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ABSTRACT
One of the fundamental goals of modern astrophysics is to estimate the physical parameters
of galaxies. We present a hierarchical Bayesian model to compute age maps from images
in the H α line (taken with Taurus tunable filter, TTF), ultraviolet band (GALEX far UV,
FUV), and infrared bands (Spitzer 24, 70, and 160 μm). We present the burst ages for young
stellar populations in a sample of nearby and nearly face-on galaxies. The H α to FUV flux
ratio is a good relative indicator of the very recent star formation history (SFH). As a nascent
star-forming region evolves, the H α line emission declines earlier than the UV continuum,
leading to a decrease in the H α/FUV ratio. Using star-forming galaxy models, sampled with a
probabilistic formalism, and allowing for a variable fraction of ionizing photons in the clusters,
we obtain the corresponding theoretical ratio H α/FUV to compare with our observed flux
ratios, and thus to estimate the ages of the observed regions. We take into account the mean
uncertainties and the interrelationships between parameters when computing H α/FUV. We
propose a Bayesian hierarchical model where a joint probability distribution is defined to
determine the parameters (age, metallicity, IMF) from the observed data (the observed flux
ratios H α/FUV). The joint distribution of the parameters is described through independent
and identically distributed (i.i.d.) random variables generated through MCMC (Markov Chain
Monte Carlo) techniques.

Key words: methods: observational – methods: statistical – galaxies: spiral – galaxies: star-
burst – galaxies: star formation – galaxies: structure.

1 IN T RO D U C T I O N

This work carries on the study of a sample of nearby galaxies, where
star-forming regions are spatially resolved, in order to place the
relationship between star formation, ultraviolet, and H α emission
on a stronger empirical foundation (hereinafter Paper I Sánchez-
Gil et al. 2011). This paper focuses on the tools and mathematical
methodology applied, based on a Bayesian model that yields more
accurate results. A first approach to this Bayesian methodology can
be found in Sánchez Gil et al. (2015). We refer to these two papers
for more details about the motivation and interest in the study of
the star formation history (SFH) and star formation rate (SFR) in
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galaxies, in particular by means of the comparison between H α and
ultraviolet emission as a tracer of recent SFH.

In this paper, we continue with the study of the age maps started in
Paper I, for three new galaxies, using the new age-dating method-
ology from Bayesian inference approach applied pixelwise. Ap-
pendix D contains the resulting age maps for the rest of the galaxies
sample, corresponding to Paper I.

Section 2 describes the data and its reduction, the pixel-based
mapping, as well as the extinction correction via the total Infrared
(TIR) to FUV ratio.

The stellar population model adopted and its uncertainties when
applied pixelwise are described in Section 3. In our previous work
(Sánchez Gil et al. 2015), we used the original STARBURST99 (Lei-
therer et al. 1999; Vázquez & Leitherer 2005) code results. Here,
STARBURST99 has been modified to bring it closer with the theoreti-
cal model distribution assumed for the H α to FUV ratio (which also
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2642 M. C. Sánchez-Gil et al.

Table 1. Galaxy parameters (Sourced from NASA Extragalactic Database).

Galaxy NGC 1068 NGC 5236 NGC 5457
(M 77) (M83) (M101)

RA (J2000) 02h42m40.7s 13h37m00.9s 14h03m12.5s

DEC (J2000) −00◦00
′
48.0′′ −29◦51

′
56.0′′ +54◦20

′
56.0′′

Type (R)SA(rs)b SAB(s)c SAB(rs)cd
Redshift 0.003793 0.001711 0.000804
Distance (Mpc) 14.4 4.5 ± 0.3 6.7
pc arcsec−1 69.8 21.82 32.5
Inclination (deg) 40◦ ± 3 24◦ 18◦
Dim. (arcmin) 7.1 × 6.0 2.9 × 11.5 28.8 × 26.9
MB 9.61 8.20 8.31

Note: Distance reference: Bland-Hawthorn et al. (1997) for NGC 1068;
M83 Thim et al. (2003); M101 Tully et al. (2008) – Scale in pc per arcsec
of the final images, and the age maps plots, which pixel scale is 1.5′′/px. –
Inclination angle reference: Bland-Hawthorn et al. (1997) for NGC 1068;
M83 Foyle et al. (2012); M101 Bosma, Goss & Allen (1981)

differs with the one assumed in the previous work). Specifically, to
obtain the number of ionizing photons, Q(H), or the theoretical
correlation ρ between H α and FUV luminosities.

Section 4 presents the new Bayesian inference methodologies
proposed for age estimation generalized to estimate any parameter.
However, as we explain below, only the age variable is sensitive
to the ratio H α/FUV. In Section 4.1, the age maps assume pixel
independence, keeping the spatial resolution at pixel value, and
providing a sample of the age posterior probability function given
the observed flux ratios for each pixel of the image. In Section 4.2,
we study how image segmentation may affect several issues, such as
the possible dependence between adjacent pixels of sub-sampling
effects of the IMF from stellar population models.

Finally, Section 5 presents an analysis of the age maps and the
resulting age patterns in view of possible mechanisms of galaxy
structure and evolution, and the generation of galactic spiral arms.
Section 6 contains a brief discussion and the conclusions.

2 O B SERVATIONS

We study the case of three new galaxies in addition to the origi-
nal sample in Paper I, which are also included in Appendix C for
comparison between the present Bayesian methodology and our ear-
lier empirical model. This sample contains face-on nearby galaxies
across a range of star-forming types. Low inclination angles miti-
gate the effects of extinction and scattering as well as wavelength
shift in H α due to galactic rotation. Their proximity allows suffi-
cient spatial resolution to resolve individual star-forming structures
within spiral arms. A summary of the main physical properties of
the sample is given in Table 1.

The H α images were taken with the Taurus Tunable Filter (TTF,
Bland-Hawthorn & Jones 1998; Jones & Bland-Hawthorn 2001;
Jones, Shopbell & Bland-Hawthorn 2002) on the William Herschel
Telescope (WHT) during 1999 March 4−6. Conditions were photo-
metric with stable seeing of 1.0 arcsec. TTF was tuned to a bandpass
of width �λ = 20 Å centred at λc = 6570 Å. The intermediate-width
R0 blocking filter (λc/�λ = 6680/210 Å) was used to remove trans-
mission from all but a single interference order. The pixel scale was
0.56 arcsec.

The Far UV images were obtained from the Nearby Galaxies
Survey of the Galaxy Evolution Explorer mission (NGS survey,
GALEX, Martin et al. 2005). This survey contains well-resolved
imaging (1.5 arcsec pix) of 296 and 433 nearby galaxies for

GR2/GR3 and GR4 releases, respectively, in two passbands: a nar-
rower far-ultraviolet band (FUV; λeff/�λ = 1516/268 Å), and a
broader near-ultraviolet band (NUV; λeff = 2267/732 Å).

Ancillary 24, 70, and 160μ data from the Multiband Imaging
Photometer for Spitzer (MIPS) were used to provide estimates of
extinction, in the same way as in Paper I. For M83 and M101, we
obtained IR data from the Spitzer Local Volume Legacy Survey1

(LVL, Lee et al. (2011). These images were resampled to a common
1.5 arcsec/px scale (same as the 24μ MIPS and FUV images), and
combined into an image of total far infrared (TIR) flux, according to
FTIR = ζ 1νFν(24μ) + ζ 2νFν(70μ) + ζ 3νFν(160μ), with [ζ 1, ζ 2,
ζ 2] = [1.559,0.7686,1.347] (Dale & Helou 2002). For NGC 1068,
only 70 and 160μ data were available from the Very Nearby Galaxy
Survey2 (VNGS, Bendo et al. (2012). In this case, the TIR flux was
estimated from the latter as STIR = c70S70 + c160S160, according to
equation (4) of Galametz et al. (2013) (where c70 = 0.999 ± 0.023
and c160 = 1.226 ± 0.017, from their Table 3), which is a quite
reliable fit, with a coefficient R2 = 0.97.

Internal reddening is corrected using a straight relation between
the extinction AFUV and FTIR/FFUV from equation (2) of (Buat et al.
2005). The A(H α) extinction factor was derived through the relation
AFUV = 1.4A(Hα) (Boissier et al. 2005).

With all images on a common scale of 1.5 arcsec/px, our pixel-by-
pixel technique becomes straightforward to implement. An example
of the processed frames in H α, FUV, and TIR can be found in Fig. 1.
The top panels display the different images for M83. Artefacts of
the data reduction in the centre of the Hα and TIR images can be
seen. Those pixels were masked in the final age map. NGC 1068, the
bottom panels, show the range of morphologies in a single galaxy
at different wavelengths. The strong effect of the central AGN is
also quite evident.

The estimated calibration uncertainties for the MIPS images are
2 per cent, 5 per cent, and 9 per cent for the 24, 70, and 160μ data,
respectively (Dale et al. 2007). Average relative errors of the respec-
tive images are EHα ≤ 5 per cent, EFUV � 15 − 25 per cent, and
ETIR ≤ 10 per cent, resulting in an overall uncertainty in FHα/FFUV

(reddening corrected) flux ratio of ∼23–28 per cent. More details
on the data, data reduction, and extinction correction can be found
in Paper I.

3 STELLAR POPULATI ON MODELS

To obtain the number of ionizing photons Q(H) and the stellar and
nebular contribution to the FUV/GALEX band, we implement the
probabilistic formalism by Cerviño & Luridiana (2006) into STAR-
BURST99 synthesis models (version 7.0.1 August 2014 Leitherer
et al. 1999; Vázquez & Leitherer 2005). The original STARBURST99
code has been modified to obtain Q(H) and the FUV/GALEX
band emission for each of the stars along each isochrone (SB99
obtains such values for the ensemble after computing the total
spectra of the cluster). We have included the FUV/GALEX fil-
ter response (as provided by the SVO filter service3) to customize
SB99 to obtain this quantity for each star. Finally, we have ob-
tained the nebular contribution to FUV/GALEX using the imple-
mentation of the nebular continuum used by SB99. Q(H) values
are converted to H α fluxes using the conversion factors pro-
vided by Leitherer & Heckman (1995), but multiplied by a factor

1http://irsa.ipac.caltech.edu/data/SPITZER/LVL
2http://irsa.ipac.caltech.edu/data/Herschel/VNGS/overview.html
3http://svo2.cab.inta-csic.es/theory/fps3/
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Hierarchical Bayesian approach for estimating physical properties 2643

Figure 1. The processed frames for the three galaxies. By row: M83 (top), M101 (centre), and M77 (bottom). By columns: H α images taken with the TTF at
the WHT, in erg s−1cm−2 (left), FUV images from GALEX survey, in erg s−1cm−2 Å

−1
(centre), and MIPS/SPITZER infra red images, in units of erg s−1cm−2

(right). Images have been resampled to have identical size, orientation, and pixel scale (1.5 arcsec pixel−1). The coordinates and axis scales are given in kpc,
with respect to the galaxy centre (North up, East left).

fQ(H) = 1 − fscp to account for the escape of ionizing photons, fscp

(e.g. Mas-Hesse & Kunth 1991), hence our conversion formula is
L(Hα) = 1.36 × 10−12 Q(H ) (1 − fscp). Simiarly, we multiply the
nebular component in FUV/GALEX by (1 − fscp) before adding it
to the stellar component.

