 3.27         | -3.189             |     |      |                     | •   | This work                     |
| 8999.556             | 2.83         | -1.321             |     | ٠    |                     | •   | This work                     |
| 9010.592             | 2.61         | -2.953             |     |      |                     | •   | This work                     |
| 9013.977             | 2.28         | - 3.839            |     |      |                     | •   | This work                     |
| 9019.744             | 5.10         | -0.988             |     |      |                     | •   | This work                     |
| 9057.971             | 3.05         | - 4.467            |     |      |                     | •   | This work                     |
| 9079.579             | 4.65         | -0.809             |     | •    |                     |     | This work                     |
| 9080.386             | 4.96         | -1.104             |     | •    |                     |     | This work                     |
| 9084.184             | 4.26         | -2.240             |     |      |                     | •   | This work                     |
| 9089.404             | 2.95         | - 1.675            |     |      |                     | •   | This work                     |
| 9103.635             | 4.18         | -1.921             |     |      |                     | •   | This work                     |
| 9210.024             | 2.85         | -2.404             | •   |      |                     | -   | This work                     |
| 9214 499             | 4.91         | -0.743             | -   | •    |                     |     | This work                     |
| 9258 267             | 4.61         | -0.725             | -   | -    |                     |     | This work                     |
| 9259 005             | 4.01         | -0.749             | •   | -    |                     |     | This work                     |
| 9800 308             | 5.00         | = 0.749<br>= 0.453 |     | •    |                     |     | This work                     |
| 0811 504             | 5.09         | - 0.433            |     | •    |                     | -   | This work                     |
| 0820 241             | 2.01         | -1.502<br>-5.072   |     |      |                     | •   | This work                     |
| 7020.241<br>0834 195 | 2.4Z<br>4.00 | - 5.075            | -   |      |                     | •   | This work                     |
| 7034.103             | 4.99         | -1.214             | •   |      |                     |     | THIS WOLK                     |

