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ABSTRACT

Context. The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand
the universe and its evolution.
Aims. Here, we report the use of machine learning techniques to classify early- and late-type galaxies in the OTELO and COSMOS databases
using optical and infrared photometry and available shape parameters: either the Sérsic index or the concentration index.
Methods. We used three classification methods for the OTELO database: (1) u − r color separation, (2) linear discriminant analysis using u − r
and a shape parameter classification, and (3) a deep neural network using the r magnitude, several colors, and a shape parameter. We analyzed the
performance of each method by sample bootstrapping and tested the performance of our neural network architecture using COSMOS data.
Results. The accuracy achieved by the deep neural network is greater than that of the other classification methods, and it can also operate with
missing data. Our neural network architecture is able to classify both OTELO and COSMOS datasets regardless of small differences in the
photometric bands used in each catalog.
Conclusions. In this study we show that the use of deep neural networks is a robust method to mine the cataloged data.

Key words. galaxies: general – methods: statistical

1. Introduction

Galaxy morphological classification plays a fundamental role in
descriptions of the galaxy population in the universe, and in our
understanding of galaxy formation and evolution. Galaxy mor-
phology is related to key physical, evolutionary, and environ-
mental properties, such as system dynamics (Djorgovski & Davis
1987; Gerhard et al. 2001; Debattista et al. 2006; Falcón-Barroso
et al. 2019; Romanowsky & Fall 2012), the stellar formation his-
tory (Kennicutt 1998; Bruzual & Charlot 2003; Kauffmann et al.
2003; Lovell et al. 2019), gas and dust content (e.g., Lianou et al.
2019), galaxy age (Bernardi et al. 2010), and interaction and merg-
ing events (e.g., Romanowsky & Fall 2012). Early galaxy classi-
fications strategies were based on the visual aspect of the objects,
differentiating among spiral, elliptical, lenticular, and irregular
galaxy types according to their resolved morphology. Exam-
ples of these strategies are the original classification schemes by
Hubble (1926) and De Vaucouleurs (1959). This methodology has
reached historic marks during the last decade through the citizen
science initiative known as Galaxy Zoo. It stands out for being the
largest effort made to visually classify more than 900 000 galaxies
from the Sloan Digital Sky Survey (SDSS; Fukugita et al. 1996)
galaxies brighter than rSDSS = 17.7 with proven reliability (Lintott
et al. 2011). After this milestone, this crowd-sourced astronomy
project also included the analysis of datasets from the Kilo-Degree
Survey (KiDS) imaging data in the Galaxy and Mass Assembly
(GAMA) fields, classifying typical edge-on galaxies at z < 0.15
(Holwerda et al. 2019), and the quantitative visual classification of
approximately 48 000 galaxies up to z ∼ 3 in three Hubble Space
Telescope (HST) fields of the Cosmic Assembly Near-infrared

Deep Extragalactic Legacy Survey (CANDELS; Simmons et al.
2017). Using the visual classification approach, the morphology
and size of luminous, massive galaxies at 0.3 < z < 0.7 targeted
by the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al. 2013) of SDSS-III were also determined (Masters et al. 2011)
using HST and Cosmic Evolution Survey1 (COSMOS; Scoville
et al. 2007) data.

However, the availability of larger telescopes and sophis-
ticated instruments has made visual classification unfeasible
because most galaxies are barely resolved, making identification
of their morphological type very difficult, and the number of dis-
covered galaxies has increased dramatically since the introduc-
tion of digital surveys dedicated to probing larger and deeper
volumes in the universe. This issue will be even more critical
in the near future when the next generation of large surveys
such as the Large Synoptic Survey Telescope (Tyson 2002) or
the results from Euclid mission (Laureijs et al. 2011) produce
petabytes of information and trigger the need for time-domain
astronomy (Hložek 2019) far exceeding the capacity of available
human resources to manage this information. For this reason, the
automated classification of galaxies has become an intense area
of research in modern astronomy.

Previous research into automated galaxy-classification algo-
rithms has focused on colors, shape, and morphological param-
eters related to galaxy light distribution, such as concentra-
tion and asymmetry (e.g., Abraham et al. 1994; Bershady
et al. 2000; Conselice 2003, 2006; Pović et al. 2009, 2013,
2015; Deng 2013). Joint automated and visual classification
1 http://cosmos.astro.caltech.edu
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procedures have been implemented in extragalactic surveys such
as for example COSMOS (Cassata et al. 2007; Zamojski et al.
2007) and GAMA (Alpaslan et al. 2015). Another approach
involves the fitting of spectral energy distributions (SEDs) using
galaxy templates (Ilbert et al. 2009). In a complementary fash-
ion, Strateva et al. (2001) investigated the dichotomous classi-
fication in early- and late-type (ET and LT) galaxies. For these
authors, the ET group includes the E, S0, and Sa morphologi-
cal types, while the LT group comprises Sb, Sc, and Irr galax-
ies. Furthermore, using the well-known tendency of the LT to
be bluer than the ET galaxies, Strateva et al. (2001) propose the
u − r color to separate between these galaxy types. Sérsic and
concentration indexes have also been used, alone or in combi-
nation with the u − r color, to separate ET from LT galaxies
(e.g., Conselice 2003; Kelvin et al. 2012; Deng 2013; Vika et al.
2015). A far more complicated and expensive classification, in
terms of computational and observational resources, consists in
fitting a set of either empirical or modeled SED templates to
the galaxy continuum (e.g., Coleman et al. 1980; Kinney et al.
1996). Currently, there are some public codes that are able to per-
form such template-based classifications (e.g., LePhare: Arnouts
et al. 1999; Ilbert et al. 2006).

Classification can be addressed in machine learning through
supervised learning techniques, which consist in training a func-
tion that maps inputs to outputs learning from input–output pairs,
and using this function to assign new observations in two or more
predefined categories. Supervised learning techniques include
decision trees (Barchi et al. 2020), random forests (Miller et al.
2017), linear discriminant analysis (LDA; Murtagh & Heck
1987), support vector machines (Huertas-Company et al. 2008),
Bayesian classifiers (Henrion et al. 2011), and neural networks
(Ball et al. 2004), among others.

Machine Learning algorithms are increasingly used for clas-
sification in large astronomical databases (e.g., Abolfathi et al.
2018). In particular, LDA is a common classifying method used
in statistics, pattern recognition, and machine learning. Linear
discriminant analysis classifiers attempt to find linear boundaries
that best separate the data. Recently, LDA has being used for
galaxy classification in spiral and elliptical morphological types
(Ferrari et al. 2015), classification of Hickson’s compact groups
of galaxies (Abdel-Rahman & Mohammed 2019), and galaxy
merger identification (Nevin et al. 2019).

In recent years, neural networks have become very popular
in different research areas because of their ability to perform
outstanding accurate classifications, and regression and series
analyses. A typical neural network is made up of a number of
hidden layers, each with a certain quantity of neurons that per-
form tensor operations. There are several network types which
are oriented to solve different issues (a brief explanation of dif-
ferent networks can be found in Baron 2019). Also, Busca &
Balland (2018) used a one-dimensional convolutional neural net-
work (CNN) for classification and redshift estimates of quasar
spectra extracted from the BOSS. Much of the recent research
has focused on two-dimensional CNN classification of galaxy
images (e.g., Serra-Ricart et al. 1996; Huertas-Company et al.
2015; Dieleman et al. 2015; Domínguez Sánchez et al. 2018;
Pérez-Carrasco et al. 2019; Walmsley et al. 2020).