As a result, we obtain the isochrone table used by SB99 in-
cluding, for each star, the H α flux, the nebular contribution to
the FUV/GALEX luminosity, the stellar FUV/GALEX luminosity,
and the contribution to the total luminosity (i.e., its IMF-weighted
value). Isochrones are computed in the age interval from 0.1 to 20
Myr with a linear time-step of 0.1 Myr for the Geneva evolutionary

track set. We use standard mass loss rates for metalicity values of
0.040, 0.020, 0.008, 0.004, and 0.001, corresponding to the evolu-
tionary tracks presented in Schaller et al. (1992), Charbonnel et al.
(1993) and Schaerer et al. (1993a,b). Stellar libraries are from BASEL

(Lejeune, Cuisinier & Buser 1997) for intermediate and low-mass
stars, and from Smith, Norris & Crowther (2002) for massive and
Wolf–Rayet (WR) stars when present in the cluster. The code was
run using a Salpeter (1955) IMF slope within the mass range of
1 − 120 M� with a total mass of 3.14 M�, which is the mean
stellar mass in such IMF interval. In this way, our results are nat-
urally normalized to the total number of stars instead of the total
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mass, a requirement to compute properly the theoretical covariance
matrix.

The resulting components in each isochrone table were added
following prescriptions by Cerviño & Luridiana (2006) to obtain
the mean values, variances (expressed as effective number of stars,
Neff , where 1/Neff = (σ/μ)2, see Cerviño et al. 2002), skewness
(γ 1), and kurtosis (γ 2) of the stellar luminosity functions of L(Hα)
and L(FUV), and the covariance between both luminosities.4 We
also obtained the Lowest Luminosity Limit (LLL) (Cerviño et al.
2003; Cerviño & Luridiana 2004) for H α and FUV, which gives
the luminosity of the brightest individual star in the model for the
given band; i.e. an observed cluster less luminous than the LLL
could not be modelled by the mean value of the ensembles obtained
by SSPs models, since there is a confusion between the emission
of the ensemble and the emission of a single star, and the overall
probability distribution function (PDF) of the theoretical integrated
luminosity, and not just its mean value, must be taken into account
(Cerviño & Luridiana 2004).

The resulting evolution of the H α/FUV ratio mean values is
shown in Fig. 2, where we have tested that the mean fluxes and the
ratio for the case of fscp = 0 (fQ(H) = 1) are coincident with SB99
results without modifications, which are also coincident with the pa-
rameters used in Sánchez-Gil et al. (2011) with slight modifications
due to the variation of stellar atmosphere models.

The right-hand panel of Fig. 2 shows the resulting theoretical
correlation coefficient between Hα and FUV. The correlation coef-
ficient is almost one up to 3 Myr, reflecting the fact that the same
type of stars dominate both quantities. The correlation decreases
abruptly during the Wolf–Rayet phase (WR) of the cluster, since
Hα is dominated by the WR stars, but the FUV is mainly pro-
duced by hot stars in the Main sequence. After the WR phase in the
cluster, the correlation coefficient increases to values around 0.6. It
increases with metallicity, which depends on the balance between
main sequence stars which still produce ionizing fluxes (O–B stars
mainly) and those that only produce FUV flux (B–A spectral types).
The metallicity dependence is explained by the variation of the main
sequence with metallicity: at low metallicity, the main sequence is
hotter, hence FUV fluxes are produced by both ionizing and non-
ionizing stars and the correlation coefficient is lower with respect to
larger metallicities where FUV and ionizing stars are coincident. Fi-
nally, there is a small variation of the correlation coefficient with fscp

since the escape of photons only affects the correlation coefficient
by the nebular contribution to the FUV flux.

Fig. 3 shows the variance (expressed in terms of effective num-
ber Neff of stars), skewness (γ 1), and kurtosis (γ 2) obtained from
theoretical models normalized to N∗ = 1. We recall that the effec-
tive number of stars scales with the number of stars; the skewness
scales with the inverse of the square root of the number of stars,
and the kurtosis scales with the inverse of the number of stars
(Cerviño & Luridiana 2006). As reference, a relative dispersion
of 4 per cent requires that the used resolution element contains
6.25 × 104 stars; in that case, γ 1 = 0.08 and γ 2 = 0.008 (assuming
values of Neff = 0.01, γ 1 = 20, and γ 2 = 500 when normalized
to the number of stars). Such values imply that the underling dis-

4Note in papers previous to Cerviño & Luridiana (2006) the correlation co-
efficient was obtained under the incorrect assumption of Poissonian statis-
tics in each isochrone component, instead of multinomial statistics. For the
correct formula to compute variances and covariances between H α and
FUV/GALEX luminosities for each possible case, see Cerviño & Luridiana
(2006) and Cerviño (2013).

tribution can be well represented by a Gaussian. In the case of a
relative dispersion of 20 per cent, only 2500 stars are required, but
the values of γ 1 and γ 2 increase to 0.4 and 0.2, respectively, and
the underling distribution deviates from Gaussian (see Appendix A
for details).

The use of a pixelwise age dating technique allows age mapping
of the youngest stellar population without prior assumptions about
the spatial distribution of the star-forming regions. It also provides
a spatial characterization of the age distribution for HII regions in
galaxies within the local volume through their spatially resolved
spiral arms or other galactic structures. However, this pixel-based
technique is subject to some systematic effects, including (i) the
pixel-sized luminosities, and (ii) potential interaction between sur-
rounding regions through adjacent pixels.

The model validity was checked using a single stellar population
model in pixel-sized regions; it was checked by comparing our
pixel-sized FUV luminosity with the possible LLL values in our
age range. We note that a similar test for L(Hα) depends on the
factor fscp, so the LLL test is not decisive in this case. The result
is shown in Fig. 4, where the left-hand panel shows the value of
the LLL for L(FUV) at the five metallicities; it also includes, as
reference, the mean FUV integrated luminosity for N∗ = 104. The
middle panel shows the histogram of pixel L(FUV) for the three
galaxies, using the distances quoted in Table 1. Except for most
pixels of M77, all the pixel-based values have luminosities below
the LLL in FUV, for ages between 0 and 10 Myr (17 Myr for the
lower metallicity). The right-hand panel shows the distribution of
the pixel-based regions in the H α/FUV versus L(FUV) plane. The
colour lines show the position of the mean values obtained with the
synthesis models for the case of 104 stars. The black line shows
the region covered by individual normal stars and the grey line the
location of individual WR stars. We note that any pixel-sized region
with 2 ≤ log (Hα/FUV) ≤ 2.4 requires the presence of WR stars,
and that pixel-sized regions with log (Hα/FUV) > 2.4 cannot be
explained with synthesis models and require some extra ionization
source. The extreme case that would be explained by the models
are regions with log (H α/FUV) ∼ 2.5, which would correspond to
regions completely dominated by nebular emission without stellar
content, hence age determinations would not be performed. In M 83,
those regions with an excess in this flux ratio actually correspond
with those holding WR stars detected by Kim et al. (2012).

Although we are clearly aware of the IMF sampling issues dis-
cussed in Cerviño et al. (2003), Cerviño & Luridiana (2004, 2006),
and Cerviño (2013), we apply a quasi ‘standard’ SSP analysis to
the age estimation. We calculate model H α and FUV fluxes, ages,
masses, etc. assuming that the IMFs, even though well populated,
contain an intrinsic scatter and that the integrated H α and FUV
luminosities can be modelled by a 2D-Gaussian distribution, with
the correlation coefficient described previously and a fixed standard
deviation of 4 per cent for each theoretical luminosity. We have also
computed the results for a standard deviation of 20 per cent and this
does not alter significantly the main results. Although not perfect,
given the failure of the Gaussian approximation at larger standard
deviations, it is a first step in the inclusion of sampling effects in the
modelling of stellar clusters. A detailed discussion of the relevance
of sampling for this work is given in Appendix A.

We also examined the effect of adjacent pixels, to verify whether
the amount of H α and FUV fluxes in a given pixel reflect the
number of ionizing O and B stars in that pixel. In Paper I, we
explored a range of different spatial binning scales. These results
showed that age structures and gradients remain the same irrespec-
tive of the binning scale used (cf. Fig. 6 of Paper I), confirming the
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Hierarchical Bayesian approach for estimating physical properties 2645

Figure 2. Models from SB99. On the left, the model H α/FUV ratio versus age, ranging from 1 to 20 Myr, in log units. On the right, the theoretical correlation
between H α and FUV luminosities versus age. Both relationships are given for different combinations of the parameters: The metallicity Z is represented
with different colours, from Z = 0.001 (purple points) to Z = 0.04 (in red). The fraction of ionizing photons, fQ(H), is coded with different point sizes,
ranging 10–100 per cent from the smallest to the largest. The black line in both plots represents these model relationships for solar metallicity, Z = 0.02, and
fQ(H ) = 100 per cent.

Figure 3. Variance expressed in terms of effective number of stars (left), skewness (middle), and kurtosis (right) obtained from theoretical models. Top panels
show the values for H α and bottom panels show the values for FUV as a function of the age. Metallicity follows the same colour code as Fig. 2.

robustness of measurements to the effects of binning. In Section 4.2,
we present a different approach to deal with the possible influence
of adjacent pixels, as well as the low-mass pixels below the LLL,
under a Bayesian inference framework. We apply an image segmen-
tation technique, to account for the possible effects of the spatial
dependence in terms of adjacent regions (or pixels), grouping to-
gether neighbouring pixels that carry, on average, the same true
value of the observed measured quantity (H α/FUV flux ratio). In
this manner, we can address both systematic effects. Not only the
dependence between adjacent regions but also the pixelwise appli-

cability of SSP models, since many of the grouped larger regions
are now above the LLL threshold.

A similar approach can be found in Casado et al. (2017). These
authors implement a Bayesian Technique for Multi-image Analysis
(BATMAN), focused on Integral Field Spectroscopy (IFS) data
cubes. Unlike our fully Bayesian approach, BATMAN’s algorithm is
rather a Bayesian approximation. The parameter estimation, carried
out as usual, requires the selection of the most probable tesellation
of the image performed by means of an iterative procedure to select
the best model. Another significant difference is that the presence

MNRAS 483, 2641–2670 (2019)
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2646 M. C. Sánchez-Gil et al.

Figure 4. Left: Time evolution of the FUV LLL for different metallicities; colours as in Fig. 2. The mean FUV integrated luminosity for 104 stars is also
shown for reference. Centre: Histograms of the FUV luminosities of the pixel-sized data of the three galaxies. Right: distribution of the pixel-sized data in the
H α/FUV versus L(FUV) plane. Solid black and grey lines show the boundaries of individual normal and WR stars, respectively in this plane. Data points in
between both lines correspond to pixel-sized values that can be only explained by the presence of WR stars; data points with ratio larger than the boundary of
the WR line require some extra ionization source since they are not compatible with the current models. The plot also shows the position of H α/FUV and the
mean FUV integrated luminosity and for 104 stars for the case of fscp = 0 as reference. Finally, the three black point correspond to the positions of the pixels
shown in Fig. 6.

of gradients poses a challenge to BATMAN’s algorithm, since its
segmentation model does not consider the presence of gradients
inside the regions. In our case, the presence of age gradients, which
are indeed expected, do not seem to affect the image segmentation.

