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Abstract

The star S0-2, orbiting the Galactic central massive black hole candidate Sgr A∗, passed
its pericenter in 2018 May. This event is the first chance to detect the general relativistic
(GR) effect of a massive black hole, free from non-gravitational physics. The observable
GR evidence in the event is the difference between the GR redshift and the Newtonian
redshift of photons coming from S0-2. Within the present observational precision, the
first post-Newtonian (1PN) GR evidence is detectable. In this paper, we give a theoretical
analysis of the time evolution of the 1PN GR evidence, under a presupposition that is
different from used in previous papers. Our presupposition is that the GR/Newtonian
redshift is always calculated with the parameter values (the mass of Sgr A∗, the initial
conditions of S0-2, and so on) determined by fitting the GR/Newtonian motion of S0-2
with the observational data. It is then revealed that the difference of the GR redshift
and the Newtonian one shows two peaks before and after the pericenter passage. This
double-peak appearance is due to our presupposition, and reduces to a single peak if the
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same parameter values are used in both GR and Newtonian redshifts as considered in
previous papers. In addition to this theoretical discussion, we report our observational
data obtained with the Subaru telescope by 2018. The quality and the number of Subaru
data in 2018 are not sufficient to confirm the detection of the double-peak appearance.

Key words: black hole physics — Galaxy: center — gravitation — relativistic processes

1 Introduction

The general relativistic (GR) effect has already been distin-
guished observationally from non-GR effects, for example,
in the following situations: the weak gravity in our solar
system (e.g., Will 2014), the cosmic microwave background
radiation (e.g., Hinshaw et al. 2013 and Planck Collabora-
tion 2018), and the gravitational waves radiated by stellar-
size compact objects (e.g., Abbott et al. 2016). However,
the GR effect of massive black holes (BHs) remains to be
distinguished observationally from non-GR effects. A good
probe of the quantitative assessment of GR effect of a mas-
sive BH is the star called S0-2 (in the Keck nomenclature)
or S2 (in the very large telescope, VLT, nomenclature),
that is orbiting Sgr A∗ (of mass ≈4 × 106 M�), with an
orbital period of ≈16 yr and a closest distance to Sgr A∗ of
≈100 au. Because S0-2 is regarded as a test particle moving
in the gravitational field of Sgr A∗, the motion of S0-2 pro-
vides us with the pure GR effect free from non-gravitational
physics (Zucker et al. 2006). Measurements of the pure GR
effect in the motion of S0-2 will enable us to test GR in the
strong gravitational field of Sgr A∗.1

Monitoring observations of the S0-2 motion can be
performed by a few groups using large telescopes such
as VLT, Keck, Gemini and Subaru. We have been moni-
toring the redshift of photons emitted by S0-2 from 2014
using Subaru (Nishiyama et al. 2018), and American and
European groups have been monitoring the position and
redshift of S0-2 for about 20 years using other telescopes
(Boehle et al. 2016; Gillessen et al. 2017; Parsa et al. 2017;
Chu et al. 2018; GRAVITY collaboration 2018, 2019; Do
et al. 2019). Until 2017, those observations had not revealed
a clear deviation from the prediction of Newtonian gravity
in the S0-2 motion. However, it has been expected that the
deviation from the Newtonian prediction would become
detectable in the redshift of photons coming from S0-2
during its pericenter passage in 2018 (e.g., Zucker et al.

1 From the results of the Planck satellite observations in 2018 (Planck Collaboration
2018), a modified gravitational theory, such as the Starobinsky model, may be con-
sidered as a good candidate theory of gravity under some assumptions. However,
such discussions are for the early/inflationary universe and seems not to be appli-
cable to the Galactic center scale. Therefore, we assume GR that is to be compared
with Newtonian gravity at the Galactic center. A comment on the modified theories
of gravity will be given at the end of section 5.

2006). Recently, a detection of the combination of the spe-
cial relativistic and gravitational Doppler effects has been
reported by a European group (GRAVITY collaboration
2018) and by an American group (Do et al. 2019).