In the future, neural networks will probably gain more
importance and become the primary technique for classification
of astronomical images. However, there are two drawbacks that
limit the use of CNN in astronomical research at present. The
first is the network bandwidth, which prevents the download of
large amounts of heavy images obtained in remote observato-
ries. The second drawback is the computational and hardware

resources needed to train a two-dimension CNN with tens of
thousands of images.

Dense (or fully connected) neural networks (DNN) are used
to solve general classification problems applied to tabulated data.
In astronomy, DNNs have been applied to morphological type
classification in low-redshift galaxies. Thus, Storrie-Lombardi
et al. (1992) designed a simple DNN architecture for morpho-
logical classification of 5217 galaxies drawn from the ESO-LV
catalog (Lauberts & Valentijn 1989) using 13 parameters (most
of them geometrical) in five different classes, obtaining an accu-
racy of 56%. Naim et al. (1995) used the same architecture
for 830 bright galaxies (B ≤ 17) and 24 parameters, reducing
the parameter space dimension through principal components
analysis. Serra-Ricart et al. (1993) used DNN autoencoders for
unsupervised classification of galaxies into three major classes:
Sa+Sb, Sc+Sd, and SO+E. Sreejith et al. (2018) applied a DNN
to a sample of 7528 galaxies at redshifts z < 0.06 extracted
from the Galaxy And Mass Assembly survey (GAMA2) achiev-
ing an accuracy of 89.8% for spheroid- versus disk-dominated
classification.

These earlier works showed that DNNs are capable of per-
forming accurate classification tasks on processed data such as
photometry, colors, and shape parameters of low-redshift galax-
ies (Storrie-Lombardi et al. 1992; Naim et al. 1995; Ball et al.
2004). However, compared with image-oriented CNNs, little
attention has been paid recently to the use of DNNs for galaxy
classification, even if these networks do not require the large
quantity of resources used by the CNN. Moreover, both neu-
ral network software development (e.g., Tensorflow, Abadi et al.
2016) and hardware computation power (both central and graph-
ics processing units) have increased dramatically, boosting the
capabilities of DNN applications.

In this paper we extend the use of DNNs to the morpho-
logical classification of galaxies up to redshifts z ≤ 2. We
compare the performance of different galaxy classification tech-
niques applied to a sample of galaxies extracted from the photo-
metric OTELO database (Bongiovanni et al. 2019) with a fitted
Sérsic profile (Nadolny et al. 2020). These techniques are (1)
the Strateva et al. (2001) u − r color algorithm; (2) the LDA
machine learning algorithm, which includes both the u − r color
and a shape parameter, either the Sérsic index or the concentra-
tion index (Kelvin et al. 2012); and (3) a DNN that uses optical
and near-infrared photometry, and shape parameter for objects
available in both OTELO and COSMOS catalogs. We find that
a simple, easily trainable DNN yields a highly accurate classifi-
cation for ET and LT OTELO galaxies. Moreover, we apply our
DNN architecture to a set of tabulated COSMOS data with some
differences in the photometric bands measured with respect to
OTELO, and find that our architecture also performs accurate
classification of COSMOS galaxies. Finally, we use the same
DNN architecture but substituting the Sérsic index with the con-
centration index (Shimasaku et al. 2001) for both OTELO and
COSMOS datasets.

This paper is organized as follows. Section 2 describes the
different techniques used to classify galaxies. In Sect. 3 we
show the results and compare the different techniques. Finally,
in Sect. 4 we present our conclusions.

2. Methodology

The current investigation involves the automatic classification
of galaxies into two dichotomous groups, namely ET and LT

2 http://www.gama-survey.org
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galaxies, using both photometric measurements and a factor that
depends on the shape of the galaxys’ light distribution. Machine
learning algorithms for automatic classification parse data and
learn how to assign subjects to different classes. These algo-
rithms require both training and test datasets that consist of
labeled data. The training dataset is used to fit the model param-
eters, and the test dataset to provide an unbiased assessment
of the model performance. If the algorithm requires tuning the
model hyperparameters, such as the number of layers and hid-
den units in a DNN architecture, a third labeled dataset called
the validation dataset is required to evaluate different model tri-
als (the test dataset must be evaluated only by the final model).
Once the final model architecture is attained, it is trained joining
both the training and the validation dataset, and then evaluated
using the test dataset.

In this section we present our samples of galaxies extracted
from OTELO and COSMOS. We use the observed photometry
and colors, that is, neither k nor extinction corrections were per-
formed. In order to maximize the sample size while keeping a
well-sampled set in redshift, data have been limited in photo-
metric redshift (zphot ≤ 2) but not in flux, thus no cosmological
inferences can be performed from our sample. However, at the
end of Sect. 3 we present a brief analysis of the results obtained
for flux-limited samples. We describe the photometry and the
shape factors of these data. We then present the implementa-
tion of the different classification methodologies used: the u − r
color, LDA, and DNN. Finally, we present the bootstrap pro-
cedure that we use to compare the results obtained with these
methodologies.

2.1. OTELO samples

OTELO is a very deep blind survey performed with the red
tunable filter OSIRIS instrument of the 10.4 m Gran Telesco-
pio Canarias (Bongiovanni et al. 2019). OTELO data consist
of images obtained in 36 adjacent narrow bands (FWHM 12 Å)
covering a window of 230 Å around λ = 9175 Å. The catalog
includes ancillary data ranging from X-rays to far infrared. Point
spread function-model photometry and library templates were
used for separating stars, AGNs, and galaxies.

The OTELO catalog comprises 11 237 galaxies. Nadolny
et al. (2020) matched OTELO with the output from GALA-
PAGOS2 (Häussler et al. 2007; Häußler et al. 2013) over
high-resolution HST images. Not all the OTELO galaxies
were detected by GALAPAGOS2, which returned a total of
8812 sources. Nadolny et al. (2020) account for automated
detection of multiple matches produced by more than one source
that lay inside the OTELO’s Kron radius in a high-resolution
F814W band image. These latter authors attribute these mul-
tiple matches to close companions (gravitationally bounded or
in projection), mergers, or resolved parts of the host galaxy. In
any case, sources with multiple matches were excluded from our
analysis because they could affect low-resolution photometry.
Finally, we included further constraints to extract our OTELO
samples (see below).

2.1.1. Sérsic index and photometry sample

OTELO uses LePhare templates to fit the SED of galaxies to
obtain photometric morphological type classification and red-
shift estimates. We used this morphological classification to
assign the galaxies to ET and LT classes. The best model fit-
ting is recorded under the MOD_BEST_deepN numerical coded
entries in the OTELO catalog (Bongiovanni et al. 2019). The

ET class includes galaxies coded as “1” in the OTELO catalog,
which were best fitted by the E/S0 template from Coleman et al.
(1980). The LT class comprises OTELO galaxies coded from
“2” to “10”, which were best fitted by different late-type galaxy
templates, namely Sbc, Scd, and Irr (Coleman et al. 1980), and
starburst-class templates from SB1 to SB6 (Kinney et al. 1996).
Bongiovanni et al. (2019) estimate that the fraction of inaccu-
rate SED fittings for the galaxies contained in the OTELO cat-
alog may amount to up to ∼4%. Therefore, our results may be
affected if there are ET galaxies miscoded differently from “1”
in OTELO, or any of the LT galaxies miscoded as “1”. This could
affect, for example, early-type spirals such as Sa galaxies, which
are not explicitly included in the OTELO template set. However,
the UV SED for ellipticals and S0 galaxies is completely dif-
ferent from Sa and other LT galaxies. The OTELO catalog also
includes GALEX-UV data that allow us to identify ET galax-
ies even in the local universe. Thus, we conclude that recoding
the OTELO classification in our galaxy sample as ET and LT
classes yields a negligible number of misclassified objects (cer-
tainly much less than the OTELO fraction of ∼4%) and does not
affect our results.