A limitation of image segmentation techniques is the loss of spa-
tial resolution. More complex and elaborate Bayesian models, such
as latent Gaussian models for spatial modelling can be found (Rue
et al. 2017). Not only the spatial correlation structure is estimated,
with no loss of image resolution, but also some fixed effects and
Gaussian random effects can be included in the linear predictor
of the model fitting. However, these models are computationally
challenging and time-consuming. An approximation for a faster in-
ference is implemented in the R-INLA5 package of R; however,
it has a steep learning curve, requiring a deeper understanding of
both the Bayesian and the latent Gaussian models for a proper
implementation. An example of its successful application to IFU
spectra can be found in González-Gaitán et al. (2018). This type of
data encodes some autocorrelated structures, and it is very impor-
tant to evaluate the spatial information. Besides, the loss of spatial
resolution in these cases is quite significant (see their Fig. 4 for a
qualitative comparison with other image segmentation and spatial
algorithms methods). This is not an issue with our images, that have
high-enough spatial resolution to resolve individual star-forming
structures within spiral arms, even after image segmentation. See
bottom left panels of Figs. 9, 11, and 13. In fact, the morphology
of the segmented images traces the same global and local spatial
patterns as the pixel-based age maps.

5http://www.r-inla.org/

Finally, we want to stress that there is an additional fundamen-
tal difference between our approach and those using IFU data
(Casado et al. 2017; González-Gaitán et al. 2018 which also in-
clude a Bayesian analysis, or de Amorim et al. 2017, which use a
Voronoi technique). In the case of IFU data, a major issue is the
requirement of increasing the low S/N of some spaxels and avoid
data sparsity; in our case, we do not have such a problem, since
photometric data have a larger S/N, and those pixels below a certain
H α flux level are considered to belong to the background, so they
are masked in the resulting maps.

In brief, Section 4.2 proposes a simple and fast fully Bayesian
approach to take into account the spatial dependence by means of
image segmentation. We will see that the loss of spatial resolution
is not important, in part due to the spatial characteristics of the data.
We will show how this method provides good results within the aim
of this work, the global determination of the age patterns along and
across the spiral arms.

4 A BAY E S I A N F R A M E WO R K FO R
M O D E L L I N G TH E R AT I O I M AG E S

4.1 Hierarchical Bayesian Model

In this section, we address the problem of deriving the galaxy age
map from observed flux ratio images, namely r̂ = F̂Hα/F̂FUV, by es-
tablishing a probabilistic framework relating the random variables
involved in the problem. These relationships will be formulated in
terms of a joint probability distribution, given the observations and
their uncertainties through a hierarchical Bayesian model (HBM;
Gelman et al. 2003). Specifically, we want to describe the probabil-

MNRAS 483, 2641–2670 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/2/2641/5185101 by Inst. Astrofisica Andalucia C
SIC

 user on 29 August 2019

http://www.r-inla.org/


Hierarchical Bayesian approach for estimating physical properties 2647

Figure 5. The hierarchical Bayesian model in plate notation. Blank shaded
nodes represent random fixed (or observed) values, respectively. Arrows
represent the kind of relationship between variables: probabilistic (solid
arrows) and deterministic (dashed arrows). In the central part of the graphical
model, we show deterministic calculations done by SB99 scripts and the
artificial neural network (ANN). The blue square at the bottom, encircles
the variables involved in the Likelihood (7), as well as the observed ratio
which are the input for the NSA.

ity distribution of age given r̂ , which will be derived by marginal-
ization as we will see below. This procedure or algorithm is applied
pixel by pixel throughout the image, keeping the spatial resolution
of the flux ratio images, see top right panels of Figs. 9, 11, and 13.

Fig. 5 shows our HBM in plate notation, namely a graphical
model representing the previous relationships. Nodes in the graph-
ical model are circles and squares representing random variables
and fixed values, respectively. Inside the circles and squares there
are numbers representing the dimension of values in each case,
and a shaded circle (square) means that the variable has been ob-
served. Arrows represent the relationships (solid arrows probabilis-
tic, dashed arrows deterministic) between variables.

Let H represent the set of all population synthesis parameters
held fixed, such as the SFH (instantaneous), IMF (see Salpeter
1955), evolutionary tracks, as well as the extinction correction ap-
plied to the data. And let θ = (θ1, θ2, θ3) be the parameters to be
estimated: θ1 the age of the region under study (the image pixel),
θ2 the metallicity, and θ3 the fraction of ionizing photons. Every
parameter θ i is connected with the hyperparameter φi in the graph-
ical model at Fig. 5. That is, there is a probability distribution once
the φi is fixed. Specifically we set uniform prior distributions for
all the parameters, θi ∼ U(φi), where φ1 = (1, 20), corresponding
to the age (θ1) ranging from 1 to 20 Myr; φ2 = (0.001, 0.02), for
the metallicity (θ2). SB99 only covers five metallicity values, i.e.
1/20Z� = 0.001, 2/5Z� = 0.008, 1/5Z� = 0.004, Z = Z� = 0.02

(solar) and 2Z� = 0.04; and φ3 = c(0.1, 1), the fraction of ionizing
photons Q(H) (θ3) ranging from 10 per cent to 100 per cent. This
is, priors for θ were set as

θ1 ∼ U(0.1, 20)

θ2 ∼ U(0.001, 0.04)

θ3 ∼ U(0.1, 1) (1)

Let us notice that we deal with a finite set of values for θ i, and
therefore a finite number of model flux ratios derived from them.
See left-hand panel in Fig. 2.

As described below, our main objective is to obtain a posterior
distribution of the parameters θ i, using an iterative algorithm in
our HBM. The main consequence of using SB99 scripts and the
iterative algorithm is the increase of CPU time. In order to obtain
a continuous range for the model flux ratios or parameters, rather
than such discrete set of θ i values, we set up an Artificial Neural
Network (ANN) to interpolate the grid of parameters. A thorough
introduction to ANN can be found in Haykin (1999).

Specifically, our ANN is a multilayer perceptron with four layers:
two hidden layers with 30 and 50 nodes, respectively. The input
layer for the parameters θ and the output layer for the Hα and FUV
luminosities (see Fig. B1). This topology was selected by doing
cross-validation through repeated random sub-sampling validation
(90 per cent of the dataset for training and 10 per cent for validating
the ANN) and assessing the fit using the mean squared error (MSE).

Fig. 5 shows the use of the ANN by dashed arrows linking the
parameters θ i with H–α and FUV luminosities (i.e. a deterministic
relationship characterized by the ANN). These dashed arrows also
include the calculations to obtain the modelled H–α and FUV fluxes,
and therefore the model flux ratio r = FHα/FFUV for a specific pixel,
according to

FHα = 4πD2LHα, (erg s−1 cm−2) (2)

fFUV = 4πD2LλFUV, (erg s−1 cm−2 Å
−1

) (3)

with the same units as the observed data.
In order to explain completely the HBM, let us focus on the right-

hand side of Fig. 5, showing the relationships between unknown r
and observed r̂ flux ratios. We apply this technique pixel by pixel
(as described in Paper I), assuming a bivariate normal distribution
for the observed fluxes as a result of the convolution between the
observational/model uncertainties and the unknown fluxes. Specif-
ically,

(F̂Hα, f̂FUV) ∼ N((FHα, fFUV), �), (4)

where � is defined according to

� =
(

σ 2
Hα ρσmod,Hασmod,FUV

ρσmod,Hασmod,FUV σ 2
FUV

)
. (5)

Here, ρ is the theoretical correlation between the Hα and FUV
fluxes; and σ 2 = σ̂ 2 + σ 2

mod accounts for both the observational and
the model uncertainties.

Therefore, r̂ = F̂Hα/F̂FUV is the ratio of two correlated normal
random variables, whose exact distribution is given by Hinkley
(1969) as

ψ(r) = b(r)d(r)√
2πσHασFUVa3(r)

(
2�

(
b(r)√

1 − ρ2a(r)

)
− 1

)
+

+
√

1 − ρ2

πσHασFUVa2(r)
exp

{
− c

2(1 − ρ2)

}
, (6)
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where r is the model flux ratio, and parameters a(r), b(r), c, and d(r)
are defined as

a(r) =
(

r2

σ 2
Hα

− 2ρr

σHασFUV
+ 1

σ 2
FUV

)1/2

b(r) = rF 2
Hα

σ 2
Hα

− ρ(FHα + rfFUV)

σHασFUV
+ f]r,,FUV

σ 2
FUV

c = F 2
Hα

σ 2
Hα

− 2ρFHαfFUV

σHασFUV
+ f 2

FUV

σ 2
FUV

d(r) = exp

{
b2(r) − ca2(r)

2(1 − ρ2)a2(r)

}
.

Here, ρ is the correlation between FHα and fFUV and � is the cumu-
lative density distribution of the standard normal. We recall that the
values assumed for σ̂ are 5 per cent for FHα and 25 per cent for f̂FUV

(as shown in Section 2), and that σ mod has been taken as 4 per cent
in both cases (see Section 3 and Appendix A). Then, we can define
the probabilistic relationship between unknown and observed flux
ratios according to the likelihood

p(r̂|θ ,H) = ψ(r̂|FHα, fFUV, σHα, σFUV, ρ) (7)

Fig. 5 explains how we obtain observed ratios from parameters
θ through an HBM by using the graphical model. However our
main objective is to move in the reverse order, i.e. to obtain suitable
parameters θ from the observed ratios r̂ .

The joint posterior probability distribution p(θ |r̂) can be rewritten
by using Bayes’ theorem according to

p(θ |r̂) = p(r̂|θ )p(θ)

p(r̂)
∝ p(r̂|θ )p(θ), (8)

where p(r̂) is a normalization constant, which for our purposes
can be ignored. We will assume independence between parameters
θ i, or equivalently, the prior distribution p(θ ) = p(θ1)p(θ2)p(θ3),
where p(θ i) is uniform distribution as defined above. The likelihood,
p(r̂|θ ), has been defined previously in equation (7).

In the Bayesian framework, inference proceeds by estimating the
posterior distribution p(θ |r̂) and then marginalizing to obtain the
age distribution of the region under study according to

p(age|r̂) = p(θ1|r̂) =
“

p(θ |r̂) dθ2dθ3, (9)

where the posterior distribution p(θ |r̂) was characterized by an
independent and identical distributed sample obtained by using the
Nested Sampling Algorithm (NSA; Skilling 2006). Although we
refer to these authors, a brief summary is given in Appendix B.

Finally, we obtain the posterior distribution of the parameter of
interest (age) by marginalizing nuisance parameters in the posterior
distribution as set in equation (9). Marginalized distributions for the
other two parameters can be obtained in the same way.

