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ABSTRACT

Context. Variability caused by stellar activity represents a challenge to the discovery and characterization of terrestrial exoplanets and complicates
the interpretation of atmospheric planetary signals.
Aims. We aim to use a detailed modeling tool to reproduce the effect of active regions on radial velocity measurements, which aids the identification
of the key parameters that have an impact on the induced variability.
Methods. We analyzed the effect of stellar activity on radial velocities as a function of wavelength by simulating the impact of the properties
of spots, shifts induced by convective motions, and rotation. We focused our modeling effort on the active star YZ CMi (GJ 285), which was
photometrically and spectroscopically monitored with CARMENES and the Telescopi Joan Oró.
Results. We demonstrate that radial velocity curves at different wavelengths yield determinations of key properties of active regions, including
spot-filling factor, temperature contrast, and location, thus solving the degeneracy between them. Most notably, our model is also sensitive to
convective motions. Results indicate a reduced convective shift for M dwarfs when compared to solar-type stars (in agreement with theoretical
extrapolations) and points to a small global convective redshift instead of blueshift.
Conclusions. Using a novel approach based on simultaneous chromatic radial velocities and light curves, we can set strong constraints on stellar
activity, including an elusive parameter such as the net convective motion effect.
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1. Introduction

Late-type dwarf stars are a strong focus of attention in the search
for Earth-like planets using radial velocities (RVs), because the
amplitude of their signals is larger than for solar-type stars (e.g.,
Marcy & Butler 1998; Bonfils et al. 2013; Perger et al. 2017).
However, with state-of-the-art instruments reaching ∼1 m s−1 or
even better uncertainties, it is not instrumental precision but
astrophysical jitter that effectively limits the detection of exo-
planets. This is particularly the case of some M-dwarf stars,
because their intrinsic high level of magnetic activity causes the
appearance of photospheric features such as stellar spots produc-
ing signals associated with the rotation period, which can ham-
per exoplanet detection efforts (Benedict et al. 1993). Several
works discussing controversial exoplanet detections due to the
stellar intrinsic jitter or spurious signals in RV curves caused by
data treatment have been published (see, e.g., Robertson et al.
2014, 2015; Rajpaul et al. 2015). This reflects the difficulty of
disentangling exoplanet signals from stellar jitter, even with the
aid of stellar activity indices derived from spectroscopic data.
However, it is also obvious that precise modeling of spot proper-
ties can help to disentangle and correct for stellar activity effects,
thus enabling the detection of exoplanet signals that would oth-
erwise be hidden within the stellar RV jitter.

A number of studies have shown that RV variability caused
by stellar spots is wavelength dependent, because the flux con-
trast of cold spots and hot faculae is smaller toward the infrared

(Desort et al. 2007; Reiners et al. 2010). Thus, in principle, mea-
surements obtained at different spectral bands can be used to
correct for intrinsic stellar RV jitter. However, the picture may
be much more complicated because the effects of limb dark-
ening, convection, and magnetic field, for instance, can cause
both amplitude and phase differences between radial velocities
derived from spectra at different wavelengths. On the other hand,
these differential wavelength-dependent effects can be used to
constrain the properties of stellar active regions.

The influence of stellar heterogeneities on RVs has been thor-
oughly studied in the past years by modeling the stars with sur-
face elements at different effective temperatures representing the
immaculate photosphere, spots, and faculae (see, e.g., Saar &
Donahue 1997; Hatzes 2002; Lanza et al. 2007; Boisse et al.
2012). Photometric and RV variability due to stellar spots are
then computed by disk-integrating the spectra corresponding to
each surface element at different rotation phases. This approach
only takes into account the effect of the flux dependence with
effective temperature.

It is well known that the presence of magnetic fields also
changes the properties of the convective layer of dwarf stars
(Title et al. 1987; Hanslmeier et al. 1991). Convective cells cause
significant effects on RVs, as motions produce net shifts and dis-
tortions on spectral lines (Dravins 1999; Livingston et al. 1999).
For example, Gray (2009) and Meunier et al. (2017) showed that
RVs derived from different spectral lines depend on the depth of
the line, which also affects the shape and absolute shift of the
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cross-correlation function bisectors. This makes the estimation
of stellar convective motions strongly dependent on the spectral
lines employed and on the temperature distribution of surface
elements at the time of observation. This is true even for the
Sun, for which measures of convective (blue)shift range from
200 m s−1 to 500 m s−1 (Meunier et al. 2010; Lanza et al. 2010).
Meunier et al. (2017) used the differential Doppler displace-
ment between the spectral lines and their dependence on the line
depth to compute the convective shift for a sample of G0 to K2
main-sequence stars, and found that the absolute value of the
convective shift decreases toward cooler stars. Hydrodynamic
numerical simulations performed by Allende Prieto et al. (2013)
showed a similar dependence of the convective blueshift on spec-
tral type. However, there appear to be no direct measurements of
the convective shift for M dwarfs, and it is not yet certain if the
decreasing trend of the convective shift continues toward late-
type stars, or even if it becomes convective redshift, as some
indirect measurements suggest (Kürster et al. 2003).

Regarding general active region properties, measurements
of spot sizes and locations have been made using the Doppler
imaging technique (Vogt & Penrod 1983), obtaining filling fac-
tors that reach ∼10% of the stellar surface (Strassmeier 2009),
or even larger, as were found studying magnetic regions with
Zeeman-Doppler imaging (Donati et al. 1997; Morin et al.
2008). Other techniques such as light-curve inversion (Messina
et al. 1999; Berdyugina et al. 2002) can be used to retrieve spot
sizes and contrast temperatures, although with this method the
determination of spot temperature is strongly correlated with
spot size. However, this limitation can be overcome by analyz-
ing light curves covering a wide range of photometric bands
(Mallonn et al. 2018; Rosich et al. 2020). Modeling of photo-
metric variations of late-type active stars has revealed that cool
starspots are often quite large, covering up to 20% of the stel-
lar surface (Berdyugina 2005). Regarding spot contrast tem-
peratures, Berdyugina (2005) gave a representative sample of
measurements suggesting values decreasing from ∼2000 K for
late F- and G-type stars to ∼200 K for mid-M dwarfs. It should be
noted that this work used a very limited and heterogeneous sam-
ple of stars, particularly M dwarfs, and combined spot tempera-
tures determined from different methods, some of them prone to
systematic biases and degeneracies.