 Table A4
 - continued

| ) ain     | γı   | log of  | Line list <sup>a</sup> |     |      |      | Reference <sup>b</sup> |
|-----------|------|---------|------------------------|-----|------|------|------------------------|
| ۲Å۱       | [eV] | 105 8)  | MRD                    | MPD | MRG  | MPG  | Reference              |
| [2 1]     |      |         | MICD                   |     | MIKO | MI O |                        |
| 9847.457  | 4.58 | -2.305  |                        |     |      | •    | This work              |
| 9861.734  | 5.06 | -0.142  | •                      |     |      |      | This work              |
| 9868.186  | 5.09 | -0.979  | •                      | ٠   |      | •    | This work              |
| 9881.522  | 4.58 | -1.711  | •                      |     |      | •    | This work              |
| 9886.081  | 5.01 | - 1.953 |                        |     |      | •    | This work              |
| 9889.035  | 5.03 | -0.446  | •                      | ٠   | ٠    | •    | This work              |
| 9913.180  | 4.99 | -1.266  | •                      |     | ٠    | •    | This work              |
| 9924.388  | 3.55 | - 3.127 | •                      |     |      |      | This work              |
| 9944.207  | 5.01 | - 1.338 | •                      | ٠   | ٠    | •    | This work              |
| 9951.157  | 5.39 | - 1.267 | •                      | ٠   | •    | •    | This work              |
| 9953.470  | 5.45 | -1.309  |                        |     |      | •    | This work              |
| 9970.233  | 3.02 | - 4.818 |                        |     |      | •    | This work              |
| 9977.641  | 5.06 | - 1.660 | •                      |     | •    |      | This work              |
| 9980.463  | 5.03 | - 1.379 | •                      |     | •    | •    | This work              |
| 9999.924  | 5.50 | - 1.421 |                        |     |      | •    | This work              |
| 10041.472 | 5.01 | - 1.772 |                        |     |      | •    | This work              |
| 10065.045 | 4.83 | - 0.289 | •                      | •   | ٠    | •    | This work              |
| 10081.393 | 2.42 | - 4.537 |                        |     |      | •    | And 16                 |
| 10086.242 | 2.95 | - 4.054 |                        |     |      | •    | This work              |
| 10089.776 | 5.45 | - 1.247 |                        |     |      | •    | This work              |
| 10114.014 | 2.76 | - 3.692 | •                      | •   | •    | •    | I his work             |
| 10137.100 | 5.09 | - 1.708 | •                      |     | •    | •    | And 16                 |
| 10142.844 | 5.06 | - 1.510 | •                      |     | •    |      | And 16                 |
| 10145.561 | 4.80 | - 0.177 | •                      | •   |      |      | I his work             |
| 10155.102 | 2.18 | - 4.220 | •                      | •   | •    | •    | Andlo                  |
| 10107.408 | 2.20 | - 4.117 | •                      | •   | •    | •    | And16                  |
| 10195.105 | 2.75 | - 3.380 | •                      |     | •    | •    | This work              |
| 10210.515 | 4.75 | - 0.005 |                        | •   |      | •    | This work              |
| 10218.408 | 6.12 | - 2.700 |                        | •   |      | •    | And16                  |
| 10227.394 | 6.12 | 0.334   | •                      |     | •    |      | And16                  |
| 10250.795 | 5.83 | -1.026  | •                      |     | •    |      | This work              |
| 10252.551 | 5.05 | - 1.613 |                        |     |      |      | This work              |
| 10265 217 | 2 22 | -4537   | •                      |     | •    |      | And16                  |
| 10205.217 | 4 59 | - 2.067 | •                      |     | •    |      | This work              |
| 10332 327 | 3.64 | -2.007  | •                      |     | •    |      | And16                  |
| 10333.184 | 4.59 | -2.585  | •                      |     | •    | •    | This work              |
| 10340.885 | 2.20 | - 3.577 | •                      | •   | •    | •    | And16                  |
| 10347.965 | 5.39 | -0.551  | •                      | •   | •    | •    | And16                  |
| 10353.804 | 5.39 | -0.819  | •                      | •   | •    | •    | And16                  |
| 10364.062 | 5.45 | - 0.960 | •                      |     | •    | •    | And16                  |
| 10378.999 | 2.22 | -4.148  |                        | ٠   |      |      | And16                  |
| 10388.744 | 5.45 | -1.468  |                        |     |      | •    | And16                  |
| 10395.794 | 2.18 | - 3.393 | •                      |     |      | •    | This work              |
| 10423.027 | 2.69 | - 3.616 |                        | •   |      | •    | This work              |
| 10423.743 | 3.07 | -2.918  | •                      | •   | •    | •    | And16                  |
| 10435.355 | 4.73 | - 1.945 |                        |     |      | •    | This work              |
| 10469.652 | 3.88 | -1.184  | •                      | •   |      | •    | This work              |
| 10532.234 | 3.93 | -1.480  | •                      | •   | •    | •    | And16                  |
| 10555.649 | 5.45 | -1.108  | •                      |     | ٠    | •    | And16                  |
| 10577.139 | 3.30 | - 3.136 | •                      | ٠   | ٠    | •    | And16                  |
| 10611.686 | 6.17 | +0.021  | •                      | ٠   | ٠    | •    | And16                  |
| 10616.721 | 3.27 | -3.127  | •                      | ٠   | •    | •    | And16                  |
| 10674.070 | 6.17 | -0.466  | •                      |     | ٠    | •    | And16                  |
| 10742.550 | 3.64 | - 3.629 |                        |     |      | •    | This work              |
| 10753.004 | 3.96 | -1.845  | •                      | •   |      | •    | This work              |
| 10754.753 | 2.83 | -4.523  |                        |     |      | •    | This work              |
| 10780.694 | 3.24 | -3.289  | •                      |     | •    | •    | And16                  |
| 10783.050 | 3.11 | -2.567  | •                      | •   |      | •    | This work              |
| 10818.274 | 3.96 | - 1.948 | •                      | •   | •    | •    | And16                  |
| 10849.465 | 5.54 | - 1.444 |                        |     |      | •    | This work              |
| 10863.518 | 4.73 | - 0.895 |                        |     |      | •    | This work              |
| 10881.758 | 2.85 | - 3.604 |                        | •   |      | •    | This work              |