Fig. 6 shows an example of the resulting posterior distributions.
For the case of M83, we have chosen three pixels of different es-
timated ages (1.2, 5.5 and 10 Myr) and plotted (left to right, re-
spectively) the histograms of the samples from the marginalized
distributions.

On the top, we have the marginalized posterior probability dis-
tributions of the age parameter. From an initial, non-informative,
uniform prior U(0.1, 20) Myr, we can observe how well defined is
the estimated posterior distribution. In general, the median or the
(uni)modal values are close from each other, close to symmetrical
distributions, and well differentiated. As mentioned in Section 1,
the ratio Hα/FUV is very sensitive to age variations for young SF
regions.

The middle and bottom panels of Fig. 6 show the marginalized
posterior distributions of the metallicity and the fraction of ioniz-
ing photons, respectively. The assumed priors for these parameters
were also uniform. However, it is remarkable that their posterior
distributions are too spread and flat, remaining nearly uniform in
many cases. This result should indicate that this method is not able
to determine these parameters. In fact, the metallicity is a parameter
quite difficult to estimate.

In order to check how much the selection of priors in these
other properties may influence the age estimate, we compute the
posterior probability density function p(θ |r̂) for different priors.
The results, for a given flux ratio of r̂ = 1.13 (a young region), are
shown in Fig. 7. The first column corresponds to the uniform priors
assumed along this work. In the second column only the prior on
metallicity is not uniform, θ2 = Z ∼ N(0,∞)(0.02, 0.01) truncated
Normal, negative values are not allowed. Similarly, in the third
column for the fraction of ionizing photons, θ3 = fQ(H) ∼ B(5, 2) Beta
distribution, assuming higher values of fQ(H) to be more likely. The
fourth column shows the results when both priors are not uniform
distributed. For other flux ratio values or different prior selections,
e.g. θ2 ∼ B∗(2, 2), or B∗(5, 2) (Beta distribution transformed from
the unit interval [0,1] to [0.001,0.04]), θ3 ∼ B(2, 2), or U(0.5, 1),
etc, the results were similar.

Fig. 7 shows that, except for the age, the posterior PDF of the
other parameters is dominated by the prior. Besides, the influence
of the selection of the prior distribution in these other parameters is
almost negligible on the age estimate. The mode (and median) of
the different age posterior PDFs are pretty close. In fact, it seems
that adding some prior information results in narrower and taller
posterior density functions around the mode.

The three last rows display how correlated are the posterior
marginals for the different parameters. Note, how the age correlates
with the fraction of ionizing photons and the metallicity, whereas
these two parameters are not only nearly uncorrelated but nearly
independent, as well as their priors. These parameters are not de-
termined by the Hα/FUV ratio. Therefore, their posteriors remain
dominated by the priors distributions assumed, as it is clearly seen
in the figure. Any posterior sample occupies nearly the whole space
of parameters, except for the age. We confirm that this methodology,
based on the Hα/FUV flux ratio, is robust and efficient for dating
H II regions but not for determining other parameters such as the
metallicity.

4.2 Image Segmentation

In the following, we describe an image segmentation technique
to assess the possible effects of spatial dependence in terms of
adjacent regions (or pixels), grouping together as a single region
those neighbouring pixels that carry the same average true value of
the measured quantity.

In Paper I, this was achieved by calculating the age maps after
re-scaling the Hα/FUV flux ratio images at 3 × 3 or 6 × 6 pixel
binning. We found that not only the main structures and global age
patterns remain unchanged, but also some local age gradients. This
level of pixel bining is in agreement with the results from several
variograms computed in M83, where we found that the level of
spatial dependence is roughly under bins of 5 × 5 pixels.

Both segmentation techniques imply a loss of resolution, but it
is worst in the rebinning case. The proposed image segmentation
technique, based also on a hierarchical Bayesian approach, is an
improvement compared to re-binning the images as in Paper I.
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Hierarchical Bayesian approach for estimating physical properties 2649

Figure 6. Example marginal posterior probability distributions of different parameters for three image pixels of different age. The black lines denote kernel
density estimates. The scale fill gradient correspond to the density (from white lower to grey higher). These plots highlight the sensitivity of the proposed
methodology for the age estimation, unlike other parameters.

We segment the Hα/FUV ratio image, in terms of homogeneous
values, to model the effects of the spatial dependence (in terms
of adjacent pixels). We work with regions resulting from clustering
several pixels. This approach is driven by the assumption that pixels
with similar Hα/FUV ratios will share similar inferred properties.
Segmentation maps serve to identify structures sharing common
properties relevant to the interpretation of the age map.

The purpose of image segmentation is to cluster pixels into ho-
mogeneous classes, without prior definition of those classes, based
only on spatial coherence. We present a fully Bayesian approach,
based on the Potts model for the image reconstruction (Marin &
Robert 2014, Chapter 8).

Consider the ‘true’ image as a random bidimensional array x =
{xi, i ∈ I} whose elements are indexed by the lattice I, the location
of the pixels, and related through a neighborhood relation. The four
nearest neighbors of the i −th pixel (m, n) are (m, n − 1), (m, n +
1), (m − 1, n), and (m + 1, n) respectively, denoted as j ∼ i.

This neighborhood relation is translated into a probabilistic de-
pendence by means of Markov Random Field (MRF), where each xi

takes a finite set of values. The conditional distribution of any pixel
i ∈ I, given the rest of the pixels of the image, depends only on the
values of their neighbors, denoted by n(i), p(xi|x−i) = p(xi|xn(i)).

Denote the observed flux by y, considered ‘noisy’ in the sense
that the measured flux of a pixel is not observed exactly but with
some perturbation (instrument noise, reduction process, etc). Both
objects x and y are arrays, with each entry of x taking a finite
number of values, for numerical convenience.Each entry of y takes
real values.

The aim is to draw inference on the ‘true’ image x, given an
observed noisy image y. We are thus interested in the posterior
distribution of x given y, provided by Bayes’ theorem

p(x| y) ∝ f ( y|x)p(x). (10)

We assume a Potts model for the prior on x, a specific family
of distributions inspired from particle physics in order to structure
images and other spatial structures in terms of local homogeneity
(Wu 1982).

p(x|β) = 1

Z(β)
exp

⎧⎨⎩β
∑
j∼i

Ixj =xi

⎫⎬⎭ (11)

where Z(β) = ∑
i∈I exp

{
β
∑

j∼i Ixj =xi

}
is the normalizing con-

stant of the Potts model with G categories.
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Figure 7. Posterior marginals and pairwise correlations for the three parameters, given different prior selections and a flux ratio r̂ = 1.13. The first column
corresponds with uniform priors for the three parameters, θ1 ∼ U(0.1, 20), θ2 ∼ U(0.001, 0.04), and θ3 ∼ U(0.1, 1) At the second column only the prior on
metallicity is not uniformed distributed, θ2 = Z ∼ N(0,∞)(0.02, 0.01), i.e. a truncated Normal to non negative values. While at the third column θ3 = fQ(H) ∼ B(5,
2), a Beta distribution assuming highest values of fQ(H) to be more likely. Last column shows the results when both priors are not uniformly distributed. The
first three rows are the same as in Fig. 6: the black solid lines denote the corresponding kernel density estimates. The dashed lines denote the density when
all priors are uniformly distributed, for comparison purposes. The three last panels rows display how correlated are the posterior marginals for the different
parameters.
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The likelihood f ( y|x) describes the link between the observed
image and the underlying classification of homogeneous flux ratios.
That is, it gives the distribution of the noise. We will make the
assumption that the observations in y are conditionally independent
of x and Gaussian,

f ( y|x, σ, μ1, . . . , μG) =
∏
i∈I

1√
2πσ

exp

{
− 1

2σ 2
(yi − μxi )

2

}
.

(12)

For a fully Bayesian approach, we have to give the distribution of
the hyperparameters β, σ , and μ1, . . . , μG, respectively. Since there
is no additional information about any of these nuisance parameters
we assume uniform and independent hyper priors.

The Potts model parameter β, which represents the strength be-
tween neighbouring pixels, is uniform distributed over β ∼ U(0, 2),
(e.g. Marin & Robert 2014; Stoehr 2017, and references within).
Above this critical value βc = 2.269 (for the case of four neighbour
relation) the Markov chain is no longer irreducible, converging to
one of two different stationary distributions, depending on the start-
ing point. The distribution becomes multimodal, known as phase
transition in particle physics.

The mean value of each homogeneous class μ = (μ1, . . . , μG) ∼
U(μ; ymin ≤ μ1 ≤ . . . ≤ μG ≤ ymax). This is a generalization of the
treatment for an image where y represents its noisy version of the
true colour or grey level (and not necessarily an integer).

The recorded values of y represent the ratio of the Hα and FUV
fluxes (e.g. in the range (− 2, 3) for M83 example). We classify this
ratio image into G = 5 homogeneous regions or classes, with mean
μg. The number of classes is inspired in the previous work in Paper
I.

For the noise variance it is assumed an uniform prior on log(σ ),
or equivalently p(σ 2)∝σ−2.

Finally, the posterior distribution for x is

P (xi = g| y, β, σ 2, μ) ∝ exp

⎧⎨⎩β
∑
j∼i

Ixj =xi
− 1

2σ 2
(yi − μg)2

⎫⎬⎭
(13)

Appendix C describes in more detail the implementation of a
hybrid Gibbs algorithm for sampling. The underlying algorithm
addresses the reconstruction of an image distributed from a Potts
model based on a noisy version of this image. The purpose of image
segmentation is to cluster pixels into homogeneous classes without
preference and based only on the spatial coherence of the structure.

Once the image has been classified into G different homogeneous
classes, with μg the mean value of the ratio Hα/FUV for each class,
we can apply both methodologies: the one used in Paper I and the
one presented here. In Section 4.1, we compare these ratio values
with the SB99 model to assign an age range to that homogeneous
region. In particular, for M83 these mean values are: μ1 = 0.3045,
corresponding to ages >6 Myr; μ2 = 0.6139 and μ3 = 0.8807
for the age range 5 − 6 Myr; μ4 = 1.151 for 3 − 4 Myr; and
μ5 = 1.5195 for ages 1 − 2 Myr.

The resulting age map is also discrete (bottom-left plot in Fig. 9),
but the structures of the age patterns are more consistent with the
Hα/FUV image, as seen comparing the flux ratio image (top-left)
with the age map obtained in Paper I (bottom-right). When com-
pared, the age patterns and structures of these two discrete age maps
are quite similar, the main difference being just the age range as-
signment. It attests the robustness of the results in Paper I, and their
consistency with the present analysis. The loss of resolution in the

resulting segmented age map is rather negligible under the point of
view of the study of age patterns. The main aim of these studies
is to get the age structures and patterns along and across the spiral
arms, rather than giving an absolute age.

We can conclude that the effect of spatial dependence with ad-
jacent regions does not affect the study of the age patterns when
this dating technique is applied pixel by pixel. The Hα/FUV ra-
tio proves to be a robust estimator of the age, local gradients, and
global age patterns remain unchanged despite some loss of spatial
resolution.