The Sérsic profile is a parametric relationship that expresses
the intensity of a galaxy as a function of the distance from its
center:

I(R) = Iee−b
[(

R
Re

)1/n
−1

]
, (1)

where I is the intensity at a distance R from the galaxy cen-
ter, Re is the half-light radius, Ie is the intensity at radius Re,
b (∼ 2n − 1/3) is a scale factor, and n is the Sérsic index. Sér-
sic profiles have been employed for galaxy classification (e.g.,
Kelvin et al. 2012; Vika et al. 2015). This index provides a geo-
metrical description of the galaxy concentration; for a Sérsic
index n = 4 we obtain the de Vaucouleurs profile typical of ellip-
tical galaxies, while setting n = 1 gives the exponential profile
describing spiral galaxies.

Our OTELO Sérsic index and photometry (OTELO SP) sam-
ple consists of 1834 galaxies at redshifts z ≤ 2 extracted from
the OTELO catalog (listed under the Z_BEST_deepN code).
The sample includes ugriz optical photometry from the Canada-
France-Hawaii Telescope Legacy Survey3 (CFHTLS), JHKs
near-infrared photometry from the WIRcam Deep Survey4

(WIRDS), and Sérsic index estimates obtained using GALAPA-
GOS2/GALFIT (Häußler et al. 2013; Peng et al. 2002, 2010) on
the HST-ACS publicly available data in the F814W band. The
sample comprises only galaxies with Sérsic indexes between n =
0.22 and n = 7.9; Sérsic indexes out of this range are not reliable
because of an artificial limit imposed by the Sérsic-profile-fitting
algorithm in GALAPAGOS2 (Häussler et al. 2007). Besides, the
sample does not include galaxies with Sérsic index values less
than three times their estimate errors. For a detailed description
of the Sérsic-profile-fitting process we refer to Nadolny et al.
(2020).

Figure 1 shows the sample distributions of magnitudes in the
r band and photometric redshifts extracted from the OTELO cat-
alog. We note that the sample is not limited in flux, and therefore
it is not a complete sample in the volume defined by the redshift
limit zphot ≤ 2 (see the discussion about magnitude-limited sam-
ples below). The redshift distribution presents concentrations at
redshifts 0.04, 0.11, 0.34, 0.90, and 1.72 superimposed onto a
bell-like distribution with a maximum around zphot ≈ 0.8 and a

3 http://www.cfht.hawaii.edu/Science/CFHTLS/
4 https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/
cfht/wirds.html
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Fig. 1. Comparative distribution of brightnesses in the r band and photo-
metric redshifts for the 1834 galaxies in the OTELO SP sample. Bottom
left panel: r magnitude vs. photometric redshift zphot plot shows the galax-
ies in the sample, differentiating between LT galaxies (black circles) and
ET galaxies (red squares). Top panel: SP sample photometric redshift
distribution. Right panel: SP sample r magnitude distribution.

strong decay from zphot ≈ 1.3. The photometric data are incom-
plete, which affects the available number of galaxies for those
classification procedures that cannot effectively manage missing
data.

The sample is randomly divided in a training set (70% of
the available galaxies) used for the algorithm training, and a test
set (30%) used to yield an unbiased estimate of the efficiency of
the model. Choosing the proportions of training and test sample
sizes depends on a balance between the model performance and
the variance in the estimates of the statistical parameters (in our
case the accuracy, True ET Rate and True LT Rate, as explained
below). Rule-of-thumb proportions often used in machine learn-
ing are 90:10 (i.e., 90% training, 10% testing), 80:20 (inspired
by the Pareto principle), and 70:30 (our choice). In our case, the
70:30 proportion is justified because it fulfills the large enough
sample condition (another rule of thumb) that the sample size
must be at least 30 to ensure that the conditions of the central
limit theorem are met. Thus, the number of expected ET galax-
ies in the SP test sample is: Ngal pet ptest ≈ 30, where Ngal = 1834
is the sample size, pet = 1834 is the proportion of ET galaxies
in the SP sample, and ptest = 0.3 is the proportion of galaxies in
the test sample.

2.1.2. Concentration and photometry sample

The concentration is widely used to differentiate ET from
LT galaxies. Concentration provides a direct measurement of the
intensity distribution in the image of a galaxy. For that reason,
the concentration is easier to obtain than the Sérsic index, which
requires fitting several parameters to the Sérsic profile.

Here we use the definition (Bershady et al. 2000; Scarlata
et al. 2007):
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Fig. 2. As Fig. 1 but for the 2292 galaxies in the OTELO CP sample.

C = 5 log10

(
r80

r20

)
, (2)

where r80 and r20 are the 80% and 20% light Petrosian radii,
respectively, obtained from the HST F814W band images. We
chose the F814W band concentration for compatibility with
COSMOS (Scarlata et al. 2007). The data were limited to a red-
shift z ≤ 2. The final OTELO concentration and photometry
(OTELO CP) sample consists of 2292 galaxies, with 114 clas-
sified as ET and 2178 as LT. Figure 2 shows the sample distri-
butions of magnitudes in the r band and photometric redshifts,
which is similar to the case of the SP sample discussed above.
The CP sample was also divided in two subsamples: a training
subsample containing 1604 (70%) of the objects, and a test sub-
sample with 688 (30%) of the galaxies.

2.2. COSMOS samples

We expect that our DNN architecture can be applied to galaxy
classification in other databases. Therefore, we checked its reli-
ability using two COSMOS enhanced data products: the Zurich
Structure & Morphology Catalog v1.0 (ZSMC, Scarlata et al.
2007; Sargent et al. 2007) and the COSMOS photometric red-
shifts v1.5 (CPhR, Ilbert et al. 2009). Those catalogs have
131 532 and 385 065 entries, respectively. We merged both
databases, obtaining 128 442 matches, from which we chose a
sample of galaxies with Sérsic indexes estimates in the range
0.2 < n < 8.8, and another sample with the same concentration
radii used in OTELO. Both samples are limited to redshifts z < 2
and include photometry in the CFHT u, Subaru BVgriz, UKIRT
J and CFHT K bands, along with classification entries. Thus,
the galaxy records included all the available data from the CPhR
bands except the CFGT i′ magnitudes (we chose the Subaru i
band also included in the catalog).

The resulting COSMOS Sérsic index and photometry (COS-
MOS SP) sample consists of 34 688 galaxies, 28 951 of which
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had been classified as LT and 5737 as ET. With such a large
number of galaxies, we can limit the training set to 5000 galax-
ies (a fraction of approximately 14% of the sample), and rise
the fraction of the testing set up to 29 688 galaxies (approx-
imately 86% of the sample) in order to reduce the variance
of the results. Analogously, the COSMOS concentration and
photometry (COSMOS CP) sample consists of 105 758 galax-
ies, distributed in 95 781 LT and 9977 ET. We set the corre-
sponding training and testing sets to 10 000 and 95 758 galaxies,
respectively.

2.3. Classification procedures

We used a classification baseline and three classification meth-
ods for the OTELO samples. The baseline consists in classifying
all the galaxies into the most frequent morphological group. Any
classification by a more sophisticated method should improve
the baseline accuracy. For the COSMOS samples we only used
the classification baseline and the DNN architecture developed
for the OTELO samples, as we were interested only in probing
this architecture.