In this paper, we demonstrate that the StarSim stellar
activity model code (Herrero et al. 2016; Rosich et al. 2020)
can provide stringent constraints on the properties of spots. In
particular, a simultaneous fit to light and RV curves for several
wavelength bands allows us to break the degeneracy between
the spot coverage area and the temperature contrast, as well as to
analyze the convective shift, providing a novel approach to mea-
sure this parameter. The chromatic index (CRX) introduced by
Zechmeister et al. (2018) in the context of the CARMENES
survey1 (Calar Alto high-Resolution search for M dwarfs with
Exo-earths with Near-infrared and optical Échelle Spectro-
graphs; Quirrenbach et al. 2016, 2018), which measures the
dependence of the radial velocity on wavelength, is ideally suited
to the study of stellar activity effects. This index is defined as
the slope of a linear fit to the RV as a function of the cen-
tral wavelength logarithm of each order in a cross-dispersed
échelle spectrum at each time step. Its use as an activity indi-
cator relies on the wavelength dependence of photospheric het-
erogeneities because of the temperature contrast (Barnes et al.
2011; Jeffers et al. 2014). This dependence generally causes a
decrease in the activity-induced RV variations toward the red-

1 http://carmenes.caha.es

dest orders (Desort et al. 2007), although strong magnetic fields
may also have a large impact at longer wavelengths due to the
Zeeman effect (Reiners et al. 2013; Shulyak et al. 2019).

In Sect. 2, we describe the model that we used to simulate
time series of a rotating star with active regions, and we ana-
lyze which photospheric parameters play an important role. In
Sect. 3, we present the spectroscopic and photometric observa-
tions of the active star YZ CMi and the results of the model-
ing of the spot parameters. Finally, in Sect. 4, we compare our
results with previous parameter estimations using other methods
and present our conclusions.

2. Modeling a spotted rotating star with StarSim

2.1. The StarSim model

StarSim is a sophisticated model used for simulating the effects
of stellar spots on light and radial velocity curves. It allows us to
generate precise synthetic photometric and spectroscopic time-
series data of a spotted rotating photosphere. We briefly intro-
duce the key aspects of the model here, but we refer the reader
to Herrero et al. (2016) for a detailed description. The model is
based on the integration of the spectral contribution of a fine grid
of surface elements.

Synthetic PHOENIX spectra of different temperatures
(Husser et al. 2013) are assigned to each of the surface elements,
with a different temperature depending on the properties of the
region (quiet photosphere, spot, or facula), and Doppler-shifted
according to the projected velocity of the surface element. Pho-
tometric light curves or RVs are then computed by integrating all
surface elements. To speed up the computation of RVs and other
spectral indices related to the cross-correlation function (CCF),
StarSim initially generates the CCFs produced from the spec-
trum of a single photosphere, spot, and facular element, and then
integrates the entire visible surface using CCFs instead of spec-
tra. A slow rotator template or a user-defined mask of spectral
lines can be used to calculate the CCFs. Then, the contribution
from each surface element is adjusted for the limb darkening
computed from Kurucz ATLAS9 models (Kurucz 2017) at the
specific angle with respect to the line of sight. StarSim defines
the facular elements as circular regions around spots, whose area
is controlled by the facula-to-spot area ratio. To properly account
for the center-to-limb variations of convection effects in active
regions, StarSim subtracts the bisector of the CCFs computed
from the original PHOENIX spectra and then adds the bisector
computed from CIFIST 3D models of a Sun-like star (Ludwig
et al. 2009). The program also allows the adding of an arbitrary
extra convective shift (blueshift or redshift) to the bisector of the
CCFs corresponding to regions covered with spots or faculae.
Finally, RV values are determined from the CCF at each epoch,
which takes into account the distribution of spots and faculae and
their properties, by fitting a Gaussian function.

Several stellar input parameters can be set in StarSim, such
as the effective temperature of the star, the spot temperature, the
position, size, and number of active regions, the convective shift,
the stellar rotation period, the radius of the star, its surface grav-
ity, and the inclination of the stellar spin axis with respect to the
line of sight. Furthermore, one can select the wavelength range
and compute time-series data of the photometry, RV, and CCF
parameters.

To calculate the CRX parameter, we simulated RV curves
for different wavelength ranges and measured their wavelength
dependence. For this study, we used wavelength ranges matching
those of the CARMENES visual channel échelle orders (i.e., 61

A69, page 2 of 12

http://carmenes.caha.es


D. Baroch et al.: Stellar activity constraints from chromatic radial velocities

orders from 520 to 960 nm, Quirrenbach et al. 2016, 2018) to
be consistent with our observational data. However, following
Zechmeister et al. (2018), to compute the simulated CRX, we
used the 40 orders (échelle orders 68 to 108) where the signal-
to-noise ratio of the spectra is the highest, and thus observational
RVs have lower uncertainties. The CRX is then computed as the
slope of a linear fit to the RV as a function of the logarithm of
the central wavelength of each order.

2.2. Dependence on photospheric parameters

To study the dependence of the RV and CRX time series on the
properties of active regions, we ran several simulations consid-
ering a rotating spotted star. For simplicity, we assumed a sin-
gle circular spot on the photosphere, and tested different values
for the ratio of stellar surface covered by the spot (filling fac-
tor, ff ), the temperature difference between the photosphere and
the spot (∆T ≡ Tph − Tsp), and the convective shift (CS). As
explained in Sect. 2.1, StarSim introduces the influence of con-
vective motions by adding a solar-like bisector to the CCF of
each surface element. Thus, the solar convective blueshift is used
as a reference. As an estimation of its absolute value, in our case
a solar blueshift of 300 m s−1 (Dravins et al. 1981; Cavallini et al.
1985; Löhner-Böttcher et al. 2018) was subtracted from all CS
values shown in this work. Therefore, the absolute values of CS
given in this work have a dependence on the precise determina-
tion of the convective blueshift from CIFIST 3D models.