5 R ESULTS: BAY ESIAN AGE MAPS

Figs. 9, 11, and 13, show the resulting age maps for the galaxies of
this study, applying the three proposed age dating methodologies.
In them we compare the two methods presented at the current work
(discussed in Sections 4.1) and 4.2, as well as the previous method
(Paper I).

The top left-hand panels show the Hα/FUV ratio images for
each galaxy, after a 3σ noise filter masking the background or
fainter Hα emission pixels. The remaining pixels with strong H α

emission, understood as whole or partial H II regions, define the
spiral arms and star forming regions clearly. Relative age patterns
are already within this ratio image, where the higher H α to FUV
values correspond with the younger regions, whereas the darker
pixels of lower ratio values represent older regions. This distinction
between ‘younger’ and ‘older’ is under a very young age scale
framework, since Hα emission is mainly available up to ∼15–
20 Myr. That is, we are studying the spatial distribution of the
very recent star forming regions.

The bottom left panels, (ii), display the age maps following the
Bayesian age dating methodology of Section 4.2, assuming depen-
dence between adjacent pixels. The Hαto FUV flux ratio image has
been segmented into five or four heterogeneous average <FHα/FFUV

> regions. In this manner, we deal with issues affecting age dating
by means of a SSP model, such as IMF subsampling, luminosity or
mass thresholds, or spatial influence from adjacent regions. In so
doing, we lose spatial resolution into discretized age maps.

Top right panels,(i), are the age maps obtained with the Bayesian
approach presented in Section 4.1, assuming spatial independence
of the fluxes from each pixel. The higher advantage of this last
technique is not only the great resolution of the age maps, but also
obtaining a posterior age distribution function in each pixel of the
image. We are able to give probabilities or select any statistical
moment since a sample of the posterior probability function for the
age is given. To match this with the same criterion of Paper I, and
for plotting purposes, each pixel of the image shows the Mode of
the age posterior probability distribution.

Bottom right panels, (iii), are the age maps applying the previous
methodology of Paper I. In this case we also get a ‘discrete’ or
categorized age map, into four age ranges: <4, 4 − 6, 6 − 9, and
>9 Myr. The colour scale has been matched to the other Bayesian
age maps for comparison. We take the median age for each age
range but the >9 Myr range by 9 Myr.

Figs. 9, 11, and 13 show the results from the previous Paper I
methodology (iii) to be robust. The look broadly the same, although
the new age maps fits better with the observed structures in the
Hα/FUV flux ratio image. Moreover, the present methodologies let
us to get the posterior PDF of the age, and so a continuous age
map, as well as statistical estimator of probabilities. That is. it also
improves not only qualitatively the resolution of the age patterns,
resulting in richer age patterns structures, but the quality of the
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Figure 8. Comparison between age maps obtained in Section 4.1, showing the central 90 per cent credible interval of the age posterior distribution. I.e. the
true value of the age will be in between these values with a probability of 90 per cent. They provide an idea of the age estimation uncertainty. Age maps for
NGC 1068 are on the top, each one with their own age scale, highligthing the age pattern structure remains nearly the same. M83 is in the middle panels, and
the bottom panels correspond with M101. The latter share the same age scale to exhibit as the general age pattern structure remains, except an average ‘zero’
point.

information and the results. Once the data are given, we get the
conditional probability of the model parameters of the observed
data, and not only a single value estimator.

Fig. 8 gives the uncertainties for the age estimation in the (i)
age maps, when the posterior probability distribution is available. It
shows the central 90 per cent credible interval of the age posterior
distribution; i.e. the true value of the age will be in between these
values with a probability of 90 per cent. On the left it shows the 5th
percentile of the age distribution. The central age map corresponds
to the median age, P50, and the 95th percentile on the left. After
such comparison we check out the robustness of the methodology
for age dating.

The corresponding age maps for NGC 1068 are on the top, each
with their own age range scale. Despite the different age scales,
the general age patterns are much the same. The only difference

is a zero point offset in age. The middle and bottom panels show
the corresponding percentiles for M83 and M101, respectively. For
these maps we leave the same age scale to highlight the offset point
between them. Once again the general age patterns remain the same.
On average, this zero point value is less than ±2 Myr for the three
galaxies, even �±1 Myr in the case of M83.

Finally, in Appendix D we show the age maps (i) and (iii) for the
galaxy sample studied in Paper I, for the different methodologies
to be compared. Several percentiles of the distribution are shown
to give the corresponding age uncertainties. We can infer the same
physical analysis and conclusions from the new age maps as was
done in Paper I. The general age patterns results are the same, with
the exception of the resulting continuous age maps what improves
the resolution of the age patterns and structures, as well as the
potential of the Bayesian approach.
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Figure 9. Top left: Image of the H α to FUV ratio for M83 (in log units). The higher values of FHα /FFUV flux ratio (in yellow) denote the youngest SF
regions. While the lower ratios indicate ‘older’ ages; Top right (i): Age map for M83 obtained with the presented Bayesian approach in Section 4.1, assuming
independence between pixels, and taking the mode of the posterior probability distribution of the age parameter at each pixel of the image. The black circle
indicates the corotation radius, at ∼3 kpc (see text); Bottom left (ii): Age map obtained with the Bayesian approach in Section 4.2, assuming dependence
between adjacent pixels and after an image segmentation of the FHα /FFUV flux ratio, into five heterogeneous regions. The colour scale has been matched to
the previous age map, at the top left; Bottom right (iii): Age map for M83, applying the previous methodology of Paper I. In this case we get a ‘discrete’ or
categorized age map into four classes or age ranges: <4, 4 − 6, 6 − 9 and >9 Myr. The colour scale has been matched to the Bayesian age maps for comparison
purposes (taking the median age for each age range, except for the last one it is taken the minimum). The vertical white stripes of the images correspond with
some artefacts from the Hα image, so they were masked out.

5.1 M83

M83 (NGC 5236), or the ‘Southern Pinwheel’ galaxy, is a nearby
barred-spiral galaxy. The nearest galaxy in the sample (4.5 Mpc;
Karachentsev et al. (2002)), its proximity and low inclination angle
gives spatial resolution, not only to resolve its spiral arms but also
to observe a wealth of detail in individual star-forming structures
within the arms.

M83 is a metal-rich spiral galaxy, with a radial metallicity gradi-
ent which flattens at large radii (Bresolin et al. 2016). The observable
used in our study is not sensitive to metallicity, we could not see
nay gradient or pattern in the metallicity maps. The middle panels
of Fig. 6 show the marginal posterior probability distribution of the
metallicity for three pixels (a), (b), and (c) with different flux ratio

values and location within the disk (see top left plot at Fig. 9). The
Hα/FUV flux ratio is quite sensitive to age variations, but metal-
licity behaves as a free parameter in a our model, free to fit the
data.

The resulting age maps (i), (ii), and (iii), see Fig. 9, are similar to
that obtained for M 51 in Paper I, dominated by a young population
of stars with less than 6–7 Myr. The age structure exhibits gradients
across the spiral arms, with the younger stars toward the inner edge
while the older stars are located approaching the outer edges within
the corotation radius, as expected from the density wave theory
(Roberts 1969; Martı́nez-Garcı́a, González-Lópezlira & Bruzual-A
2009). The corotation radius of ∼3 kpc (∼2.3

′ − 2.4
′
(Hirota et al.

2014) at a distance of 4.5 Mpc) is plotted as a black circle in the top
right panel of Fig. 9. We can also observe the inverse age pattern
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Figure 10. Zoom of the nuclear region and part of the eastern spiral arm and inter-arm region of M83, showing 50 regions from (Kim et al. 2012) for
comparison. These regions were age-dated with data from HST/WFC3, with the aim of studying the relationship of the spatial variations of stellar ages with the
evolution of the galaxy and the star formation triggering mechanisms. The regions with ages 1 − 10 Myr are plotted with magenta boxes, ages of 10−20 Myr
in black, and for ages greater than 20 Myr in red.

outside corotation; i.e. the younger population are preferentially
located radially in the outer side of the arms. The eastern arm
exhibits pretty well how the youngest population, bluest pixels,
change from the inner to outer arm side when crossing the corotation
radius.

Fig. 10 displays 50 regions of an average size 260 pc × 280 pc,
which cover the nuclear region and part of the eastern spiral arm
and inter-arm region (Kim et al. 2012, see their fig.1). These authors
selected these regions with the aim of studying the spatial variations
of stellar ages in M83, looking for evidence of the evolution of the
galaxy and star formation triggers. Their age scale is similar to ours,
with regions classified into 3 age ranges: encompassing 1 − 10 Myr,
which covers the majority of our age range. These are plotted with
magenta boxes at Fig. 10. It can be seen that many of these regions
also correspond with our younger ages. Two examples are magnified
at the top left and top right sides. The blue histograms represent the
age distribution of two of these regions, with ages less than 5 Myr.

Regions with ages of 10−20 Myr are shown with black boxes.
They correspond to our oldest ages, since this is the limit for Hα

emission. We observe in Fig. 10 how many of these regions are
indeed dominated by our older ages (orange and red pixels). But
there are also some of these regions more likely to be intermediate
ages, such as the case in the bottom left of the plot.

Outlined red boxes show the third group, with ages greater than
20 Myr. Most of these do not show Hα in our maps, as they cor-
respond to the post-nebular phase. In general we find quite a good
agreement between the two results.

For the youngest star forming regions, our age maps find a similar
scenario as that described by Kim et al. (2012), and in agreement
with density wave theory. These authors also found that younger
(10 Myr) stars are found mainly in concentrated aggregates along
the active star forming regions in the spiral arm. Intermediate age
stars are located downstream, on the opposite side from the dust
lane, as expected based on density wave models, and the older stars
more dispersed (see their fig. 12). Kim et al. (2012) argue stars form
primarily in star clusters and then disperse on short timescales to
form the field population. Moreover, Wolf-Rayet stars, which are
taken into account in our SSP models, correlate with the position of
many of the youngest regions.

Dobbs & Pringle (2010) study the mechanisms triggering star
formation in galaxies and their evolution. They discuss the lo-
cations of age-dated stellar clusters as a possible discriminant of
the origin/source of the excitation mechanism for the spiral struc-
ture. Under the assumption that stellar clusters form predominantly
within the spiral arms (higher gas density regions), the distribution
of the age-dated clusters through out a spiral could give some clues
to the mechanism for spiral arm formation. These authors found di-
verse spatial distributions for clusters of different ages, depending
on the underlying dynamics of the galaxy and the spiral excitation
mechanism.

Despite the different age scales (the age in Dobbs & Pringle
(2010) varies from ∼2–130 Myr, see their fig. 2), we note that their
models for a global age pattern still agree with our age maps for the
youngest stellar populations (up to around 15 or 20 Myr).
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Figure 11. As Fig. 9, but for M101.