2.3.1. Color classification

The first classification method uses a color discriminant. After
testing several colors, we focus on the u − r color as proposed
by Strateva et al. (2001). These authors use a simple color dis-
criminant such that any galaxy with u − r color redder than 2.22
is classified as ET, and LT if u − r < 2.22. This method was
applied only to both SP and CP samples drawn from OTELO.
We also investigated other possible color discriminants that will
be presented later. Data records with missing u − r colors were
disregarded, reducing the SP sample to 1787 galaxies and the CP
sample to 2189.

2.3.2. Linear discriminant analysis

The second classification method is LDA. The aim of LDA is to
find a linear combination of features which separates different
classes of objects. These features are interpreted as a hyperplane
normal to the input feature vectors. We note that the Strateva
et al. (2001) u − r color separation method can be regarded as a
LDA which defines the u − r = 2.22 plane normal to u − g and
g − r vectors. As in the previous method, LDA was only applied
to SP and CP OTELO samples, and data records with missing
u − r colors were disregarded.

Two problems with machine learning techniques are the
management of missing data and the curse of dimensionality.
Missing data (e.g., a photometric band) usually results in remov-
ing objects with incomplete records from the dataset. The curse
of dimensionality appears because increasing the number of
variables in a classification scheme means that the volume of
the space increases very quickly and therefore the data become
sparse and difficult to group. The curse of dimensionality can be
mitigated by dimensionality reduction techniques such as prin-
cipal component analysis (PCA), but dimensionality reduction
may introduce unwanted effects (data loss, nonlinear relations
between variables, and the number of components to be kept
Carreira-Perpiñán 2001; Shlens 2014) that tend to blur differ-
ences between the groups. Alternative methodologies to deal
with these problems are under development, for example by Cai
& Zhang (2018) who introduce an adaptive classifier to cope
with both missing data and the curse of dimensionality for high-
dimensional LDA. To avoid these problems, we chose to limit

our LDA model to the Sérsic index and the single highly discrim-
inant u − r color, as it has been already addressed in the galaxy
classification literature (e.g., Kelvin et al. 2012; Vika et al. 2015).

2.3.3. Deep neural network

The third method of classification involves a DNN. The sam-
ple was analyzed using the Keras library for deep learning.
Keras is a high-level neural network application programming
interface (API) written in Python under GitHub license. Cur-
rently, Keras is available for both Python and R computer lan-
guages (Chollet 2017; Chollet & Allaire 2017). In astronomy,
Keras has already been used for image classification of galaxy
morphologies (Pérez-Carrasco et al. 2019; Domínguez Sánchez
et al. 2018) and spectral classification and redshift estimates of
quasars (Busca & Balland 2018), and is included in the astroNN
package5.

As in the other methods, we use a training and a test set to
teach and check the DNN model, respectively. The difference
from the other methods is that the structure of their learning dis-
criminant function is predetermined, while the DNN architec-
ture should be tuned on the fly. To achieve this goal, we split the
training set in the OTELO samples in (i) a teaching set (80% of
the original training set), and (ii) a validation set (the remain-
ing 20%). Compared with OTELO, the COSMOS samples con-
sist of many more galaxies. Therefore, we limited the number
of the training sets to 5000 for the COSMOS SP sample, and
10 000 for the CP sample, and conserved the respective teach-
ing set and validation set proportions. We use the teaching set to
tune the DNN model, and the validation set to check the loss and
accuracy functions that describe the DNN classification capa-
bility. Once we have achieved a satisfactory result, the DNN
architecture has been optimized to classify the validation set, but
the performance may be different for other datasets. To gener-
alize the result, we use the whole original training set to retrain
the tuned DNN model, and we then classify the test set galax-
ies. Therefore, the test set galaxies were used neither to train
nor to fine tune the DNN model, but only to evaluate the DNN
performance.

An appealing feature of DNNs is the easiness to deal with
missing data. In practice, it is enough to substitute the missing
values in each normalized variable by zeros to cancel their prod-
ucts on the network weights. The DNN then deals with missing
values as if they do not carry any useful information and will
ignore them. Of course, it is better if there are not missing val-
ues, but DNNs allow the user to treat them without the need of
dropping data entries or estimating missing values from other
variables.

Baron (2019) provides a succinct description of DNNs, and a
complete explanation of Keras elements can be found in Chollet
(2017) and Chollet & Allaire (2017). Tuning a DNN is a trial-
and-error procedure aimed to find an appropriate architecture
and setup. As the numbers of input variables, units, and layers
increase, the DNN tends to overfit if the training set is small. For
this reason, we kept our DNN model as simple as possible whilst
obtaining a high-accuracy classification.

We use standard layers and functions for our model that
are already available from Keras. For the interested reader, our
DNN architecture consists of two dense layers of 64 units each
with rectified linear unit (ReLU) activations, and an output
dense layer of a single unit with sigmoid activation. The model
was compiled using an iterative gradient descendent RMSprop

5 https://astronn.readthedocs.io/en/latest/
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optimizer, a binary-cross-entropy loss function, and accuracy
metrics. We kept the default values for the Keras RMSprop opti-
mizer, i.e., a learning rate of 0.001 and a weight parameter for
previous batches of ρ = 0.9. These values are appropriate for
most DNN problems, and moderate changes do not affect the
results. We set the number of training epochs to avoid overfit-
ting, and the training batch sizes to appropriate values for the
number of records in the DNN training sample in each case.

2.3.4. Bootstrap

We used bootstrap (e.g., Efron & Tibshirani 1993; Chihara &
Hesterberg 2018) to obtain reliable statistics that describe the
performance of each classification technique. Bootstrapping is a
widely used nonparametric methodology for evaluating the dis-
tribution of a statistic using random resampling with replace-
ment. Thus, we calculated the classification accuracy and other
classification statistics through 100 runs for the u−r color, LDA,
and DNN methods. For each run, we also divided the bootstrap
random sample in a training set (70%) and a test set (30%).

3. Results

To determine a minimal set of attributes that are able to classify
between ET and LT galaxies, we focus on two directly observ-
able characteristics: photometry and shape. Results obtained in
previous studies were limited to nearby galaxies. Thus, Strateva
et al. (2001) used photometry from 147 920 SDSS galaxies with
magnitude g∗ ≤ 21 and redshifts z . 0.4 to build a binary classi-
fication model based in the u−r = 2.22 discriminant color, which
they tested on a sample of 287 galaxies visually labeled as ET or
LT, recovering 94 out of 117 (80%) ET, and 112 out of 170 (66%)
LT galaxies. Deng (2013) used a sample of 233 669 SDSS-III
DR8 galaxies with redshifts 0.01 < z < 0.25 and report a con-
centration index discriminant to separate ET from LT galaxies
in the r-band that achieved an accuracy of 96.43 ± 0.04. Vika
et al. (2015) used both the u− r color and the Sérsic index in the
r-band to classify a sample of 142 nearby (z < 0.01) galaxies,
dividing the u− r versus nr plane in quadrants; most ET galaxies
were located at the u − r > 2.3 and nr > 2.5 quadrant (28 out of
34, i.e., 82% ETs were correctly classified).

3.1. Sérsic index and photometry samples

3.1.1. Baseline classification

The baseline classification is the simplest classification method.
It assigns all the samples to the most frequent class. This clas-
sification is helpful for determining a baseline performance that
is used as a benchmark for other classification methods. For this
task, we selected all the galaxies in our OTELO SP sample. In
total, there are 1834 galaxy records, 99 of them classified as
ET galaxies (≈5.4%), and 1735 as LT galaxies (≈94.6%). The
two groups are unevenly balanced, which results in the baseline
classification achieving a high overall accuracy of 94.6%, which
should be exceeded by any other classification method.