Stellar parameters such as effective temperature, surface
gravity, and metallicity also have an impact on the RV and CRX
time series due to their effects on stellar spectra. Besides this,
the rotation of the star, its inclination, the latitude of the spot,
and the presence of faculae do also play a role. However, these
stellar parameters can be determined from fits to high-resolution
spectra or through independent data. For this reason, we focus
only on the impact of the properties of spots on RV and CRX
time series.

For our simulations, we considered the case of a mid-M
dwarf star approximately matching the properties of YZ CMi,
which we use as a case study to compare with real observa-
tions later in Sect. 3. We fixed the stellar photospheric effective
temperature to a value of 3100 K, the stellar surface gravity to
log g = 5.0, and we adopted solar metallicity. We assume an
inclination of the rotation axis of i = 90 deg (edge-on), and we
introduce a spot on the equator, with no evolution and no differ-
ential rotation. The facula-to-spot area ratio was set to zero is as
commonly found for active M-dwarf stars (Herrero et al. 2016;
Mallonn et al. 2018; Rosich et al. 2020), and also as suggested by
convection in magnetohydrodynamic simulations (Beeck et al.
2011, 2015).

Figure 1 illustrates the outcome of the simulations as a func-
tion of ff, ∆T and CS for RV and CRX. The bottom panels
show that the CRX is strongly anti-correlated with the RV. As
other authors have previously shown for the case of the bisec-
tor span (see, e.g., Boisse et al. 2011; Figueira et al. 2013), the
CRX-RV anti-correlation is not a straight line, but it shows a
lemniscate-like structure. The left panels in Fig. 1 show that
varying ff mainly produces a change in the amplitude of both
the RV and CRX time series, which in turn changes the scale of
the correlation but preserving its slope and shape. The middle
panels display the effect caused by different values of ∆T . This
parameter has a much higher impact on the amplitude of the RV
curve than on the CRX, producing a significant change in the
slope of the correlation. Finally, CS changes the phase at which
the RV peaks, and only slightly alters the asymmetry between

maximum and minimum of both the RV and CRX. This change
in phase does not produce any change in the scale and slope of
the RV-CRX correlation, but it has a significant imprint on its
shape.

The different effects of stellar spot parameters on RV and
CRX data can be understood by considering the main sources
of variability, which are: (i) the flux effect caused by the con-
trast between inhomogeneities and the immaculate photosphere
(Dumusque et al. 2014), and (ii) the inhibition of convection in
active regions (Dravins et al. 1981; Stein et al. 1992; Chabrier
et al. 2007). Both effects cause periodic variations of the mea-
sured RV of spotted stars. However, their dependence on rota-
tion phase (or time) is different (see, e.g., Fig. 7 in Herrero
et al. 2016). The flux effect vanishes when the spot is facing the
observer (central phase) because the spot covers equivalent sur-
face areas moving toward and away from the observer, hence,
the net effect is canceled. Besides this, the flux effect is anti-
symmetric with respect to this point, meaning it causes an RV
maximum when the spot crosses the hemisphere approaching the
observer, and a minimum on the other side. On the other hand,
the convection effect is maximal at the central phase, when the
projected filling factor of the spot is largest, and the RV vari-
ability is symmetric with respect to this point. The difference
between both effects produces a phase shift of the RV peaks for
different wavelengths, causing the∞ shape of the CRX-RV cor-
relation, which becomes asymmetric depending on the parame-
ters. The top-right panel in Fig. 1 shows that the phase shifts of
RV time series are dominated by CS, while CRX remains almost
unaffected (middle-right panel). The peak-to-peak amplitudes of
both observables are mainly determined by the size and the tem-
perature of the spot. This makes the analysis of chromatic radial
velocities a unique tool to constrain CS, by simultaneously fit-
ting the peak-to-peak amplitude and the phase shift of RV and
CRX time series.

3. Fitting chromatic radial velocities of YZ CMi

3.1. The active star YZ CMi

The star YZ CMi (GJ 285) is a young star belonging to the
β Pictoris moving group (Alonso-Floriano et al. 2015, and
references therein). Its main properties are listed in Table 1.
Maanen (1945) first announced the BY Dra-type photometric
variability of the star, which was also classified as a flaring star
by Lippincott (1952), showing UV Cet-type flares. Several flar-
ing events were reported later (Andrews 1966; Sanwal 1976;
Zhilyaev et al. 2011). A rotation period of 2.77 d from photomet-
ric variations was reported by Chugainov (1974) and confirmed
by Pettersen et al. (1983). Recent estimations of the rotation
period yielded very similar values (2.7758±0.0006 d and 2.776±
0.010 d, Morin et al. 2008; Díez Alonso et al. 2019, respec-
tively). Bondar’ et al. (2019) found an activity cycle of 27.5 ±
2.0 yr, estimated from more than 80 years of archival photomet-
ric observations, with peak-to-peak variations of 0.2−0.3 mag.
Estimations of the effective temperature of YZ CMi range from
3045 K (from synthetic spectra fitting; Rojas-Ayala et al. 2012)
to 3600 K (from spectral color indices; Zboril 2003).