Table A4 – continued

| $\lambda_{air}$ | XΙ   | $\log gf$   |     | Line | list <sup>a</sup> |     | Reference <sup>b</sup> |
|-----------------|------|-------------|-----|------|-------------------|-----|------------------------|
| [Å]             | [eV] | • •         | MRD | MPD  | MRG               | MPG |                        |
|                 | []   |             |     |      |                   |     |                        |
| 10884.262       | 3.93 | -1.925      | •   | •    |                   | •   | This work              |
| 10888 606       | 2.28 | - 5 433     |     |      |                   |     | This work              |
| 10806 200       | 2.20 | 2.604       |     |      |                   |     | This work              |
| 10090.299       | 3.07 | - 2.094     | •   |      |                   | •   |                        |
| 11026.788       | 3.94 | - 2.805     |     |      |                   | •   | AndIo                  |
| 11045.599       | 5.59 | -0.624      |     |      |                   | •   | This work              |
| 11071.712       | 3.07 | -4.281      |     |      |                   | •   | This work              |
| 12053.082       | 4.56 | -1.543      | •   |      | •                 | •   | And16                  |
| 12283.298       | 6.17 | -0.537      | •   |      | •                 | •   | And16                  |
| 12485 492       | 2.42 | -5.379      |     |      |                   |     | This work              |
| 12510 510       | 4.96 | 1 605       |     |      | •                 |     | And16                  |
| 12510.519       | 4.90 | - 1.005     | •   |      | •                 | •   | This see als           |
| 12343.940       | 4.08 | - 5.485     |     |      |                   | •   | THIS WORK              |
| 12556.996       | 2.28 | -3.626      | •   |      | •                 | •   | And16                  |
| 12615.928       | 4.64 | -1.517      | •   |      | ٠                 |     | And16                  |
| 12638.703       | 4.56 | -0.783      |     | •    |                   |     | This work              |
| 12648.741       | 4.61 | -1.140      |     | •    |                   |     | And16                  |
| 12789.450       | 5.01 | -1.514      |     |      |                   | •   | This work              |
| 12807 152       | 3.64 | - 2 452     | •   | •    | •                 |     | And16                  |
| 12007.132       | 4.00 | 1 262       | •   | •    | •                 | •   | And16                  |
| 12808.245       | 4.99 | - 1.302     | •   |      | •                 | •   | Andro                  |
| 12824.859       | 3.02 | - 3.835     | •   |      | •                 | •   | And 16                 |
| 12879.766       | 2.28 | -3.458      | •   |      |                   | •   | This work              |
| 12933.006       | 5.02 | -1.548      | •   |      | •                 | •   | And16                  |
| 12934.666       | 5.39 | -0.948      |     |      | •                 | •   | And16                  |
| 12946 532       | 3.25 | -4.754      |     |      |                   |     | This work              |
| 13014 841       | 5.45 | 1 603       |     |      |                   |     | And16                  |
| 12009 976       | 5.01 | - 1.093     |     |      |                   | •   | This work              |
| 13098.870       | 5.01 | - 1.290     |     |      |                   | •   | THIS WORK              |
| 13352.173       | 5.31 | -0.521      | •   |      | •                 |     | And16                  |
| 14939.644       | 6.47 | -0.153      |     |      |                   | •   | This work              |
| 14979.696       | 6.17 | -0.451      |     |      |                   | •   | And16                  |
| 14982.801       | 6.26 | -0.495      | •   |      | •                 |     | And16                  |
| 14988.778       | 6.17 | +0.186      | •   |      |                   |     | This work              |