3.1.2. Color classification

A preliminary study was performed to decipher which colors
yield a split between ET and LT galaxies that outperforms the
baseline. Table 1 shows several examples of the measured accu-
racy for selecting appropriate single color discriminants. We
note that several colors did not perform better than the base-

Table 1. One color separation.

Color Accuracy Ntest Separation

u − J 0.96± 0.01 518 4.1± 0.2
u − i 0.96± 0.01 536 2.8± 0.3
u − r 0.96± 0.02 536 2.0± 0.2
u − H 0.95± 0.01 510 Baseline
g − J 0.94± 0.02 527 Baseline
g − i 0.94± 0.01 548 Baseline

Notes. Column 1: tested color. Column 2: mean accuracy (proportion
of galaxies correctly classified) on 100 random test sets; we notethat
the colors are sorted from the highest to the lowest accuracyscore. Col-
umn 3: sample size included in each test set; differences in the sample
size between different colors are due to missing data. Column 4: color
discriminant value or Baseline if the accuracy score is not statistically
different from the baseline classification.

Table 2. Color u − r confusion matrix.

OTELO
ET LT Total

ET 25 20 45
Color LT 2 489 491

Total 27 509 536

line classification (94.6%), but those involving the u and a red
band usually yield the most accurate results. Both u− J and u− i
colors perform marginally better than u − r, although u − J has
a larger number of missing records. We present the rest of the
color analysis based on the u − r color in order for ease of direct
comparison with the report of Strateva et al. (2001).

Table 2 shows an example of the confusion matrix for a sin-
gle u − r color bootstrap run, yielding an accuracy of 0.959 ±
0.009. Table 3 shows the Accuracy, True ET Rate, and True LT
Rate for the different databases and classification methods used
in this paper, obtained through the bootstrap procedure. The True
ET Rate and True LT Rate both indicate the proportion of ET
and LT galaxies, respectively, recovered through the classifica-
tion procedure. For the u− r color, the statistics yield an average
Accuracy of 0.96± 0.02, a True ET Rate of 0.8± 0.3, and a True
LT Rate of 0.97 ± 0.02. The True ET Rate is the least precise of
all the statistics in all the samples because of the relatively low
number of ET galaxies.

Bootstrap yields a u − r color discriminant for ET and LT
separation of 2.0 ± 0.2, as shown in Fig. 3. The agreement with
Strateva et al. (2001), u− r = 2.22 (no error estimate is provided
by these authors), is remarkable considering that the galaxies
studied by these authors have redshifts in the interval 0 < z ≤ 0.4
while our sample expands to z ≤ 2. Figure 4 shows the u − r
color distribution as a function of the redshift for the OTELO SP
sample. It is worth noting that LT galaxies in this sample tend to
be bluer at redshifts z . 0.5, possibly due to an enhanced star-
forming activity as also pointed out by Strateva et al. (2001).
This feature, along with the scarcity of ET galaxies at z > 1
(about 13% of all the ET galaxies in the OTELO SP sample),
justifies the agreement between (Strateva et al. 2001) results and
ours despite the redshift differences.

The distribution of the bootstrap Accuracy for the u− r color
classification is shown in the upper panel of Fig. 5. Most of the
u − r color accuracies are larger than the baseline, but the two
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Table 3. Comparison of classification methods for SP samples.

Database Method Accuracy (a) True ET Rate (a) True LT Rate (a) Sample

Mean Error Mean Error Mean Error size

OTELO Baseline 0.946 0.006 0 . . . 1 . . . 1834
OTELO u − r color 0.96 0.02 0.8 0.3 0.97 0.02 536
OTELO LDA 0.970 0.008 0.80 0.08 0.979 0.007 536
OTELO DNN 0.985 0.007 0.84 0.09 0.993 0.006 551
COSMOS Baseline 0.835 0.002 0 . . . 1 . . . 34 688
COSMOS DNN 0.967 0.002 0.91 0.03 0.979 0.005 29 688

Notes. (a)On 100 bootstrap runs.
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Fig. 3. Classification for the OTELO SP sample of 1834 galaxies
through the u − r color and LDA algorithms. The u − r color vs. loga-
rithm of the Sérsic index n plot shows the original morphological type
classification in the OTELO catalog reduced to LT galaxies (black cir-
cles) and ET galaxies (red squares). The dotted blue line indicates the
u− r color separation, and the dashed green line the LDA separation by
the u− r color and the Sérsic index. The logarithmic scale for the Sérsic
index makes the comparison with the concentration in Fig. 10 (which
is already a logarithmic quantity) easier, but it bends the LDA line. The
reader should take into account that this is not a flux limited sample.

extreme bootstrap runs with accuracies lying in the 0.915–0.92
interval fail to detect any ET galaxy.

The True ET Rate and True LT Rate are analogous to the true
positive rate and false positive rate (=1 − True LT Rate) statis-
tics. These statistics are used in receiver operating characteris-
tic (ROC) curves to represent the ability to discriminate between
two groups as a function of a variable threshold, usually the like-
lihood of the classification (e.g., Baron 2019). Figure 6 shows
the distribution of bootstrap values in the True ET Rate versus
True LT Rate plane. Every point in this figure corresponds to
the 50% probability threshold of the ROC curve (not shown) for
each bootstrap run. The closer the point to the top-right corner,
the better the classification. The data point located at True LT
Rate = 1, True ET Rate = 0 corresponds to the two u − r color
bootstrap runs that failed to detect any ET galaxy. Below, for the
LDA and DNN classification methods, we increase the number
of predictor variables used to enhance the distinction between
ET and LT galaxies.
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Fig. 4. Comparative distribution of the u − r color and redshifts for the
1834 galaxies in the OTELO SP sample. Bottom left panel: u − r color
vs. photometric redshift zphot plot shows the original morphological type
classification in the OTELO catalog reduced to LT galaxies (black cir-
cles) and ET galaxies (red squares). The dotted blue line indicates the
u − r color separation. Top panel: SP sample photometric redshift dis-
tribution. Right panel: SP sample u − r color distribution.

3.1.3. Linear discriminant analysis classification

Although the use of colors is an improvement on the baseline
classification, and the u − r plane method is very easy to imple-
ment, we dispose of additional data in order to aim for more
powerful classification techniques. In particular, it will be very
helpful to include a parameter associated with the galaxy mor-
phology that can be inferred from optical or near-infrared obser-
vations. The Sérsic profile in Eq. (1) describes the intensity of a
galaxy as a function of the distance from its center regardless of
the galaxy colors, and thus can be useful for our purpose.

The dataset combining u − r colors and Sérsic indexes has
been probed using linear discriminant analysis. The sample with
complete records consisted of 1787 galaxies which have been
split in a training group of 1251 and a test group of 536. Figure 3
shows the LDA separation in the u − r color versus Sérsic
index n plane for the test galaxies. The logarithmic scale for the
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Fig. 5. Histogram of accuracies for 100 galaxy classification bootstrap
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Fig. 6. True ET Rate vs. True LT Rate values for 100 bootstrap runs in
each classification method on the OTELO SP sample. The closer to the
upper-left corner, the best classification result. DNN runs yield consis-
tently the best classifications.

Sérsic index axis makes the visual comparison with the concen-
tration index (which is already a logarithmic quantity) easier,
but at the cost of showing a bent LDA line. The u − r color is
the main discriminant, but the Sérsic index helps to separate the
ET and LT sets more clearly. The separation line is located at
u − r = (2.756 ± 0.002) − (0.14125 ± 0.00007)n, where n is the
Sérsic index. An example for the confusion matrix for the test
set LDA classification is shown in Table 4. For a total of 536 test

Table 4. LDA confusion matrix.