The variability of the star has been extensively studied. The
large color excess of YZ CMi indicates the presence of cool spots
covering a large fraction of its surface. Zboril (2003) computed
spot solutions from light curves taken in different seasons, and
found a typical spot coverage between 10% and 25% of the
surface, resulting from a single spot at a co-latitude ∼15−35 deg
from the pole and temperature ∼500 K cooler than the
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Fig. 1. Effect of properties of stellar spots on the RV (top panels) and CRX (middle panels) phase curves and on the RV-CRX correlation (bottom
panels) for a mid-M dwarf. Simulations of varying ff (left panels), ∆T (middle panels), and CS (right panels) are shown while keeping the other
parameters constant to a set of reference values. These reference values are 1.7% for the filling factor, 250 K for ∆T , and 0 m s−1 for CS. We note
the different vertical scale in each plot, and that the horizontal axes are different in the bottom panels.

surrounding photosphere, all assuming an inclination rang-
ing from 60 deg to 75 deg. Similarly, Alekseev & Kozhevnikova
(2017) used 11 epochs of observations over 30 years of broad-
band photometry to compute the spottedness of YZ CMi. The
authors assumed an effective temperature of 3300 K and an
inclination of i = 60 deg, obtaining two belts of spots 210 ± 70 K
cooler than the photosphere, which were mainly located at lati-
tudes of 12−15 deg, and covering up to 38% of the stellar surface.
Using Zeeman-Doppler imaging and 25 spectropolarimetric
observations taken between 2007 and 2008, Morin et al. (2008)
found that the visible pole is covered by a large spot, with strong
axisymmetry in the magnetic energy modes, hinting toward a
non-visible spot at the other hemisphere. Morin et al. (2008) also
inferred negligible differential rotation (0.0 ± 1.8 m rad d−1).

We homogeneously derived the bolometric luminosity L and
effective temperature Teff of YZ CMi using broadband photom-
etry in 17 passbands, from optical blue BT (Tycho-2, Høg et al.
2000) to mid-infrared W4 (AllWISE, Cutri et al. 2013). None
of the measurements used, especially at the bluest passbands,
seemed to be affected by strong flaring activity. To determine
L and Teff , we performed fits to the spectral energy distribution
(SED), employing the BT-Settl CIFIST theoretical grid of mod-
els (Baraffe et al. 2015) and the Virtual Observatory SED Ana-
lyzer (VOSA, Bayo et al. 2008). The procedure is described in
detail in Cifuentes et al. (2020). We took into account the long-
term photometric variability of YZ CMi in the blue optical by

re-running the SED fitting at the brightness maximum and min-
imum. For that, we were very conservative and used the largest
reported variability amplitude of 0.3 mag in the B band (Bondar
& Katsova 2018), over a scale of decades, to recompute extreme
values of bolometric luminosity. We approximately extrapolated
such amplitudes to 0.2 mag in the red optical, 0.1 mag in the
near infrared, and 0.05 mag in the mid infrared, as observed in
multiband photometric monitoring of very active M dwarfs (e.g.,
Caballero et al. 2006). The corresponding L and Teff uncertain-
ties of YZ CMi are thus larger than for invariable field M dwarfs
of similar brightness. The radius was calculated using Stefan-
Boltzmann’s law following Schweitzer et al. (2019) and propa-
gating the uncertainties in L and Teff .

We estimated the inclination of the stellar spin axis from
the radius, the rotation period and the projected velocity, which
yielded i = 36+17

−14 deg. The uncertainty was computed from 106

random resamplings of the input parameters according to their
quoted uncertainties. The lower inclination value that we find,
contrary to other studies (Zboril 2003; Morin et al. 2008; Alekseev
& Kozhevnikova 2017), arises from the different projected veloc-
ity and stellar radius used. In particular, projected rotational veloc-
ities of 5.0 and 6.5 km s−1 (Delfosse et al. 1998; Reiners & Basri
2007) and stellar radii of 0.30 and 0.37 R� (Delfosse et al. 2000;
Pettersen 1980) were reported. Based on CARMENES data,
Reiners et al. (2018) reported v sin i = 4.0 ± 1.5 km s−1, and we
find a stellar radius of 0.369 R� following Schweitzer et al. (2019).
The resulting parameters are listed in Table 1.
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Table 1. Basic properties of YZ CMi.

Parameters Values Ref.

GJ 285 GJ79
Karmn J07446+035 AF15
α (J2000) 07:44:40.17 Gaia DR2
δ (J2000) +03:33:08.9 Gaia DR2
d [pc] 5.9874 ± 0.0021 Gaia DR2
G [mag] 9.6807 ± 0.0010 Gaia DR2
J [mag] 6.581 ± 0.024 2MASS
Sp. type M4.5 V PMSU
Teff [K] 3100 ± 50 This work
log g [cgs] 5.0 ± 0.5 Lep13
L? [10−4 L�] 113+17

−14 This work
R? [R�] 0.369+0.027

−0.055 This work
pEW(Hα) [Å] −7.097 ± 0.023 Jef18
v sin i [km s−1] 4.0 ± 1.5 Rei18
Prot [d] 2.776 ± 0.010 DA19
i [deg] 36+17

−14 This work

References. 2MASS: Skrutskie et al. (2006); AF15: Alonso-Floriano
et al. (2015); DA19: Díez Alonso et al. (2019); Gaia DR2:
Gaia Collaboration (2016, 2018); GJ79: Gliese & Jahreiß (1979); Jef18:
Jeffers et al. (2018); Lep13: Lépine et al. (2013); PMSU: Hawley et al.
(1996); Rei18: Reiners et al. (2018).

The selection of this target for analysis of its stellar activ-
ity properties was based on two main points: (i) it is one of the
M-dwarf stars with the strongest activity-induced RV variability
within the CARMENES survey, with peak-to-peak amplitudes of
∼300 m s−1, and (ii) it is also one of the stars with the strongest
RV-CRX correlation (Tal-Or et al. 2018), which could be indica-
tive of large spots.

3.2. CARMENES observations

YZ CMi is one of the targets of the CARMENES survey
(Reiners et al. 2018). CARMENES is a double-channel spec-
trometer of which the aim is the discovery of exoplanets orbit-
ing M-dwarf stars. It obtains high-resolution spectra of stars
simultaneously in two different wavelength ranges, one in the
red-visible and another one in the near-infrared, covering from
520 to 960 nm and from 960 to 1710 nm, respectively. Besides
radial velocities and some commonly used spectral indices, the
CARMENES serval pipeline Zechmeister et al. (2018) also
computes the CRX. YZ CMi was observed between 2016 and
2018 at 49 epochs. To mitigate the possible effects of spot evolu-
tion, an observational campaign to sample all rotational phases
was conducted between September 2016 and May 2017, yield-
ing a total of 27 valid observations, which are used in this work.
Figure 2 displays the RV and CRX time series, and all used data
are available in Table A.1. Figure 3 shows the same measure-
ments, but phase folded to the stellar rotation period of 2.776 d
(Díez Alonso et al. 2019). RV and CRX are anti-correlated, as
was expected given the results of the simulations in Sect. 2.2.