For both M83 and M101 (Figs. 9 and 11), we can identify the age
distribution for a galaxy model of a constant pattern speed with a
bar, and a floculent spiral, respectively (cf. their figure 2). Dobbs &
Pringle (2010) describe the younger stars in the spiral arms or bar
with older stars downstream in the interarm regions for the former
model. The distribution of stellar clusters is more complicated in
floculent spirals, because each segment of a spiral arm tends to
contain clusters of a similar age. This can be observed in the figure
at 11 for M101, mostly at the extreme southern segments.

5.2 M101

M101 is a nearby, face-on, giant spiral galaxy. At a distance of
6.7 kpc (Bosma et al. 1981), it provides an enough spatial resolution
to study the underlying stellar populations. It is also an excellent
laboratory for studying stars, as OB-type stars, blue giants, yellow
supergiants, and red supergiants, as well as stellar clusters, H II

regions, and supernova remnants (Grammer & Humphreys 2013,
2014, and references within).

Grammer & Humphreys (2014) explore the M101 SFH as a
function of the radial distance and its effect on the emission prop-
erties and stellar populations. They find that the mass fraction for

stars younger than 16 Myr (roughly comparable to our age range)
is 15 per cent − 35 per cent in the inner regions, compared to less
than 5 per cent in the outer regions. This percentage is greater than
50 per cent in the inner regions for stars younger than 35 Myr. That
is, the inner regions are dominated by a young stellar populations.
Comparing the results in their figure 8 within the reach of our data,
8 kpc, we see that 85 per cent and 95 per cent of stellar mass fraction
have ages younger that 15 or 20 Myr under 10 kpc in radius, in good
agreement with our results.

As in Fig. 9 for M83, Fig. 11 shows the age maps for M101;
(i) and (ii), derived with the methods introduced in this paper, and
(iii) as in Paper I. A common characteristic feature of these age
maps is their morphologies, with a structure more flocculent than
spiral. Furthermore, we detect some an age gradient tending toward
younger stars in the ‘outer’ disk. It is not actually the outer disc but
the middle region, since we only observe around 8 kpc, due to the
circular Taurus aperture.

According to Lin et al. (2013), the radial age profile of M101
presents a younger bulge, comprising an older inner region of the
disk with steeper age gradient, and an outer disk region with a
flatter gradient. These gradients and ages are not comparable with
our age maps, since they are in Gyr units. However, at youngest age
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Figure 12. Comparison between the resulting morphology of star forming regions for M83 and M101. Despite both being spiral galaxies, the former has a
well defined spiral estructure, whereas the latter has flocculent spiral arms segments. The background image is a 3.6 μm IRAC image from the Spitzer survey,
where it is effectively observed the characteristic spiral morphology in both cases. Black circle defines the TTF field of view for the Hα image, leaving outside
part of the disk and spiral arms of M101.

scales there are similar trends. The interaction with another galaxy
of the M101 group and consequent gas accretion could trigger
this star formation in the outer regions. The low gas metallicity
gradient of M101 with respect to other spiral galaxies also supports
an interacting or recent merger scenario (Lin et al. 2013, and
references within).

Lin et al. (2013) also describe spurious arms full of H II regions
much younger than the interarm in the inner disk (albeit within a
different framework, of wider age scales in Gyr and providing the
whole SFH of M101).

Fig. 12 shows a comparison between the morphologies of the
star forming regions in M83 and M101. The background IRAC
3.6 μm images show clearly their spiral structure. However, while
the age map of M83 presents a well-defined structure, whereas the
corresponding M101 image shows flocculent spiral arms segments.
The black circle in the M101 image defines the TTF field of view
for the Hα image. Despite the regions it leaves outside the field of
view, this does not affect the resulting global morphology for this
galaxy. The inner disk has a clear flocculent structure.

The difference between the morphologies of the star forming
regions of both M83 and M101 is interesting. It is likely related to
the processes triggering the star formation, as well as the subsequent
evolution.

5.3 NGC 1068

NGC 1068 is an early-type Sb, barred spiral galaxy, and the clos-
est (14.4 Mpc, 1′′ = 72 pc; Bland-Hawthorn et al. 1997) lumi-
nous Seyfert 2 galaxy. It is considered the prototype Seyfert 2
galaxy (Khachikian & Weedman 1974). Its brightness, nuclear
activity, proximity, and orientation make it an excellent labora-
tory (in a single physical framework) to study the Seyfert nu-
cleus, inner disk structure, as well as the unifying, dusty torus

model for Seyfert galaxies (e.g. Orr & Browne 1982; Davies,
Sugai & Ward 1998; Bruhweiler et al. 2001; López-Gonzaga et al.
2014).

Likely the best studied active galaxy in the local universe, it has
been subject of numerous studies, at many different wavelengths.
Signs of the AGN are evident at nearly all wavelengths, such as
the bright cones of photoionized gas detected both in optical and
X-rays wavelenghts (Veilleux et al. 2003, and references within). It
has a large-scale oval and a nuclear bar with a pseudo-bulge which
is very massive with respect to its central black hole (e.g. Kormendy
& Ho 2013). The ionization source of the gas in the circumnuclear
region is due mainly to the AGN, so age determination with the
proposed methodologies based on H α/FUV is not reliable for this
innermost region. The location of the AGN is marked with a star
in the age maps of Fig. 12. Diagnostic line ratio plots have shown
that photoionization is the preferred mechanism for high excitation
gas in NGC 1068 (Nishimura et al. 1984; Evan & Dopita 1986;
Bergeron et al. 1989).

Once the background has been subtracted, the age maps (see
Fig. 13) do not show well-defined spiral arms as M83, indicating a
lower intensity of SF activity across the disk. The circumnuclear ring
or pseudo-ring (the star-forming or starburst ring) has been clearly
resolved into tightly-wound spiral arms at the ends of the 3 kpc bar
(Bland-Hawthorn et al. 1997), outlined by the white line segment
at Fig. 13. This starburst ring is clearly defined in our age maps
by the bluest, and therefore youngest, structures inside and around
the corotation radius, outlined with a white/black circumference
at Fig. 13, at r ∼ 1.3 kpc (Garcı́a-Burillo et al. 2014). The H II

regions in the circumnuclear ring are as bright as a string of M82-
type galaxies, and compete in terms of bolometric luminosity with
the nucleus (Davies et al. 1998). Telesco et al. (1984) found that
approximately the half of the bolometric luminosity of NGC 1068,
∼3 × 1011L�, corresponds to the Seyfert nucleus whereas the
other half to the starburst region, where most of the CO(3-2) flux
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Figure 13. As Fig. 9, but for NGC 1068. The AGN location is marked with a star in all the age maps, as well as the 3 kpc bar (Bland-Hawthorn et al. 1997),
outlined by a white line, and the ≈1.3 kpc corotation radius (Garcı́a-Burillo et al. 2014) with a white (black in the zoomed central region) circle. The central
part of the disk is zoomed in the (i) age map, plotting the highest levels, greater than percentiles P75, P80, P85, P90, and P95, of the age contours. These contours
define the starburst ring, and some of the south-west spiral arm and concentrated knots of SF.

in the disk is detected (Garcı́a-Burillo et al. 2014). The existence
of the circumnuclear ring is attributed to gas settling between the
inner Lindbland resonances (ILRs) as a result of the action of a
barred gravitational potential (Telesco & Decher 1988). Therefore
vigorous SF is expected to occur as a direct result of the increased
cloud density in the ILR.

The three age maps in Fig. 13, coincide with the location of the
youngest regions, the bluest ones, mainly within the brightest re-
gions of the ring, around the corotation radius, with some knots
of high SF regions throughout the disk, and at north-east plume
out to a radius of ∼7–8 kpc from the nucleus. However, multi-
line imaging and long-slit spectroscopy of the gas in this north-
east complex or filament, roughly aligned with the ionization cone
on smaller scale, revealed contributions from the AGN hard ra-
diation to the high ionization of the gas in this region (Veilleux
et al. 2003). If photionization is not the main source of the gas
ionization, the ages determined by H α/FUV are not reliable, as

it also happens within the circumnuclear region, due to the AGN
effects.

In the rest of the disk, the younger population is concentrated
in the inner ring, as mentioned above. It seems to extend along
the south-west spiral arm at larger scale, as well as it concen-
trates in some knots of SF regions across the disk. The interme-
diate ages are within the disk, and the older ones are found at the
edges.

The relevance or strength of the ring luminosity, being host of
the youngest population in the disk, is checked by plotting con-
tour levels from the H α image. The highest levels appear only
around this ring. To see this feature in more detail, the central
part of the disk is zoomed in the (i) age map of Fig. 13, com-
bining the ages and highest levels of age contours. Only those
levels greater than the P75 percentile are shown, which coincide
with the ring and some of the south-west spiral arm, but not in the
plume.
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6 D ISCUSSION

In this paper, we present two Bayesian inference algorithms that
allow us to evaluate the age of the stellar population of a galaxy
at pixel resolution. The methodology of Section 4.1 provides the
posterior probability density function for different parameters of
the stellar population synthesis models, including age, metallicity
and the fraction of ionizing photons. Only the former results in
sensitive to the Hα/FUV flux ratio. We focused on the age variable,
with a unimodal distribution and well defined central value in most
cases, Fig. 6. The accuracy of age estimation in the cases studied
is better than ±2 Myr. However total uncertainty could be strongly
influenced when applying synthetic stellar models to single pixels,
more than by the own model uncertainties. This imprecision is
affected by the mass of the underlying stellar population, whose
parameters are estimated. The measurement of this uncertainty is
not trivial when the total brightness of the pixel is lower than the
Lower Luminosity Limit (LLL) of the model (Cerviño & Luridiana
2006), and is beyond the scope of this work.

The other Bayesian approach developed in Section 4.2 try to
mitigate the effect of these luminosity/mass thresholds or IMF sub-
sampling issues, when SSP models are directly applied to pixel-wise
regions. On the other hand, we get a discretization of the age map,
and so higher resolution is lost. Nevertheless the main structures
remain recognizable, or otherwise unchanged.

In general, the age patterns we show appear to be quite robust
to sampling and only sensitive to the Hα/FUV flux ratio. So the
importance of these two new techniques is, on the one hand, the
huge potential provided by the Bayesian inference and holding the
age posterior probability function (a sample of the posterior). And in
the other case, to deal with the uncertainties derived when applying
SSP models to pixel-wise size regions. The present work focuses
mainly on the formulation of a new methodology to estimate the
age from UV, optical, and infrared images by Bayesian inference.

The number of arms shown, the sharpness and width of these
arms, as well as the separation and location of large star-formation
complexes along the arms are some of the features that can give us
some first hints about the nature of the physical mechanisms within a
spiral galaxy. However, the morphology by itself can sometimes be
misleading. Thus we also need physical observables, drawing from
their galactic spatial distribution to reconcile model predictions
from different spiral pattern generators, Dobbs & Pringle (2010).
Age map analysis is one of the best ways to test these aims.