OTELO
ET LT Total

LDA ET 20 8 28
LT 7 501 508
Total 27 509 536

Table 5. OTELO DNN confusion matrix.

OTELO
ET LT Total

DNN ET 27 4 31
LT 4 516 520
Total 31 520 551

galaxies, only 15 (7 + 8) were misclassified, yielding a classifi-
cation accuracy of 0.972 ± 0.008 in this particular case.

Linear discriminant analysis improves both the baseline and
the u−r color classifications, as shown in Table 3 and Fig. 5. The
average True ET Rate of 0.80 is similar to the u− r color, and the
True LT Rate of 0.979 is marginally larger. Altogether, including
the Sérsic index has helped to obtain a moderate improvement
on the average accuracy (from 0.96 to 0.970) but reduces the
accuracy uncertainty by 60% (from 0.02 to 0.008) with respect
to the u − r color discriminant.

The LDA classification presented above is a simple machine
learning methodology that shows the potential of this kind of
algorithm. As with most machine learning methods, LDA does
not incorporate an easy solution to deal with missing data,
although the research in this area has been continuous over the
last 50 years (e.g., Jackson 1968; Chan et al. 1976; Cai & Zhang
2018). Therefore, the usual way to deal with missing values is
simply dropping incomplete records. This is a major problem
when dealing with cross-correlated data gathered from multiple
catalogs because missing data is a frequent characteristic of cat-
alog entries. Thus, to prevent a drastic reduction in the amount
of complete records, we are forced to put a limit on the number
of photometric colors.

3.1.4. DNN classification

Classification based on DNNs allows us to overcome the miss-
ing data problem that limits the number of feasible variables
of other machine learning solutions. This feature by itself justi-
fies its application in astronomical databases, where records are
often incomplete. In the following, we show the results obtained
for both OTELO and COSMOS photometry and Sérsic index
samples.

OTELO. We applied a very simple DNN to the OTELO cata-
log. First we computed the colors u−r, g−r, r−i, r−z, r−J, r−H,
and r−Ks, and we introduced these colors as inputs in the DNN
along with the r magnitude and the Sérsic index, that is, a total of
nine input factors feeding the DNN. One example of the 100 ran-
dom samplings analyzed with our DNN classification is shown
in Table 5. For this particular example, the classification accu-
racy is 0.985 ± 0.006. We highlight the fact that, because of the
missing data management, the number of cases included in the
DNN classification (551) is larger than those for the u − r color
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Table 6. OTELO DNN missmatches.

ID OTELO DNN Prob. zphot n C Elong. Size
(px2)

267 LT ET r 0.32 0.77 1.59 3.55 1.88 259
496 LT ET v 0.12 0.70 2.54 3.54 1.22 231
1895 ET LT r 1.00 0.04 0.72 3.47 1.22 61
2818 LT ET v 0.12 0.72 3.29 3.32 1.39 255
3680 ET LT v 1.00 1.45 0.36 2.14 1.49 27
4010 LT ET v 0.08 0.33 3.91 4.29 1.09 1002
4923 ET LT v 1.00 0.08 0.41 1.12 1.04 55
10207 ET LT v 1.00 0.12 1.62 2.31 1.99 21

Notes. Column 1: galaxy identifier in the OTELO catalog. Column 2: OTELO classification. Column 3: DNN classification and a letter code
to indicate reject (r) or validate (v); this classification after visual inspection by three of the authors. Column 4: DNN classification likelihood,
closer to zero for ET instances and closer to one for LT. Columns 5–7: the photometric redshift, the Sérsic index, and the concentration value,
respectively. Column 8: shows the elongation, that is, the ratio between the major and minor axes of the galaxy image as calculated by SExtractor
(Bertin & Arnouts 1996). Column 9: shows the area in pixels of the HST Advanced Camera for surveys (scale 0.03 arcsec px−1).

Fig. 7. OTELO – DNN discrepancies. Relative declination vs. right ascension coordinates in arcsec. First column: combined HST images from the
F814W (reddish) and F606W (greenish) bands, with galaxy ID at the top-right corner. Second column: GALFIT models for the light distribution.
Third column: HST minus GALFIT model residuals. Columns fourth, fifth and sixth: repeat the order of the previous columns.

and LDA methods (536), despite the differences in the number
of input factors (9 for the DNN versus 2 for the LDA or 1 for the
u − r color) which in most machine learning techniques would
lead to a larger number of incomplete records being left out.

The mean accuracy for our 100 DNN samplings is 0.985 ±
0.007, as shown in Table 3 and in Fig. 5. The True ET Rate is
0.84, marginally larger than the u − r and LDA values, and the
True LT Rate is the highest of the three methods tested.

Table 6 shows the eight discrepancies between the DNN and
OTELO classifications for the test sample data set presented in
Table 5.

Figure 7 presents the HST images in the F814W band for
these eight galaxies. For the visual classification, we have taken
into account the galaxy elongation and the light distribution in
the HST image; the GALFIT model helps to indicate the shape
and orientation, and the image residuals indicate a possible lack
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Fig. 8. HST images of ID 1895 and GALFIT models. Fist column: high-resolution HST images in the F814W band. Second column: GALFIT
models for the light distribution. Third column: HST minus GALFIT model residuals. Columns fourth, fifth and sixth: as the previous columns for
the HST F606W images. There is a fuzzy object near the eastern border of the F606W image that is not resolved in the OTELO deep image.

of fitting or possible substructures not visible in the HST image.
Elongated and fuzzy images support a LT visual classification,
while a round and soft appearance points to an ET galaxy. From
our visual check, we conclude that six out of the eight galax-
ies with different class ascription are correctly classified by our
DNN algorithm. Following is a brief description of each mis-
matched object.

– ID 267. A north–south oriented disk galaxy with a fuzzy
northeast portion. The bulge of the galaxy broadly dominates
the disk component. Compatible with a Sab class. Visual classi-
fication as LT.

– ID 496. A rounded smooth galaxy with a visual LT com-
panion at the northwest and a star at the southwest. Visual clas-
sification as ET.

– ID 1895. Appears as a rounded and compact galaxy in the
HST F814W image (our detection image used for GALAPA-
GOS). However, visual inspection of the HST F606W image
shown in Fig. 8 reveals that there is a companion source not
detected in F814W. Using our web-based graphic user inter-
face6 we find that this companion, probably a LT galaxy nei-
ther detected in the OTELO deep image, enters the ellipse which
was used to extract photometry. It is likely that a composite SED
could be well fitted by LT templates instead single-population
one. Visual classification as ET with an unresolved companion.

– ID 2818. A round shaped galaxy, the image of residuals
suggests possible over-subtraction. Visual classification as ET.

– ID 3680. A small, fuzzy, northwest to southeast oriented
disk galaxy. Visual classification as LT.

– ID 4010. A rounded galaxy, with a LT companion at the
southeast. Visual classification as ET.

– ID 4923. A faint and fuzzy galaxy. Visual classification as
LT.

– ID 10207. A west-east oriented fuzzy small disk galaxy.
Visual classification as LT.