3.3. Photometric data

We also secured photometric monitoring of YZ CMi contem-
poraneously to RV observations. We obtained 460 photometric
measurements using a Johnson R filter with the Telescopi Joan
Oró (TJO), located at the Montsec Astronomical Observatory in
Lleida, Spain. The TJO is a fully-robotic 0.8 m Ritchey-Chrétien
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telescope. The photometric data were obtained with the MEIA2
instrument, an Andor 2k× 2k CCD camera with a plate scale of
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0.36 arcsec per pixel. We gathered these observations between
October 2016 and April 2017. After rebinning the data with a
cadence of 30 min, we performed a 2.5σ-clipping to the residu-
als after a sinusoidal fit, in order to remove outliers due to flaring
events, which resulted in a total of 89 photometric epochs. The
bottom panels in Figs. 2 and 3 display the resulting photometric
data.

3.4. Surface distribution of the active regions

Before analyzing the impact of the size and the temperature of
spots and the convective shift on the RV and CRX time series of
YZ CMi, we needed to estimate the distribution of active regions
on the stellar photosphere, particularly their latitude. Although
light curves are not strongly sensitive to the latitude of active
regions, including RV data in the analysis does solve this prob-
lem. This is especially true in the case of YZ CMi, for which
a constraint on the inclination of the spin axis is available. For
this purpose, we made use of the implementation of the inverse
problem in StarSim, which allows the fitting of the spot distri-
bution that best matches light or radial velocity curves (Rosich
et al. 2020). This new implementation solves the inverse prob-
lem by using several small active elements on the star, which
may be concentrated to reproduce spot groups. We used the
stellar input parameters from Table 1, and we estimated the
latitude of active regions from the observed RV and photomet-
ric time series assuming different temperature contrast values
in the range ∆T = 50−400 K. We found that, while the size
of active elements showed some correlation with their tempera-
ture contrast, their latitudes were always in the range 75−81 deg.
The inversion of the RVs using a model with 20 active surface
elements resulted in all of them concentrated around the same
region. For that reason, and to speed up and simplify the fit-
ting procedure, we decided to further model the data with a
larger single non-evolving circular spot located at a latitude of
λspot = 78 deg.

3.5. Fit spot parameters

Assuming the spot model described above, we analyzed the
impact of ∆T , ff, and CS on the RV, CRX, and photometric
time series of YZ CMi, and we determined the values that best
fit all datasets simultaneously. The simulation of RV data using
StarSim involves the computation of the CCF for each surface
element of the star, a process that is computationally expensive.
Therefore, we decided to fix the stellar parameters to those listed
in Table 1, and compared our simulations with the observed
RV, CRX, and light curves on a grid of the ∆T -ff -CS param-
eter space. To explore the parameter domain, the likelihood of
the StarSim models given the observed datasets was first com-
puted on a coarse grid, with 20 K, ∼3.5%, and 50 m s−1 steps
in ∆T , ff, and CS, respectively. We subsequently defined a finer
grid with step sizes divided by four to explore the regions with
higher likelihood values. The likelihood at each grid point was
computed by also considering an offset to the RVs (γRV), and
a global reference time shift to the RVs, CRX, and photometry
(∆tref), relating the central longitude of the star to the rotational
phase. Finally, we also added jitter terms (σRV, σCRX, σphot) to
the RVs, CRX, and photometry, respectively, to account for the
limitations of a single-spot model. These jitter terms are added
in quadrature to the corresponding uncertainties to evaluate the
likelihood function, as defined in Baluev (2009). The final model
likelihood value reported is the sum of the individual likelihood
values obtained for the RV, CRX, and photometry datasets.

Figure 4 displays the log-likelihood difference with respect
to the best model, ∆ ln L, in the ∆T–ff plane for different val-
ues of CS. Dotted symbols correspond to the inspected grid of
parameters, which is finer in the regions corresponding to the
best fit of observations. The ∆ ln L corresponding to the RV,
CRX, and photometry fits are independently plotted with blue,
red, and green contours, respectively, while black contours indi-
cate the joint values. Although photometric fits are independent
of the convective shift, they constrain the ff and ∆T correlation
very well. On the other hand, both RV and CRX are much more
sensitive to CS changes, which breaks the strong ff–∆T correla-
tion present in the photometry fits. The different panels in Fig. 4
show that, in spite of the similar solution ranges for ff and ∆T ,
the CRX provides a stringent constraint on the upper value of
CS. As a further check, we ran a test excluding the CRX dataset
and we found that the uncertainty on the value of CS increases
by a factor of ∼2. Thus, although the filling factor and the spot
temperature contrast can be determined from a simultaneous fit
to the RV and photometry only, the CRX provides valuable infor-
mation to constrain the convective shift. Overlap between pho-
tometry, RV, and CRX ∆ ln L surfaces (i.e., best simultaneous fit
to all datasets) occurs around CS ∼ 50 m s−1, suggesting a global
convective redshift for YZ CMi. We note, however, that although
the best solutions yield convective redshift, there are acceptable
solutions (∆ ln L < 10) located in the convective blueshift region.