| 15013 771       | 6.22 | +0.087      |     |      |                   |     | This work              |
| 15017 700       | 6.22 | $\pm 0.067$ | •   | •    | •                 |     | And16                  |
| 151(0.502       | 6.24 | +0.002      | •   | •    | •                 | •   | This see als           |
| 15160.505       | 0.34 | -0.255      | •   |      | •                 |     | This work              |
| 15176.713       | 5.92 | -0.497      | •   |      | •                 |     | And16                  |
| 15194.490       | 2.22 | -4.815      | •   |      | ٠                 | •   | And16                  |
| 15201.562       | 6.31 | -0.161      |     |      |                   | •   | And16                  |
| 15207.526       | 5.39 | +0.323      | •   | •    | •                 | •   | And16                  |
| 15219.618       | 5.59 | -0.825      | •   |      |                   |     | And16                  |
| 15224 729       | 5.96 | -0.315      |     |      |                   |     | And16                  |
| 15224.727       | 5.70 | - 0.015     | •   |      | •                 |     | And16                  |
| 13239.712       | 0.42 | - 0.052     |     |      | •                 | •   | Andro                  |
| 15244.973       | 5.59 | -0.072      |     |      |                   | •   | This work              |
| 15293.135       | 6.31 | +0.143      | •   |      |                   |     | This work              |
| 15294.560       | 5.31 | +0.719      | •   | •    |                   | •   | This work              |
| 15301.557       | 5.92 | -0.687      | •   |      | ٠                 | •   | This work              |
| 15335.383       | 5.41 | +0.088      | •   |      |                   |     | And16                  |
| 15343 788       | 5.65 | -0.582      |     |      | •                 | •   | This work              |
| 15348 066       | 5.05 | 1 260       | -   | -    | -                 | •   | This work              |
| 15275.246       | 5.95 | - 1.200     | •   |      | •                 |     |                        |
| 153/5.346       | 5.92 | - 0.991     | •   |      | •                 | •   | AndIo                  |
| 15394.673       | 5.62 | +0.008      | •   |      | •                 | •   | And16                  |
| 15395.718       | 5.62 | -0.126      | •   | •    | ٠                 | •   | And16                  |
| 15514.279       | 6.29 | -0.473      | •   |      |                   |     | And16                  |
| 15522.607       | 6.32 | -1.118      | •   |      |                   | •   | And16                  |
| 15524.308       | 5.79 | -0.881      | •   |      | •                 | •   | And16                  |
| 15531 751       | 5 64 | -0.243      |     | •    | •                 |     | And16                  |
| 1553/ 2/5       | 5.61 | 0.245       | -   | -    | -                 | -   | And14                  |
| 15542.070       | 5.04 | - 0.382     | •   | •    | •                 | •   | Allulo                 |
| 15542.079       | 5.64 | -0.337      | •   | •    | •                 | •   | And16                  |
| 15550.436       | 6.32 | -0.102      | •   |      | •                 | •   | And16                  |
| 15551.433       | 6.35 | -0.371      | •   |      | •                 | •   | And16                  |
| 15560.784       | 6.35 | -0.475      | •   |      | •                 |     | And16                  |
| 15565.222       | 6.32 | -0.557      | •   |      | •                 |     | And16                  |
| 15566 725       | 6 35 | -0.681      | -   |      |                   |     | And16                  |
| 15588 250       | 6 37 | $\pm 0.410$ | -   | -    | -                 | -   | And16                  |
| 15500.237       | 6.04 | TU.417      | •   | •    | •                 |     | Andle                  |
| 13390.040       | 0.24 | - 0.829     | •   |      |                   | •   | And10                  |