COSMOS. We used the COSMOS dataset to check for the
reliability of our DNN architecture. Using the ZSMC and CPhR
catalogs we built a sample of 34 688 galaxies for which the pho-
tometry and Sérsic indexes are available. Photometric bands in
the CPhR catalog do not exactly match OTELO’s bands. We
have included Subaru’s BV bands, and have excluded the H band
which is absent from the CPhR database. Thus, the COSMOS
data used in this work consist of nine photometric bands (com-
pared with eight in the case of OTELO catalog) and the Sérsic
index. Because the OTELO and COSMOS bands are different,
we had to train our DNN model again. As in the case of OTELO,
we fed the DNN with the Sérsic index, the r magnitudes, and the
colors relative to the r band. We did so without changing the
DNN architecture except for the number of inputs. Despite the

6 http://research.iac.es/proyecto/otelo/pages/
data-tools/analysis.php

Table 7. COSMOS DNN confusion matrix.

COSMOS
ET LT Total

DNN ET 4450 457 4907
LT 517 24 264 24 781
Total 4967 24 721 29 688
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Fig. 9. Histogram of accuracies for 100 galaxy classification bootstrap
runs using the COSMOS SP sample. The solid black line corresponds
to the baseline accuracydistribution of a sample of 34 688 COSMOS
galaxies. The blue histogram and dash-dotted line shows the DNN accu-
racy distribution for a test sample of 29 688 galaxies.

differences between the two datasets, we shall see that our DNN
architecture reaches a high classification accuracy also for the
COSMOS data.

Table 7 shows the confusion matrix for one of the 100 ran-
dom samplings that we used to characterize the COSMOS DNN.
For this sampling in particular, the classification accuracy is of
0.967±0.001. Figure 9 and Table 3 show the distribution of accu-
racies for 100 DNN classification trials obtained from the COS-
MOS dataset. The mean accuracy for these trials is 0.967±0.002,
well above the relatively low baseline of 0.835 ± 0.002, which
corresponds to 28 951 LT galaxies out of a total of 34 688 objects
included in our COSMOS SP sample. Not only is the COS-
MOS SP baseline lower than OTELO’s (0.946), but the DNN
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Table 8. Comparison of classification methods for CP samples.

Database Method Accuracy (a) True ET Rate (a) True LT Rate (a) Sample

Mean Error Mean Error Mean Error size

OTELO Baseline 0.950 0.005 0 . . . 1 . . . 2292
OTELO u − r color 0.96 0.01 0.7 0.4 0.98 0.02 657
OTELO LDA 0.971 0.007 0.78 0.09 0.980 0.006 657
OTELO DNN 0.980 0.006 0.75 0.09 0.992 0.005 688
COSMOS Baseline 0.906 0.001 0 . . . 1 . . . 105 758
COSMOS DNN 0.971 0.001 0.84 0.03 0.985 0.004 95 758

Notes. (a)On 100 bootstrap runs.

performance is also lower: 0.967 for COSMOS compared with
0.985 for OTELO. The True ET Rate of 0.91 for COSMOS SP
is similar within the errors to that of OTELO (0.84), but the
True LT Rate for COSMOS is slightly lower (0.979) than that
for OTELO (0.993).

Applying the same DNN architecture to the OTELO and
COSMOS datasets, the method yields high classification accu-
racy in both cases. Band differences between both datasets may
contribute to the accuracy results. We note that OTELO optical
bands were gathered from CFHTLS data, but most of the COS-
MOS optical bands used were measured by Subaru. The OTELO
H band is missed in COSMOS, while the COSMOS BV bands,
which are not included in our OTELO dataset, are heavily corre-
lated to gr bands.

The high classification accuracies for both the OTELO and
the COSMOS datasets suggests that our proposed DNN archi-
tecture may be applicable to a large number of databases that
encompass both visual and infrared photometric bands and an
estimate of the Sérsic index.

3.2. Concentration and photometry samples

The Sérsic index that we used in the LDA and DNN classifi-
cation methods detailed above is obtained through a paramet-
ric fitting that is difficult to achieve when dealing with low-
resolution images. On the contrary, the radius containing a given
fraction of the galaxy total brightness is easier to estimate and
can be measured directly. In this section we repeat our previ-
ous analysis of the OTELO and COSMOS databases, but using
samples obtained through the concentration index defined as the
ratio between the radii containing 80% and 20% of the galaxy
brightness.

Table 8 shows the results obtained with the OTELO and
COSMOS CP samples. As in the Sérsic index samples, the DNN
classification yields thehighest accuracy for OTELO (0.980), and
also yields very accurate results for COSMOS (0.971). In gen-
eral, the results are comparable with those obtained using the SP
sample.

Figure 10 shows the distribution of the u − r colors versus
the concentration index, along with the u − r color and the LDA
separation boundaries. The u − r color separation is 2.1 ± 0.3, in
agreement with the values for the OTELO SP sample (2.0±0.2),
and Strateva et al. (2001, u − r = 2.22). The LDAseparation is
located at

u − r = (3.882 ± 0.002) − (0.5342 ± 0.0003)C,

where C is the concentration. The same trend of LT galaxies
getting bluer at redshifts z > 0.5 can be seen in Fig. 11.
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Fig. 10. Classification for the OTELO CP sample of 2292 galaxies
through the u− r color and LDA algorithms. The u− r color vs. concen-
tration plot shows the original morphological type classification in the
OTELO catalog reduced to LT galaxies (black circles) and ET galaxies
(red squares). The dotted blue line indicates the u − r color separation,
and the dashed green line the LDA separation by the u− r color and the
concentration. The reader should take into account that this is not a flux
limited sample.

Figure 12 shows the distributions for the accuracies of the
baseline, u − r color, LDA and DNN classifications performed
on the OTELO CP sample. As in the OTELO SP sample, the
DNN yields the best accuracy, then LDA and finally the u − r
color classification.

The distribution of DNN accuracies for the COSMOS CP
sample is shown in Fig. 13. Compared with the COSMOS SP
sample, the proportion of LT galaxies is larger (95 781 LT out
of 105 758 galaxies), yielding a more accurate baseline (0.906).
The DNN accuracies are comparable, with a lower True ET
Rate and a marginally larger True LT Rate for the COSMOS CP
sample.

3.3. Magnitude limited samples

Our aim in this paper is to use machine learning techniques to
distinguish between ET and LT galaxies. Thus, our samples are
selected from a redshift limited region with the only requirement
of containing enough galaxies in every redshift interval for accu-
rate training and testing the machine learning algorithm.
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Fig. 11. As Fig. 4 but for the 2292 galaxies in the OTELO CP sample.
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Fig. 12. As Fig. 5 but for the 100 galaxy classification bootstrap runs
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However, neither OTELO nor COSMOS SP and CP samples
were flux limited to produce a complete sample of galaxies in the
volume defined by z ≤ 2. This leads us to question the possible
cosmological inferences of our results.

In this section, we present the results of the machine learn-
ing algorithms but using flux limited samples for both training
and testing sets. Figure 14 shows the cumulative distribution of
galaxies by r magnitudes for all the samples analyzed so far.
With respect to the low-brightness tails, both OTELO SP and CP
samples have similar cumulative distributions that flatten around
a magnitude of r ' 26. This flattening may be considered as
a rough measurement of completeness. Thus, compared with
OTELO-Deep image measurements, Bongiovanni et al. (2019)
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Fig. 13. Histogram of accuracies for 100 galaxy classification bootstrap
runs using the COSMOS CP sample. The solid black line corresponds
to the baseline accuracy distribution of a sample of 105 758 COSMOS
galaxies. The blue histogram and dash-dotted line shows the DNN accu-
racy distribution for a test sample of 95 758 galaxies.
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Fig. 14. Cumulative distribution of galaxies by r magnitudes. OTELO
SP and CP samples are 3 and 2 magnitudes deeper than the COSMOS
SP and CP samples, respectively. However, COSMOS sweeps a larger
volume as the brightest end of the cumulative distribution implies.

estimate that the OTELO catalog reaches a 50% completeness
flux at magnitude 26.38. For COSMOS, the SP sample flattens
around r ' 23, while the CP sample does at r ' 24. Since COS-
MOS samples cover a large sky volume, their high brightness
tails extend to galaxies approximately 1.5 magnitudes brighter
than the much more confined OTELO volume.