To estimate the optimal parameters fitting the CARMENES
RV and CRX data and the TJO light curve, along with their
uncertainties, we interpolated the ln L hypersurface over the grid
used to search for the best solution (∆T , ff, CS), also includ-
ing the adjusted parameters (γRV, ∆tref , σRV, σCRX, and σphot).
For this purpose, we used a Gaussian process model based on a
squared exponential covariance function, similarly to the like-
lihood inference explained by Fleming & VanderPlas (2018).
Compared to a linear interpolation, this interpolator produces
smoother profiles, and can also infer maxima outside the eval-
uated points. We maximized the likelihood using the Powell
method inside the scipy.optimize Python package. Formal
uncertainties were derived from the covariance matrix, computed
from the Hessian evaluated at the maximum. Table 2 lists the
parameters of the best fitting model, together with the minimum
and maximum values found using other stellar parameters (see
below). The RV and CRX fits using these parameters are shown
in the top panel of Fig. 3, while the bottom panel shows the fit
to the photometry. Figure 5 illustrates the correlation between
RV and CRX, showing that the cyclic evolution is well repro-
duced by the StarSim model. Comparing Fig. 5 with the bot-
tom panels in Fig. 1, YZ CMi data show better consistency with
the RV-CRX correlation with negative CS than with the∞ shape
corresponding to a null CS effect. This correlation can in fact
be used as a clear observable of convective blueshift or redshift
thanks to the asymmetry introduced toward positive or negative
velocities, respectively. Although the bottom-left panel in this
figure shows a twisted loop, this also depends on the filling fac-
tor and temperature of spots. For YZ CMi, the CS is ∼6 times
smaller than in the simulations in Fig. 1, but the filling factor is
also ∼6 times larger, causing the untwisted loop.

The uncertainties of the spot parameters may be underesti-
mated, because we assumed fixed stellar properties. We remind
the reader that this is due to the computational effort needed
to run the RV simulations, which prevents us from exploring
solutions also including stellar properties as free parameters. To
study the impact on the parameter uncertainties, we repeated the
process to simultaneously fit the RV and CRX data considering
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Fig. 4. ∆ ln L contour plots corresponding to the RV (blue), CRX (red), photometry (green), and combined (black) fits for different CS slices. The
colored regions are within a ∆ ln L = 10 with respect to the best fit among all the CS slices. Black dots indicate the points of contrast temperature
and filling factor used to sample the parameter space.

a set of values for the effective temperature (Teff) of YZ CMi
and its spin axis inclination (i) spanning the reported uncertain-
ties in Table 1. These are the parameters identified to poten-
tially induce changes on the simulated RV. A different Teff could
potentially change the temperature and size of spots required to
reproduce the observations, while a change in i may also have
an impact on the latitude and size of the spots and their imprint
on RVs. Table 3 lists the results of the fits for the set of Teff

and i values used for this purpose. All solutions are statistically
equivalent (∆ ln L < 10), except for the simulations with an incli-
nation of 52.5 deg, which start to fail at reproducing the CRX,

as indicated by their relatively higher jitter. Additionally, the fit
parameters span a wider range than the formal uncertainties pre-
viously reported for fixed stellar parameters. We list these addi-
tional systematic uncertainties caused by the error bars of the
stellar properties in the third column of Table 2.

4. Discussion and conclusions

Our model for YZ CMi indicates that this active star has at least
a prominent spot with a filling factor in the ∼9.5−13.3% range.
The value that we found is compatible with previous values in
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Table 2. Best fitting parameters and ranges introduced by the uncertain-
ties on Teff and i to the YZ CMi RV, CRX, and photometric datasets.

Parameters Best model Range
Min. Max.

ff [%] 11.16 ± 0.66 9.53 13.25
∆T [K] 199.7 ± 9.6 178.6 273.4
CS [m s−1] 56 ± 37 7 237
∆tref [d] 1.9879 ± 0.0078 1.9735 2.0043
γRV [m s−1] −166.8 ± 2.5 −169.5 −163.6
σRV [m s−1] 11.2 ± 2.2 8.5 17.7
σCRX [m s−1 Np−1] 47 ± 14 33 125
σphot [×10−3] 6.00 ± 0.47 5.45 6.67
ln L 70.8 52.0 72.8
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Fig. 5. Best fit model (dotted line) compared to observations (symbols)
in the RV-CRX parameter space. The colors of the symbols indicate the
rotation phase at which each observation was made.

the literature by Zboril (2003) and Alekseev & Kozhevnikova
(2017), who suggested filling factors of 10−25% and 10−38%,
respectively. The significantly broader (and less precise) ranges
reported in these works most likely arise from the use of only
light curves, which, as we showed in Fig. 4, produce a strong
degeneracy in the ff–∆T plane. However, because of the dif-
ferent adopted stellar inclinations, contrast temperatures, and
spot models used in these two works, caution should be taken
when performing comparisons. They used stellar inclinations
of 60−70 deg, Zboril (2003) fixed the contrast temperature to
500 K, and Alekseev & Kozhevnikova (2017) used two spot
belts. Furthermore, the spot size and latitude that we estimate
are consistent with a spot covering a large fraction of the visible
pole, in agreement with the results obtained by Zeeman-Doppler
imaging (Morin et al. 2008).

From our analysis, we constrain the temperature difference
between the photosphere and the spot to a 1σ confidence range
of ∼179−273 K. These values are in close agreement with the
∆T results by Alekseev & Kozhevnikova (2017), and consistent
with the commonly used empirical calibration by Berdyugina
(2005) and Andersen & Korhonen (2015). However, our results
are better constrained due to the simultaneous fit of photometric,

RV, and CRX time series covering several wavelength bands that
allow the breaking of the spot temperature and the filling fac-
tor degeneracy. Furthermore, the scarcity of spot crossing events
on the ∼4000 M dwarfs in the Kepler catalog could be indica-
tive of a low contrast ratio for the spots on the photospheres
of these stars (i.e., smaller ∆T ), assuming a heterogeneous dis-
tribution of spots (Andersen & Korhonen 2015). The study of
multiband photometric observations also points toward a smaller
temperature difference for late-type stars than for solar-like stars
(Mallonn et al. 2018).