The evidence of GR being explored using the large
telescopes is theoretically expressed as the difference
between the redshift predicted by GR and the one pre-
dicted by Newtonian gravity. Within the present obser-
vational precision, this GR evidence is detectable at the
first post-Newtonian order. The redshift depends on some
parameters, for example, the mass of Sgr A∗ and the initial
conditions of the S0-2 motion. In this paper, we adopt the
following presupposition on the treatment of the parameter
values;

Presupposition: The GR redshift is always calculated with
the best-fitting parameter values determined by fitting
the GR motion of S0-2 with the observational data. The
Newtonian redshift is always calculated with the best-
fitting parameter values determined by fitting the New-
tonian motion of S0-2 with the observational data.

The GR best-fitting values and the Newtonian ones are
different. In order to confirm the validity of GR for the
gravitational field of Sgr A∗, it is useful to search for evi-
dence of GR in the difference between the two best fits.
In this paper, we report the time evolution of the differ-
ence between GR redshift and Newtonian redshift. Under
our presupposition, it shows two peaks before and after
the pericenter passage of S0-2. This “double-peak appear-
ance” has not been reported so far in previous papers (e.g.,
GRAVITY collaboration 2018; Do et al. 2019). In the pre-
vious papers, the same parameter values, which have been
carefully determined, have been used in both GR and New-
tonian redshifts (see subsection 2.3), and then the resul-
tant single-peak behavior has been discussed. If the GR is
favored by two different approaches, such as the approach
of the previous papers and the one under our presupposi-
tion, then the GR can be favored more definitely than the
case using only one approach.

As a by-product of our presupposition, it is found
that the statistical quantity χ2

red, called the “reduced-chi-
squared”, is not useful for discriminating between GR and
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Newtonian gravity within the present observational pre-
cision. Therefore, instead of the χ2

red, we propose another
quantity, denoted as δz in this paper (subsection 4.3), which
expresses to what extent the double-peak appearance deter-
mined by the observational data matches well with the the-
oretically expected form of the double-peak appearance.
Furthermore, in this paper, we report our observational
data obtained by the Subaru telescope in 2017 and 2018,
together with the data already reported in our previous
paper (Nishiyama et al. 2018). Due to bad weather con-
ditions and instrumental instabilities, the quality and the
number of the data in 2018 are not sufficient to confirm the
detection of the double-peak appearance, where the detec-
tion error is about 60% according to our quantity δz. We
need additional data sets to confirm the detection of the
double-peak appearance.

Section 2 is devoted to the theoretical discussion to
derive the “double-peak appearance” in the time evolution
of the difference between the GR redshift and the Newto-
nian one under our presupposition. The non-usefulness of
χ2

red for discriminating the GR and the Newtonian gravity
within the present observational precision is also discussed.
Section 3 is the summary of our observations of S0-2 using
the Subaru telescope from 2014 to 2018. In section 4, the
best fit of the double-peak appearance with our observa-
tional data is presented, and the quality of our 2018 data
is also shown. Then, we introduce the quantity δz, which
measures the discrepancy between the GR and the New-
tonian gravity under our presupposition. Section 5 is the
summary and discussion.

2 Theoretically expected time evolution of

the GR evidence under our presupposition

2.1 Definitions

The observational quantity that we focus on in this paper is
the redshift z of photons coming from S0-2 to the observer,

z(t) := νS[t + tR(t)]
νO(t)

− 1, (1)

where t is the observation time, νO(t) is the frequency of
photon at the observation, νS[t + tR(t)] is the frequency of
the observed photon when it was emitted by S0-2, and tR
denotes the so-called Roemer time delay (i.e., the change
of propagation time of a photon from S0-2 to the observer
due to the motion of S0-2). We define the measure of the
evidence of GR as

�zGR(t) := zGR(t) − zNG(t) , (2)

where zGR(t) is the redshift calculated by GR and zNG(t) is
the redshift calculated by Newtonian gravity (NG). These
redshifts depend on certain parameters, such as the mass of
Sgr A∗ and the initial conditions of S0-2 motion, which are
explained explicitly later. Note that, throughout this paper,
our presupposition on the treatment of the parameter values
is that noted in section 1.