 Table A4
 - continued

| λair      | Υī           | log of                |     | Line | list <sup>a</sup> |     | Referenceb          |
|-----------|--------------|-----------------------|-----|------|-------------------|-----|---------------------|
| [Å]       | [eV]         | -~ <i>b</i> a/        | MRD | MPD  | MRG               | MPG |                     |
| 15501 400 | ( ) (        | 10.074                |     |      |                   |     | A 11 C              |
| 15591.490 | 6.24<br>5.02 | +0.874                | •   | •    | •                 | •   | Andlo               |
| 15595.749 | 5.05         | - 1.922               | •   |      | •                 |     | Andlo               |
| 15598.809 | 6.24         | -0.230<br>$\pm 0.538$ | •   | •    | •                 | •   | This work           |
| 15611 145 | 3.41         | -3.768                | •   | •    | •                 | •   | And16               |
| 15621 654 | 5 54         | -5.703<br>$\pm 0.589$ | •   | •    | •                 |     | This work           |
| 15645.016 | 631          | -0.390                |     | •    | •                 |     | This work           |
| 15648.510 | 5.43         | -0.599                |     | •    |                   | •   | And16               |
| 15652.871 | 6.25         | -0.161                | •   | •    | •                 | -   | And16               |
| 15662.013 | 5.83         | +0.371                | •   | •    | •                 | •   | And16               |
| 15665.240 | 5.98         | -0.337                | •   | •    |                   |     | This work           |
| 15682.513 | 6.37         | -0.265                | •   |      | •                 | •   | And16               |
| 15691.853 | 6.25         | +0.649                | •   |      |                   |     | And16               |
| 15723.586 | 5.62         | -0.143                | •   | •    | •                 |     | And16               |
| 15731.412 | 6.45         | -0.337                |     |      | •                 |     | And16               |
| 15733.509 | 6.25         | -0.978                | •   |      |                   |     | And16               |
| 15788.996 | 6.25         | +0.490                | •   |      |                   |     | And16               |
| 15920.642 | 6.26         | +0.366                | •   |      | •                 |     | This work           |
| 15928.158 | 5.95         | -0.680                | •   |      | •                 | ٠   | And16               |
| 15929.472 | 6.31         | -0.383                | •   |      |                   | ٠   | And16               |
| 15934.017 | 6.31         | -0.294                | •   |      | •                 | ٠   | And16               |
| 15938.918 | 6.37         | +0.065                |     |      |                   | ٠   | This work           |
| 15940.918 | 5.81         | -1.594                | •   |      |                   | ٠   | And16               |
| 15941.848 | 6.36         | +0.265                | •   | •    | •                 |     | And16               |
| 15962.558 | 6.42         | -0.078                | •   |      | •                 | ٠   | This work           |
| 15964.865 | 5.92         | +0.279                | •   | •    | •                 | ٠   | And16               |
| 15980.725 | 6.26         | +0.958                | •   | •    |                   |     | And16               |
| 16009.610 | 5.43         | -0.470                | •   | •    |                   |     | And16               |
| 16040.654 | 5.87         | +0.317                | •   |      | •                 |     | And16               |
| 16051.734 | 6.26         | - 0.942               | •   |      | •                 |     | And 16              |
| 16070.180 | 5.96         | - 0.569               | •   |      | •                 |     | And 16              |
| 160/1.39/ | 6.27         | +0.102                | •   |      |                   |     | Andlo               |
| 16100.282 | 0.33<br>5.97 | -0.043                |     |      |                   | •   | Andlo               |
| 16102.408 | 5.87         | +0.346                | •   |      | •                 |     | And Io<br>This work |
| 16125.699 | 0.33<br>5.06 | +0.800                |     | •    |                   | •   | And16               |
| 16165 020 | 5.90         | - 0.294               | •   |      |                   | •   | And16               |
| 16171 030 | 6.38         | +0.988                | •   | •    |                   | •   | And16               |
| 16174 975 | 6.38         | -0.445<br>$\pm 0.185$ |     | •    |                   |     | And16               |
| 16177 001 | 6.38         | -0.402                | •   |      |                   | •   | And16               |
| 16179 583 | 6.32         | $\pm 0.462$           | •   |      |                   |     | And16               |
| 16180.900 | 6.28         | +0.201                |     |      |                   | •   | And16               |
| 16182 170 | 6.32         | -0.708                | •   | ·    |                   | ·   | This work           |
| 16185.799 | 6.39         | +0.264                |     | •    |                   |     | This work           |
| 16195.060 | 6.39         | +0.467                | •   | •    | •                 |     | And16               |
| 16198.502 | 5.41         | -0.444                | •   | •    | •                 | •   | And16               |
| 16201.513 | 6.38         | -0.329                | •   |      | •                 |     | This work           |
| 16207.744 | 6.32         | +0.585                | •   | •    | •                 |     | And16               |
| 16377.388 | 6.36         | -0.465                | •   |      | •                 | •   | And16               |
| 16384.141 | 6.36         | -0.736                |     |      | •                 | •   | And16               |
| 16394.389 | 5.96         | +0.358                | •   | •    | •                 | •   | And16               |
| 16396.306 | 6.28         | -0.530                | •   |      |                   |     | This work           |
| 16404.601 | 6.36         | +0.581                | •   |      | •                 |     | And16               |
| 16407.786 | 6.29         | +0.007                | •   | •    |                   |     | This work           |
| 16436.621 | 5.92         | +0.007                | •   |      | •                 |     | And16               |
| 16440.394 | 6.29         | -0.241                | •   |      | •                 |     | And16               |
| 16444.816 | 5.83         | +0.663                | •   | •    | •                 |     | And16               |
| 16466.921 | 6.39         | +0.003                | •   | •    | •                 | •   | And16               |
| 16471.753 | 6.37         | +0.030                | •   |      |                   | •   | And16               |
| 16474.077 | 6.02         | - 0.959               | •   | •    |                   | •   | And16               |
| 16481.228 | 6.39         | - 0.162               | •   |      |                   |     | This work           |
| 16486.666 | 5.83         | +0.783                | •   |      | •                 | ٠   | This work           |
| 16506.293 | 5.95         | -0.463                |     |      | •                 |     | This work           |