We note that differences in temperature and filling factors
available in the literature may also be due to the evolution of
stellar activity features. For instance, as a further check, we com-
pared our simulations with the two-minute cadence photome-
try available for YZ CMi from the Transiting Exoplanet Survey
Satellite (TESS, Ricker et al. 2015), obtained between January
and February 2019, two years after our CARMENES dataset.
Figure 6 shows this light curve along with the model correspond-
ing to the best fitting parameters listed in Table 2, and with the
range defined by all the models in Table 3. Although the over-
all aspect is similar, the TESS light curve has a lower amplitude
compared to our models. This difference can be reproduced by
reducing the filling factor by ∼3.5% or with a temperature con-
trast 40 K lower, and may be due to the time evolution of spots.
Interestingly, the phase and shape of the modulation is consistent
with our model, which may point to a long-lived active region
that does not change its position on the stellar surface signifi-
cantly.

Finally, the simultaneous fit to RV, CRX, and photometric
time series results in a global convective shift for YZ CMi in
the range between +7 and +237 m s−1, in contrast with the value
of −300 m s−1 estimated for the Sun. Interestingly, this result
means that the convection effect produces a net redshift, not a
blueshift, although this result must be taken with caution given
the large uncertainty. Such a possibility was already suggested
by Kürster et al. (2003) based on the anti-correlation between
the Hα line strength and the RV for Barnard’s Star, indicating
an increase in the blueshift when the coverage of the star with
plage regions increases. Similar conclusions are suggested by 3D
hydrodynamic simulations, which also predict a very small net
convective blueshift for late K-type stars, but they increase with
the effective temperature of the star until they reach a blueshift
of 300 m s−1 for F-type dwarfs (Allende Prieto et al. 2013).
Meunier et al. (2017) described a similar trend from the esti-
mation of the convective blueshift using Fe and Ti lines of 360
F7–K4 stars. For the particular case of M-dwarf stars, magneto-
hydrodynamic simulations suggest that convective motions are
less vigorous and that the average granule velocity shift is also
smaller (Beeck et al. 2013a,b).

To conclude, the results of our analysis reveal that a simul-
taneous fit to light and RV curves for several wavelength bands
represents a novel approach to estimating not only properties of
stellar activity, such as the spot filling factor and temperature dif-
ference (breaking their degeneracy), but also the shift of radial
velocities due to convective motions. From the particular case of
YZ CMi presented here, and its comparison to the Sun, we con-
clude that the absolute convective shift may be reversed toward
redshift for M-dwarf stars. Finally, the chromatic index is not
affected by the Keplerian orbital motion of exoplanets seen in
the radial velocity, and can therefore provide vital information
to disentangle exoplanet signals from stellar activity effects.
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Table 3. Best fit parameters for every Teff–i set of models.

Model Best fit parameters ln L

Teff i λspot ffmax ∆T CS ∆tref γRV σRV σCRX σphot

(K) (deg) (deg) (%) (K) (m s−1) (d) (m s−1) (m s−1) (m s−1 Np−1) (×10−3)

3050 21.5 73 11.66± 0.78 196± 12 49± 39 1.9932± 0.0080 −167.0± 2.4 10.9± 2.0 50± 13 5.93± 0.46 71.4
3050 30.0 77 11.89± 0.72 188.5± 9.9 57± 39 1.9930± 0.0080 −167.0± 2.5 11.1± 2.1 49± 14 5.93± 0.46 71.1
3050 36.0 78 11.11± 0.67 194± 10 49± 39 1.9869± 0.0079 −166.8± 2.5 11.4± 2.3 48± 14 6.00± 0.47 69.9
3050 45.0 79 10.51± 0.71 210± 13 62± 24 1.9839± 0.0079 −166.8± 2.6 12.0± 2.3 60± 14 6.09± 0.48 63.8
3050 52.5 80 9.96± 0.43 249.7± 8.8 68± 61 1.9821± 0.0086 −166.6± 3.0 14.4± 3.3 84± 20 6.17± 0.50 52.0
3100 21.5 73 11.65± 0.48 202.3± 7.2 56± 37 1.9941± 0.0078 −167.0± 2.4 10.9± 2.0 50± 13 5.93± 0.46 71.6
3100 30.0 77 12.33± 0.92 190.5± 9.6 70± 37 1.9931± 0.0081 −167.1± 2.4 10.7± 2.0 49± 13 5.93± 0.46 71.9
3100 (a) 36.0 (a) 78 (a) 11.16± 0.66 199.7± 9.6 56± 37 1.9879± 0.0078 −166.8± 2.5 11.2± 2.2 47± 14 6.00± 0.47 70.8
3100 45.0 79 10.68± 0.63 214.7± 9.4 79± 22 1.9855± 0.0080 −166.8± 2.5 11.5± 2.3 61± 15 6.06± 0.48 64.8
3100 52.5 80 10.26± 0.67 257± 14 167± 61 1.9869± 0.0089 −166.9± 2.5 11.6± 2.2 103± 22 6.09± 0.49 53.3
3150 21.5 73 11.51± 0.90 212± 14 74± 39 1.9962± 0.0081 −167.0± 2.4 10.7± 1.9 55± 13 5.91± 0.46 70.7
3150 30.0 77 12.06± 0.74 201.0± 9.8 86± 35 1.9947± 0.0079 −167.0± 2.4 10.6± 1.9 49± 13 5.92± 0.46 72.8
3150 36.0 78 11.76± 0.81 200± 11 93± 32 1.9930± 0.0078 −167.0± 2.3 10.4± 1.9 49± 13 5.95± 0.46 72.4
3150 45.0 79 11.01± 0.86 215± 13 132± 39 1.9932± 0.0083 −166.9± 2.3 10.4± 2.0 64± 15 5.98± 0.47 67.1
3150 52.5 80 10.55± 0.46 253.0± 9.5 180± 57 1.9881± 0.0082 −167.0± 2.5 11.3± 2.4 91± 20 6.11± 0.49 56.3

Notes. (a)Stellar parameters used as the best model in Table 2.

Fig. 6. Phase-folded TESS photometric observations (black dots com-
pared to the StarSim simulation (dashed line) using the best model
values and the TESS-band filter. The gray shaded region corresponds to
the range defined by all the best model simulations in Table 3.
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Appendix A: Long tables

Table A.1. Date of observation, radial velocities, and chromatic index
(with their associated errors) of the YZ CMi CARMENES spectro-
scopic observations.