These proposed methodologies only refer to the youngest stellar
populations (i.e. the distribution or location of the youngest stellar
regions, less than 20 Myr), from the very recent to less recent
episodes of SF along the galactic disk. These are mainly in the
arms and interarm regions of the grand-design galaxies. The use of
age maps to elucidate the origin of the spiral arms is outside the
scope of this paper. However we are able to highlight how age maps
show very distinctive morphologies characteristics for three spiral
galaxies.
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A P P E N D I X A : SA M P L I N G EF F E C T S A N D T H E R AT I O O F T WO C O R R E L AT E D N O R M A L R A N D O M
VAR IABLES

Along this work, we assume that the underling distributions of H α and FUV luminosities can be described as a Gaussian distribution,
therefore their ratio distribution is the ratio of two correlated Gaussian distributions, that is we take into account the correlation between the
H α and the FUV flux from the same source.

Let us first show the mathematical steps to obtain the ratio distribution analytically, to compare it with the results of synthesis models.
More details can be found in Hinkley (1969). Given two normal random variables X ∼ N(μx, σx) and Y ∼ N(μy, σy), which are correlated
ρ �= 0, and assuming the joint density of (x, y) is g(x, y) a bivariate normal distribution.

The probability distribution function of the ratio Z = X/Y is obtained by marginalizing the joint distribution function g(x, y), and replacing
x by zy into the equation (A1).
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Defining the following parameters (A2), as a function of the ratio z and the parameters of the bivariate normal distributions,
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Equation (A1) is simplified into equation (A3)
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We separate the integral into the positive and negative ranges in equation (A3), and apply the change of variable u =
(ya2(z) − b(z))/a(z)
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The integrals between the parenthesis in equation (A4) are the cumulative distribution functions (CDFs) of the standard normal distribution,
�(x), by a factor of

√
2π . And the two integrals in equation (A5) are finite and immediate integrals. They are simplified into equation (A6),

by means of the relation −�(− a) + �(a) = �(a) − 1 + �(a) = 2�(a) − 1.
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Once the analytical equation (A6) has been found, it is compared with the results of our synthesis models. To do so, we have computed
simulations which assume the same IMF as used in Section 3 (Salpeter 1955) with mass limits of 1 − 120 M�, Z = 0.020, and fesc = 0.
We have computed two sets of 104 Monte Carlo simulations for the IMF. The first set contains 5000 stars per simulation (see Fig. A1) and
the second one 500 stars (see Fig. A2). Once the IMFs are obtained we follow the evolution of each cluster. Figs. A1 and A2 show the joint
distribution of Hα and FUV luminosity (top-left), the histograms of the marginal distributions of FUV (top-right) and Hα(bottom-left), and
the Hα/FUV ratio distribution obtained from the simulations for an age of 2.8 Myr (bottom-right). We note that this age corresponds to the
worse values of skewness γ 1 and kurtosis γ 2, where more deviation of the Gaussian case is expected (c.f. Fig. 3). The associated Gaussian
distributions, with mean and variance obtained in Section 3 for the corresponding number of stars in each set, are overplotted in the histograms
as well. We also overplot a Gaussian approximation for the H α/FUV ratio with mean equals to the ratio of the mean values of H α and FUV,
and its dispersion is calculated by standard error propagation analysis (see, e.g. appendix in Cerviño et al. 2002).

Fig. A1, with 5 × 103 stars per simulation (similar to 1.5 × 104 M� in the 1 − 120 M� range), shows that the Gaussian approximation
for the integrated luminosities and the Hα/FUV ratio analytical distribution are in good agreement for Monte Carlo simulations. This result
is consistent with the associated values of γ 1(Hα) = 0.55 and γ 2(Hα) = 0.48 for Hα, and γ 1(FUV) = 0.26 and γ 2(FUV) = 0.09 for FUV,
associated to this number of stars. FUV is approximated by a Gaussian due to its lower γ 1 and γ 2 values. We also note that for such number
of stars, metallicity and age, the relative standard deviation is around a 20 per cent, which is about the maximum test value we have assumed
in our analysis. We check that the ratio distribution is also similar to a Gaussian distribution with a relative standard deviation of a 16 per cent.

Fig. A2 shows the latter analysis but for 5 × 102 stars per simulation (similar to 1.5 × 103 M� in the 1 − 120 M� range). In this case, the
mean value of log L(FUV) = 36.7 is close to the LLL for this age. The luminosity distributions show an asymmetry with a high luminosity
tail, and skewness and kurtosis values, γ 1(Hα) = 1.74 and γ 2(Hα) = 4.80, that make more appreciable the detach from gaussianity. The
ratio analytical distribution also departs from the Monte Carlo simulations, and differences with the Gaussian case are also more relevant.
However the global behavior of Monte Carlo distribution is still captured by the Hα/FUV ratio distribution. A peculiar feature of the ratio
distribution obtained from Monte Carlo simulations is the presence of three local maximums. This is an artifact due to the assignation of
close atmosphere model in the computation of the isochrones and it is implicit in SB99 models, what produces an artificial discretization of
colours (see a discussion in Cerviño & Luridiana 2006). Such effect is also visible in the joint distribution of Hα and FUV which shows a
discrete and well-aligned structure. In the case of lower number of stars (equivalent to lower masses or lower luminosities for a given age)
the detach from a Gaussian distribution is larger, and a proper analysis would require to interpolate atmosphere models to avoid numerical
artefacts in the Monte Carlo distributions.
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Figure A1. Joint distribution of Hαand FUV (top-left), histograms of the distribution of FUV (top-right) and Hα(bottom-left), and the ratio distribution
obtained from the simulations for an age of 2.8 Myr obtained from 104 Monte Carlo simulations with 5000 stars each. Overplotted is a Gaussian distribution
with the mean and variance obtained in Section 3. We also plot the analytic ratio distribution.

Figure A2. As Fig. A1, but for pixels with 500 stars.
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2662 M. C. Sánchez-Gil et al.

Figure A3. Left: Comparison of the position of SB99 isochrones at 1, 5, 10, and 15 Myr with Z=0.020 and synthesis models results in the Hα/FUV vs. FUV
plane. Black symbols shows the synthesis models results at the quoted ages for the isochrones. The stairs-like behavior is due to the use of close atmosphere
model approach in SB99 computations. Right: Maximum values of the Hα/FUV ratio from the full isochrone and SSP models set.

Given that in our pixel-by-pixel analysis we find some pixel values below the LLL, what is the error in our age determinations due to
sampling effects? Notwithstanding, we can still evaluate qualitatively this effect by comparing the synthesis models results with the used
isochrones, which is a general technique for cases of extreme sampling (see, e.g. Barker, de Grijs & Cerviño 2008).

The general situation is shown in the left-hand panel of Fig. A3, which shows isochrones for Z = 0.020 and ages of 1, 5, 10, and 15 Myrs.
Synthesis models computations are overplotted, the same ages are shown as black points, and the FUV luminosity has been multiplied by
100 for clarity. The isochrones exhibit a step-like behaviour due to the close-atmosphere assignation approach, as described above. It can be
observed that Hα/FUV ratio is close to the main sequence turn-off defined by the isocrones at the corresponding ages. SSP results are at the
left of the main sequence turn-off except during the WR phase (5 Myrs), where they are at the right of the turn-off. Such a situation produces
an asymmetry in ages inferences in the most extreme case of sampling effects (each pixel containing a single star).

In this situation, the ages inferred from the use of mean values of synthesis models and the Hα/FUV ratio would be severely overestimated.
This is because the Hα/FUV ratio of stars at a given age would span towards low values. On the other hand, the same ages would only be
moderately underestimated since the possible maximum Hα/FUV ratio for a given age is similar to the maximum stellar value. I.e., the actual
age would be much younger (lower) than the inferred one, but for sure it cannot be much older (larger) than our inference. Right panel in A3
shows the comparison of the maximum Hα/FUV ratio that a single star would reach as a function of the age. The maximum mean value
of Hα/FUV is obtained from synthesis models results considering all possible cases for metallicity and fscp considered in this work. Except
for ages lower than the WR phase age, the use of the mean value would be obtained by standard SSP codes produced, in the worst case, an
underestimate of log (Age) of 0.2 dex.

For a final evaluation of sampling effects with our methodology, we have computed sets of 104 Monte Carlo simulations for each metallicity
and the considered age range. Assuming the number of stars is in the range from 50 to 5 × 104, following a power law with exponent -1
in order to increases the relevance of sampling effects and assuming too a flat distribution of fscp. The implicit distributions are similar to
the those presented in Section 4.1, except by the inclusion of the distribution in the number of stars and the use of discrete values in the Z
distribution. Despite there is still the problem of using close atmosphere model approach, this set of simulations allows us to obtain a first
order comparison of the method performance of Section 4.1.

The method followed here is a naı̈ve direct inversion of the problems from Monte Carlo simulations. This is, the resulting distributions are
obtained from Monte Carlo simulations in the rectangular region defined by Hαobs ± σ obs(Hα) and FUVobs ± σ obs(FUV). We note that it is
only a first-order approximation (a correct analysis would require to weight the region by a 2D uncorrelated Gaussian distribution, and to
interpolate atmosphere models, which is outside the scope of this paper).

Fig. A4 displays the distribution of ages for the same points shown in Fig. 6. We note that the age distribution is similar for large (young)
and small (old) Hα/FUV values, although Monte Carlo simulations show a fat tail that extends towards lower ages, and a narrow tail for
larger ages. As explained above, this feature dues to the asymmetry between isochrones and synthesis models computations, as well as
our assumption for the distribution of the number of stars which favors extreme sampling effects. The situation is more extreme for the
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Hierarchical Bayesian approach for estimating physical properties 2663

Figure A4. Samples of the probability distributions of the different parameters obtained forma a direct inversion of Monte Carlo simulations, for some pixels
of the image with different modal ages. These plots can be compared with the ones in Fig. 6.

intermediate Hα/FUV values. For well-sampled clusters there is an equilibrium between normal and WR stars, whereas for subsampled pixels
normal stars (hence lower ages) are preferred.

APPEN D IX B: N ESTED SAMPLING A LGORI THM FOR SAMPLI NG THE MARGI NAL POSTERIO R
D I S T R I BU T I O N FO R T H E AG E PA R A M E T E R

In the Bayesian framework, inference proceeds by estimating the posterior distribution p(θ |r̂) and then marginalizing to obtain the age
distribution of the region under study according to equation (9)

p(age|r̂) = p(θ1|r̂) =
“

p(θ |r̂) dθ2dθ3

where the posterior distribution p(θ |r̂) was characterized by an independent and identical distributed sample obtained by using the Nested
Sampling Algorithm (NSA; Skilling 2006).