Table A4
 - continued

| λ <sub>air</sub> | XΙ   | log gf |     | Line | list <sup>a</sup> |     | Reference <sup>b</sup> |
|------------------|------|--------|-----|------|-------------------|-----|------------------------|
| [Å]              | [eV] | •      | MRD | MPD  | MRG               | MPG |                        |
| 16537.994        | 6.29 | -0.867 | •   |      |                   |     | This work              |
| 16539.193        | 6.34 | -0.119 | •   |      |                   |     | And16                  |
| 16544.667        | 6.34 | -0.029 | •   |      | •                 | ٠   | And16                  |
| 16551.994        | 6.41 | +0.338 | •   |      | ٠                 | ٠   | And16                  |
| 16557.148        | 6.41 | -1.083 |     |      |                   | ٠   | This work              |
| 16559.677        | 6.40 | +0.210 |     |      |                   | ٠   | And16                  |
| 16561.764        | 5.98 | +0.243 |     | •    |                   |     | And16                  |
| 16586.051        | 5.62 | -0.753 |     |      | ٠                 | •   | And16                  |
| 16612.761        | 6.40 | +0.286 | •   |      | •                 |     | And16                  |
| 16629.836        | 6.57 | -0.435 | •   |      |                   |     | This work              |
| 16645.874        | 5.96 | -0.032 | •   | ٠    | ٠                 | •   | And16                  |
| 16807.435        | 5.83 | -1.301 |     |      | •                 |     | And16                  |
| 16833.052        | 5.96 | -0.889 | •   |      | ٠                 | •   | And16                  |
| 16843.228        | 5.87 | -1.321 | •   |      |                   |     | And16                  |
| 16865.513        | 6.41 | -0.749 |     |      |                   | •   | And16                  |
| 16869.950        | 6.41 | -0.415 |     |      | •                 |     | This work              |
| 16874.116        | 6.35 | -0.159 | •   |      |                   |     | And16                  |
| 16892.384        | 6.31 | -0.799 | •   |      | ٠                 | •   | This work              |
| 16969.910        | 5.95 | -0.069 |     |      | •                 |     | This work              |
| 17005.450        | 6.07 | +0.005 |     | ٠    |                   | •   | This work              |
| 17008.971        | 6.62 | -0.301 | •   |      | •                 |     | This work              |
| 17011.095        | 5.95 | +0.102 | •   |      |                   | •   | This work              |
| 17037.787        | 6.39 | -0.852 |     |      |                   | ٠   | And16                  |
|                  |      |        |     |      |                   |     |                        |