HJD – 2450000 [d] RV [m s−1] CRX [m s−1 Np−1]

7655.71 163.5 ± 4.6 −179 ± 41
7673.66 157.8 ± 2.8 −27 ± 29
7689.73 36.6 ± 8.7 448 ± 51
7692.72 77.2 ± 5.3 234 ± 41
7699.65 275.4 ± 7.6 −369 ± 54
7704.60 231.2 ± 3.9 −164 ± 32
7735.61 310.0 ± 8.1 −411 ± 53
7755.69 158.6 ± 3.8 −119 ± 37
7756.56 59.9 ± 6.6 327 ± 45
7760.50 301.9 ± 7.6 −384 ± 51
7761.41 89.9 ± 4.1 172 ± 35
7762.62 201.9 ± 2.8 −80 ± 26
7763.53 284.4 ± 7.9 −412 ± 49
7779.46 216.7 ± 3.7 −156 ± 30
7786.49 58.7 ± 6.1 276 ± 45
7788.48 314.0 ± 9.1 −472 ± 54
7790.49 203.2 ± 4.1 −65 ± 41
7798.48 134.2 ± 3.3 138 ± 26
7800.41 49.4 ± 7.7 392 ± 45
7815.36 193.0 ± 1.6 −27 ± 16
7822.36 151.6 ± 2.9 −74 ± 26
7830.42 229.2 ± 7.4 −393 ± 44
7849.36 294.8 ± 8.6 −441 ± 56
7852.42 274.3 ± 7.7 −380 ± 57
7856.34 11.7 ± 8.4 416 ± 50
7863.38 303.4 ± 8.9 −441 ± 60
7875.36 36.7 ± 7.1 371 ± 44

Table A.2. Date of observation and normalised flux (with associated
errors) of the YZ CMi TJO photometric observations.

HJD – 2450000 [d] Norm. flux

7688.643 0.9808 ± 0.0005
7689.639 0.9827 ± 0.0005
7692.617 1.0003 ± 0.0006
7693.567 1.0348 ± 0.0005
7693.651 1.0383 ± 0.0005
7694.569 0.9655 ± 0.0007
7694.654 0.9539 ± 0.0005
7695.572 1.0207 ± 0.0009
7695.573 1.0224 ± 0.0011
7696.561 1.0122 ± 0.0006
7696.646 0.9997 ± 0.0006
7699.646 0.9854 ± 0.0005
7700.567 0.9615 ± 0.0005
7702.543 0.9833 ± 0.0005
7708.527 0.9572 ± 0.0007
7708.609 0.9489 ± 0.0004
7723.526 1.0393 ± 0.0005
7723.624 1.0371 ± 0.0005
7724.593 0.9967 ± 0.0011
7724.594 0.9930 ± 0.0005
7725.570 0.9730 ± 0.0010
7729.620 1.0390 ± 0.0012
7730.468 0.9833 ± 0.0006
7730.469 0.9769 ± 0.0012
7731.467 1.0149 ± 0.0006
7734.495 1.0202 ± 0.0007
7734.562 1.0188 ± 0.0007
7734.577 1.0327 ± 0.0008
7735.456 1.0169 ± 0.0008
7736.536 0.9608 ± 0.0009
7741.445 0.9859 ± 0.0005
7741.536 0.9658 ± 0.0005
7742.454 0.9954 ± 0.0005
7742.540 0.9913 ± 0.0005
7746.518 1.0185 ± 0.0005
7746.618 1.0133 ± 0.0007
7748.474 1.0318 ± 0.0005
7749.447 1.0068 ± 0.0006
7749.448 1.0096 ± 0.0013
7750.533 0.9696 ± 0.0005
7751.530 1.0450 ± 0.0006
7751.531 1.0458 ± 0.0011
7752.509 0.9830 ± 0.0006
7752.510 0.9827 ± 0.0007
7752.606 0.9746 ± 0.0005
7753.471 0.9873 ± 0.0008
7756.641 1.0318 ± 0.0005
7758.461 0.9522 ± 0.0004
7758.580 0.9557 ± 0.0006
7759.423 1.0204 ± 0.0005
7759.508 1.0228 ± 0.0005
7759.514 1.0246 ± 0.0005
7760.396 1.0224 ± 0.0005
7760.433 1.0126 ± 0.0005
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Table A.2. continued.

HJD – 2450000 [d] Norm. flux

7760.523 1.0015 ± 0.0009
7761.394 0.9641 ± 0.0005
7761.433 0.9624 ± 0.0011
7762.382 1.0414 ± 0.0006
7762.576 1.0411 ± 0.0005
7763.386 0.9999 ± 0.0023
7764.463 0.9722 ± 0.0006
7768.459 1.0368 ± 0.0006
7768.518 1.0264 ± 0.0006
7768.544 1.0301 ± 0.0006
7795.429 1.0149 ± 0.0015
7804.485 1.0538 ± 0.0005
7805.487 0.9620 ± 0.0005
7807.390 1.0214 ± 0.0006
7807.523 1.0124 ± 0.0007
7809.450 1.0215 ± 0.0005
7809.541 1.0282 ± 0.0006
7811.510 0.9641 ± 0.0012
7813.405 0.9986 ± 0.0006
7813.406 0.9975 ± 0.0008
7819.468 0.9528 ± 0.0009
7819.469 0.9525 ± 0.0007
7821.367 1.0319 ± 0.0018
7821.472 1.0143 ± 0.0022
7822.389 0.9565 ± 0.0007
7822.474 0.9583 ± 0.0010
7827.405 0.9807 ± 0.0010
7827.406 0.9829 ± 0.0008
7830.419 0.9633 ± 0.0011
7830.495 0.9717 ± 0.0006
7831.419 1.0008 ± 0.0007
7834.442 1.0279 ± 0.0011
7836.439 0.9720 ± 0.0005
7843.422 1.0434 ± 0.0010
7857.405 1.0412 ± 0.0006
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