We check our machine learning algorithms using flux-
limited samples. Table 9 shows the results of 100 bootstrap runs
on different OTELO r-magnitude-limited samples. We highlight
the fact that all the u − r color, LDA, and DNN accuracies are

A134, page 12 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037697&pdf_id=11
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037697&pdf_id=12
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037697&pdf_id=13
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037697&pdf_id=14


J. A. de Diego et al.: Galaxy classification: deep learning on the OTELO and COSMOS databases

Table 9. Mean accuracy for OTELO samples at different magnitude limits in the r-band.

rlim DC N Baseline u − r LDA DNN

OTELO SP sample
29.36 0 1834 0.946± 0.006 0.96± 0.02 0.970± 0.008 0.985± 0.007
27.00 0.25 1765 0.947± 0.006 0.96± 0.02 0.969± 0.009 0.977± 0.008
26.00 0.65 1358 0.943± 0.007 0.96± 0.02 0.97 ± 0.01 0.978± 0.009
25.00 0.94 654 0.91 ± 0.02 0.96± 0.03 0.96 ± 0.02 0.96 ± 0.02

OTELO CP sample
32.42 0 2292 0.950± 0.006 0.96± 0.02 0.971± 0.007 0.980± 0.007
27.00 0.25 2051 0.951± 0.006 0.96± 0.02 0.972± 0.008 0.981± 0.007
26.00 0.65 1437 0.944± 0.007 0.96± 0.02 0.973± 0.008 0.977± 0.009
25.00 0.94 661 0.91 ± 0.02 0.96± 0.03 0.96 ± 0.02 0.97 ± 0.02

Notes. Column 1: r-magnitude limit; the first SP and CP rows correspond to the full, not magnitude-limited samples. Column 2: OTELO-Deep
image detection completeness from Bongiovanni et al. (2019). Column 3: sample size. Column 4: sample baseline. Columns 5–7: u − r, LDA and
DNN accuracies, respectively, obtained after 100 bootstrap runs.

Table 10. Mean accuracy for COSMOS samples at different magnitude
limits in the r-band.

rlim n Baseline DNN

COSMOS SP sample
25.80 (1) 34 688 0.835± 0.002 0.972± 0.003
24.00 34 128 0.836± 0.002 0.969± 0.003
23.00 23 562 0.841± 0.002 0.971± 0.003
22.00 9368 0.783± 0.004 0.966± 0.004

COSMOS CP sample
26.88 (1) 105 758 0.906± 0.001 0.971± 0.002
24.00 65 808 0.896± 0.001 0.976± 0.001
23.00 25 912 0.850± 0.002 0.972± 0.003
22.00 9852 0.787± 0.004 0.964± 0.004

Notes. (1)Sample not limited in magnitude.

consistent within the errors. However, for brighter samples, we
can observe a downward trend in accuracies and upward trend
in uncertainties for the LDA and DNN classifications, while the
u−r color results remain basically without change. Analogously,
Table 10 shows the limit r magnitude (Col. 1), the Sérsic index
(Col. 2), the baseline (Col. 3), and the DNN accuracy for the
COSMOS SP and CP samples. In this case, the training set size
is always 5000 for the SP and 10 000 for the CP samples, except
for the CP limit magnitude r ≤ 22 with a sample size of 9852, for
which the training set was set to 5000. As in the OTELO case, we
notice the consistency of the DNN accuracies within the errors,
and the trend towards lower accuracies and larger uncertainties.

There are two effects that may account for the trends in accu-
racy and uncertainty observed in the LDA and DNN classifica-
tion methods. On one hand we detect a tendency for a lower
proportion of LT galaxies in brighter galaxies, indicated by the
baseline decrease. As the a priori probabilities of a galaxy to
be ET or LT are more alike, the uncertainty in the classifica-
tion increases. On the other hand, as the sample size shrinks in
brighter samples, so do the fractions of the sample reserved for
training and testing (70% and 30%, respectively). This shrink-
ing of the sample size leads to a less satisfactory training and
a less precise testing. Both effects, the baseline decrease and
the sample shrinking, tend to reduce the classification accuracy.
With respect to the u − r classification, the u − r color discrimi-
nant is determined by low-redshift galaxies (see Figs. 4 and 11)

that tend to dominate flux limited samples. Thus, the discrimi-
nant remains constrained around a value of 2, and the classifica-
tion accuracy remains around 0.96. For the brighter SP and CP
samples, with magnitude limit r ≤ 25, the LDA and the DNN
accuracies are similar to that of the u − r color. In the other two
magnitude-limited cases (r ≤ 26 and r ≤ 27), the DNN presents
the highest accuracy, and the accuracy of the LDA is higher than
the u − r color.

These results show that all the machine learning methods for
classification presented in this paper are robust for both limited
and unlimited flux samples.

4. Conclusions

Neural networks are becoming increasingly important for image
classification and will play a fundamental role in mining future
databases. However, many of the current astronomical databases
consist of catalogs of tabulated data. Machine learning tech-
niques are often used to analyze astronomical tabulated data, but
analysis through DNNs is far less frequent and limited to low-
redshift galaxies.

Here, we provide a consistent and homogeneous comparison
of the popular techniques used in the literature for binary ET and
LT morphological type classification of galaxies up to redshift
z ≤ 2. We used data from the OTELO catalog for classifying
galaxies by means of (i) the single u − r color discriminant, (ii)
LDA using u − r color and the shape parameter (Sérsic or con-
centration index), and (iii) DNN fed by visual-to-NIR photome-
try and shape parameter. We also applied the DNN architecture
developed for OTELO on COSMOS to probe its reliability and
reproducibility in a different database.

Both Sérsic index and concentration index shape parameters
yield comparable results, but using the concentrations allowed to
increase the size of OTELO and COSMOS available data. All the
machine learning methodologies for galaxy classification tested
in this paper are robust and produce comparable results for both
limited and unlimited flux samples. Accuracy, True ET Rate, and
True LT Rate estimates show that DNN outperforms the other
two methods and allows the user to classify more objects because
of the missing data management.

These results show that DNN classification is a powerful
and reliable technique to mine existing optical astronomical
databases. For unresolved objects, the morphological identifica-
tion is unattainable, the spectrum of a dim object is very difficult
to obtain, and multiwavelength data are usually unavailable. For
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most objects, photometric visible and near infrared observations
are the only (and usually incomplete) accessible data.

This study indicates that DNN classification may address the
mining of currently available astronomical databases better than
other popular techniques.

An important limitation for all machine learning techniques
is the availability of labeled data, that is, data that have already
been classified or measured. This limited us to a binary ET and
LT classification and to impose a redshift threshold. Incorporat-
ing reliable synthetic data for classification training is an impor-
tant goal if we wish to overcome these limitations.

Our results provide compelling support for extending the
DNN classification to targets other than binary morphological
classification of galaxies, such as separating stars from galaxies,
deciphering the spectral type of stars, and detecting rare events.
The application of DNN is not restricted to classification prob-
lems. Our results strongly suggest that DNN methods can also
be very effective in exploring other issues such as, for example,
photometric redshift estimates.
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