<sup>*a*</sup>Line lists. MRD: metal-rich dwarfs; MPD: metal-poor dwarfs; MRG: metal-rich giants; MPG: metal-poor giants.

<sup>b</sup>References. Sou08: Sousa et al. (2008); And16: Andreasen et al. (2016).

| $\lambda_{air}$ | ХП   | log gf |     | Reference <sup>b</sup> |     |     |           |
|-----------------|------|--------|-----|------------------------|-----|-----|-----------|
| [Å]             | [eV] | ea     | MRD | MPD                    | MRG | MPG |           |
| 5325.552        | 3.22 | -3.160 |     | •                      |     | •   | Sou08     |
| 5414.070        | 3.22 | -3.580 |     |                        | •   |     | Sou08     |
| 5425.248        | 3.20 | -3.220 | •   | •                      | •   | •   | Sou08     |
| 5534.838        | 3.24 | -2.730 |     | •                      |     |     | Sou08     |
| 5991.371        | 3.15 | -3.540 | •   |                        |     |     | Sou08     |
| 6084.102        | 3.20 | -3.780 | •   |                        | •   |     | Sou08     |
| 6149.246        | 3.89 | -2.720 | •   |                        | •   | •   | Sou08     |
| 6238.386        | 3.89 | -2.754 |     | •                      | •   |     | Sou08     |
| 6247.557        | 3.89 | -2.310 |     | •                      |     |     | Sou08     |
| 6369.459        | 2.89 | -4.160 | •   |                        |     | •   | Sou08     |
| 6416.919        | 3.89 | -2.650 | •   |                        |     |     | Sou08     |
| 6432.676        | 2.89 | -3.520 | •   | •                      | •   |     | Sou08     |
| 6456.380        | 3.90 | -2.100 |     | •                      | •   | •   | Sou08     |
| 6516.077        | 2.89 | -3.320 | •   | •                      |     |     | Sou08     |
| 7222.391        | 3.89 | -3.360 | •   | •                      | •   |     | This work |
| 7224.478        | 3.89 | -3.240 | •   | •                      | ٠   |     | This work |
| 7449.329        | 3.89 | -3.090 | •   |                        | •   |     | This work |
| 7479.693        | 3.89 | -3.680 | •   |                        | ٠   |     | This work |
| 7515.830        | 3.90 | -3.460 | •   |                        | •   |     | This work |
| 7533.368        | 3.90 | -3.600 | •   |                        | •   |     | This work |
| 7711.720        | 3.90 | -2.500 | •   | •                      | •   | •   | This work |
| 9997.598        | 5.48 | -1.867 | •   |                        | •   |     | This work |
| 10501.503       | 5.55 | -2.086 | •   |                        |     |     | And16     |

Table A5. Merged Fe II line lists.

<sup>*a*</sup>Line lists. MRD: metal-rich dwarfs; MPD: metal-poor dwarfs; MRG: metal-rich giants; MPG: metal-poor giants.

<sup>b</sup>**References.** Sou08: Sousa et al. (2008); And16: Andreasen et al. (2016).



Figure A1. CARMENES spectrum of 18 Sco. Fe I and Fe II lines are shown in red and green, respectively.



Figure A1. continued





Figure A1. continued



Figure A1. continued





Figure A1. continued



Figure A1. continued



This paper has been typeset from a  $T_{\!E\!}X/{\!E\!A}T_{\!E\!}X$  file prepared by the author.