The main objective of NSA is the estimation of the evidence, p(r̂), but as a by-product we can obtain an independent sample of the posterior
distribution. The NSA is based on the relationship between the likelihood L(θ ) = p(r̂|θ) and the prior volumeX(λ) defined as the bulk of
prior distribution contained within an iso-contour of the likelihood:

X(λ) =
∫

p(r̂|θ )>λ

p(θ ) dθ . (B1)

As λ increases X(λ) decreases from X(0) = 1 to X(∞) = 0. See Skilling (2006), their Figs. 4 and 5 as a perfect example of the nested
sampling strategy and how it works. The likelihood and the evidence are related by

p(r̂) =
∫

p(r̂|θ )dX (B2)

The key of the NSA is to evaluate numerically integral (B2) using directly the prior volume X, instead of rastering over θ , which becomes
impractical for high dimensions (we only deal with three parameters). For any size of θ , the evaluation of the integral in (B2) becomes a
one-dimensional integral over the unit range

p(r̂) =
∫ 1

0
L(X) dX (B3)
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Figure B1. On the left: Multilayer Perceptron for the estimation of the Hα and FUV luminosities from the SED given by SB99 (output layer), depending
on the input parameters θ = (θ1, θ2, θ3) = (age, IMF, Z). The ANN was developed with two hidden layers with n=20 and m=50 nodes respectively, and it
was trained with 70 per cent and validate with 30 per cent of the grid points. The uncertainties due this interpolation were consider negligible. On the right:
Comparison of the ANN (interpolation for the Hα to FUV flux ratio given different parameters than in SB99. Blue line corresponds to the ratios from the ANN
given straightforward the model ratios, whereas the cyan line when the Hα and FUV fluxes are calculated separately. They are in good agreement.
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Figure B2. Assessing mixing and convergence. On the left: Trends of the estimated parameters, for three different chains obtained from the NSA algorithm
application. After the first 100 iterations, all the chains are mixed and stable. On the right: On the top, the Potential Scale Reduction Factor (PSRF) for the
three parameters, always lower than 1.1, indicates a fast convergence of the algorithm. At the middle a plot with the level of autocorrelation in each property,
up to a maximum number of 50 lags. At the bottom, an example of the convergence towards the target distribution (red line indicates the 90 per cent Highest
Posterior Density interval). After a burn-in period of 100 iterations, the chain rapidly converges towards a specific region of the space of parameters in regard
of the age, according to the given Hα to FUV flux ratio. Whereas it remains spread on the fQ(H), as it is expected and already shown in the bidimensional
posteriors distributions at Fig. 7.
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being L(X) the inverse function of X(λ), and dX = p(θ)dθ . The numerical evaluation of (B3) implies dividing the prior X into tiny elements
and sorting them by likelihood volume

0 < Xm < . . . < X2 < X1 < 1

Thus the integral (B3) can be estimated as a weighted sum of the corresponding likelihoods:

p(r̂) �
m∑

i=1

L(Xi)wi (B4)

with wi = (Xi − 1 − Xi + 1)/2.
The resulting sequence of parameters θ1, θ2, . . . , θN , for a run with N objects, already allows posterior samples to be extracted from the

evidence calculation as

p(θ i |r̂) = Lie
−i/N

p(r̂)
(B5)

Thorough explanation and details of the NSA can be found at Skilling (2006). Algorithm 1 sketches the NSA applied to each pixel of the
observed flux ratio image r̂ = F̂Hα/F̂FUV . The full codes implemented in R can be found in https://github.com/carmensg/Age-maps. Fig. B2
shows several tests for assessing mixing and convergence of the chains.

Algorithm 1: Nested Sampling Algorithm

Data: the observed flux ratio, r̂ = F̂Hα/F̂FUV ,

of a certain pixel of the ratio image.
Result: evidence p(r̂) calculation, and the nested sequence of params. θ1, . . . , θN

initialization;
x0 ← 1
z0 ← 0 � z is the evidence, i.e. p(r̂)
j ← 0
repeat

Draw N objects θ
(j )
1 , . . . , θ

(j )
N from prior (1)

for i = 1, . . . , N do
Use θ

(j )
i to generate the model params.

{FHα, fFUV , σHα, σFUV , ρ}i

with SB99+ANN, equations (2) to (5)
Compute the likelihood L

(j )
i ← equation (6)

end
j ← j + 1
Record Lj = min1≤i≤N {L(j−1)

i }
xj ← e−j/N � crude estimation
wj ← 1

2

(
e−(j−1)/N − e−(j+1)/N

)
zj ← zj−1 + Ljwj � approx. by equation (B4)

until Lmaxxj < f zj & j < M;
� terminate the main loop when the largest current likelihood would not increase the current evidence by more than small fraction f

APPEN D IX C : IMAGE SEGMENTATION

We describe the fully Bayesian approach for the model presented at Section 4.2. Where the aim is to cluster pixels into homogeneous
classes, without prior definition of those classes, based only on spatial coherence. Suppose that the ‘true’ image x can only take a discrete
set of values μ1, . . . , μG, and the assumed prior on x is a Potts model with G categories, equation (11). The variables are considered as
random bidimensional arrays x = {xi, i ∈ I}, whose elements are indexed by the lattice I (the location of the pixels), and related through a
neighborhood relation.

The observed image y is a degraded version of x by additive Gaussian noise, where yi are conditional independent given x. So the
distribution of y is given by equation (12).

Using Bayes theorem we know how to construct the posterior distribution of x| y. The aim is to draw inferences about x based on the
posterior p(x| y).
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2666 M. C. Sánchez-Gil et al.

Algorithm 2: Hybrid Gibbs Algorithm for the Image segmentation

Data: y observed flux ratio image, G categories
Result: sampling the posterior distr. of x over the full conditional distr. of the model parameters {μ, σ, β}
initialization;
x, μ(0), σ 2(0) ← 0, β (0) ← 1
{xcumig}|I|×G ← 0 for estimation of the x̂MPM

i (C5)
for t = 1, . . . , niter do

S(x) ← 0
for i = 1, . . . , |I| do

for g = 1, . . . , G do
ni,g = ∑

j∼i Ixi=g store num. of neighbours of the class g

end
Draw xi | y, μ(t−1), σ 2(t−1), β (t−1) from post. d. (13)
xcumi,xi

← xcumi,xi
+ 1

S(x) ← S(x) + ni,g

end
for g = 1, . . . , G do

Draw μ(t)
g from truncated normal (C2)N

(∑
i∈I Ixi=gyi∑
i∈I Ixi=g

, σ 2(t−1)∑
i∈I Ixi=g

)
I[

μ
(t)
g−1,μ

(t−1)
g+1

]

end

Draw σ 2(t) from Inv − �

(
|I|2/2,

∑
i∈I

(yi − μxi
)2
/2

)
(C3)

Draw β (t) from post. distr. (C4) with MCMC sampler:
Draw β̃ from the uniform proposal:

U
(
β (t−1) − h, β (t−1) + h

)
Compute the acceptance ratio:

ρ =
{

Z(β (t−1))

Z(β̃)
exp

(
(β̃ − β (t−1))S(x)

)} ∧ 1

Set β (t) = β̃ with probability ρ

end

We treat the parameters β, σ, μ as variables, this is as hyper parameters. As they are nuisance parameters, and there is no additional prior
information, the chosen priors are the following uniforms

β ∼ U(0, 2)

μg ∼ U(ymin, ymax)

p(σ 2) ∝ σ−2

as described in Section 4.2.
Assuming independent priors for these parameters, the joint posterior distribution is therefore

p(x, β, σ 2, μ| y) ∝ p(x, β, σ 2, μ) p( y|x, β, σ 2,μ)

∝ p(β) p(σ 2) p(μ) p(x|β) p( y|x, β, σ 2, μ)

∝ (σ 2)−(|I|/2+1)

Z(β)
× exp

⎧⎨⎩β
∑
j∼i

Ixj =xi
− 1

2σ 2

∑
i∈I

(yi − μxi
)2

⎫⎬⎭ (C1)

For sampling purposes (implemented in the hybrid Gibbs Algorithm 2), it is necessary the full conditionals distributions of the parameters
(see Marin & Robert 2014, for more information). The conditional distribution for x is given in equation (13), P (xi = g| y, β, σ 2,μ) ∝
exp

{
β
∑

j∼i Ixj =g − 1
2σ 2 (yi − μg)2

}
.

Given x the pixels associated to each category g can be separated, so the parameters μg can be simulated indepentdently as

P (μg| y, x, σ 2) ∝ exp

⎧⎨⎩− 1

2σ 2

∑
i:xi=g

(yi − μg)2

⎫⎬⎭
∝ exp

{
− ng

2σ 2

(
μg − sg

ng

)2
}

(C2)

a truncated normal on [ymin, ymax], or [μg − 1, μg + 1] if we establish the ordering ymin ≤ μ1 ≤ . . . ≤ μG ≤ ymax (setting μ0 = ymin and
μG + 1 = ymax). Where ng = ∑

i∈I Ixi=g and sg = ∑
i∈I Ixi=gyi .
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The conditional distribution of σ 2 is

P (σ 2| y, x) ∝ (σ 2)−(|I|/2+1)exp

{
−1

2σ 2

∑
i∈I

(yi − μxi
)2

}
(C3)

an inverse gamma distribution with parameters |I|2/2 and
∑
i∈I

(yi − μxi
)2/2.

And finally, the conditional distribution of β is

p(β|x) ∝ 1

Z(β)
exp

⎛⎝β
∑
j∼i

Ixj =xi

⎞⎠ I[0,βcrit ] (C4)

since β only depends on x. Together the difficulty of the calculation of the normalising coonstant Z(β), we have this is no for longer a
Potts model, or some known distribution function. We follow the path sampling methodology to estimate Z(β), described in Marin & Robert
(2014), in order to implement the MCMC sampler at the end of the Algorithm 2.

To give an estimation of the corresponding image x of the flux ratio, given the observed one y, classified by G homogeneous regions with
a common flux ratio mean μg we use the associated marginal posterior mode (MPM) estimator.

x̂MPM
i = argmax1≤g≤GPπ (xi = g|y), i ∈ I

� max
1≤g≤G

N∑
n=1

I
x

(n)
i

=g
(C5)

The later equation gives an approximation of the MPM based on a simulation {x(n)}n=1,...,N from the posterior distribution of x, Marin &
Robert (2014).

All the codes implemented in R can be found in https://github.com/carmensg/Age-maps.

APP ENDIX D : AGE MAPS FOR THE GALAXI ES FROM PA PER I

Next, the age maps for the galaxies sample in Paper I are also included. In Figs. D1–D6, top plots show the comparison between the age maps
obtained in Paper I with those applying the Bayesian approach, from Section 4.1.

At bottom plots it is checked the uncertainties in age estimation when it is used another estimator than the Mode. For example the percentiles
of the resulting sample from the age posterior probability function. The extreme cases determine a 90 per cent posterior credible interval for
the age estimation.

Figure D1. M51 age maps. Top left: The discrete age map obtained in Paper I. Top right: Bayesian age map, calculated by method of Sec. 4.1. Bottom:
Different Bayesian age maps (BAM), calculated in Sec. 4.1, but taken this time 5 per cent, 25 per cent, 50 per cent, 75 per cent, and 95 per cent percentiles
from the age posterior probability distribution. Axes are the distance to the galactic centres (kpc units).
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2668 M. C. Sánchez-Gil et al.

Figure D2. Same as Fig. D1, but for M74.

Figure D3. Same as Fig. D1, but for M63.
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Figure D4. Same as Fig. D1, but for M94.

Figure D5. Same as Fig. D1, but for M100.
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Figure D6. Same as Fig. D1, but for IC2574.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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