The Newtonian redshift zNG(t) is exactly equal to
the line-of-sight component of velocity calculated with
Newtonian gravity,2

zNG(t) = 1
c

VS.NG‖[t + tR(t)] − 1
c

VO.NG‖(t) , (3)

where c is the light speed, and VS.NG‖ and VO.NG‖ are the
line-of-sight velocity of, respectively, S0-2 and the observer
whose positive direction is from the observer to S0-2. The
velocity of S0-2 V S.NG(t) is given by the Keplerian motion.
Even when the velocity of observer VO.NG is constant, its
line-of-sight component VO.NG‖(t) depends on time due to
the motion of S0-2. The Roemer time delay in the Newto-
nian case is calculated by

tR(t) = 1
c
|xS(t) − xO(t)| − 1

c
|xS(tref) − xO(tref)| , (4)

where tref is the reference time when we set the delay zero,
xO(t) is the position of the observer at the observation time
t, and xS(t) is the position of S0-2 at which the observed
photon (that is received by the observer at t) was emitted.3

The time evolution of the position of S0-2, xS(t), is deter-
mined by the Newtonian equations of motion.

The GR redshift zGR(t) is given from the GR definition
of frequency,

νS(t) := −KμUS μ|t , νO(t) := −KμUO μ|t , (5)

where Kμ is the four-wave-vector (tangent vector to null
geodesic) of a photon coming from S0-2 to the observer,
Uμ

S is the four-velocity (tangent vector to time-like geodesic)
of S0-2, and Uμ

O is the four-velocity of the observer. We
solve the geodesic equations in Hamilton’s formalism. For
example, the time-like geodesic equations for S0-2 are

dUSμ(τ )
dτ

= −∂H(US, xS)
∂xμ

S
,

dxμ

S (τ )
dτ

= ∂H(US, xS)
∂USμ

, (6)

2 We use the term “line-of-sight” velocity instead of “radial” velocity, in order to
avoid the confusion with the “radial” component V r of the velocity V defined in
our coordinate system (r, θ, ϕ) centered at Sgr A∗ .

3 In the Newtonian case, one may not include the Roemer time delay because the
light speed is treated as infinity in the Newtonian dynamics. However, in this paper,
we give priority to the fact that the light speed is finite, and introduce the Roemer
time delay not only in the GR case but also in the Newtonian case.
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where τ is the affine parameter (the proper time) of S0-2,
xμ

S (τ ) is the spacetime position of S0-2, and the Hamiltonian
is

H := 1
2

gμν(xS)USμUSν , (7)

where gμν is the inverse of the metric tensor of Kerr space-
time. The null geodesic of photons and time-like geodesic
of the observer are similarly formulated. The Roemer time
delay in the GR case, tR, is given by a complicated combi-
nation of the solutions of all geodesic equations for S0-2,
photon and observer. The exact definition of tR can be for-
mulated, but we do not show it here because it is going to
be approximated to the similar form with tR in equation (4)
in the next subsection.

The set-up of the coordinate system has to be clar-
ified. The detail of it is explained in appendix 1, and
here let us summarize an important point: Our defini-
tions of some quantities, for example the Roemer time
delay, are not exactly the same as those used in previous
papers (GRAVITY collaboration 2018; Do et al. 2019). For
example, we always take into account the finiteness of the
distance between Sun and Sgr A∗ in calculating the Roemer
time delay, while the time delay in the previous papers is
approximated by the infinite distance limit. However, under
the present observational uncertainties, such differences in
the definitions of some quantities are not detectable.

2.2 Post-Newtonian and post-Minkowskian
approximations within observational
precision

Full GR formulation has a high numerical cost. In order to
reduce the cost, we use the post-Newtonian (PN) and post-
Minkowskian (PM) approximations (e.g., Poisson & Will
2014) of the S0-2 motion and photon propagation. Some
numerical simulations for PN and PM approximations have
been shown in Angélil and Saha (2010) and Angélil, Saha,
and Merritt (2010). However, without those simulations,
we can justify the first-order PN (1PN) approximation for
the S0-2 motion and the 0th order PM (0PM) approxima-
tion for the photon propagation within the present obser-
vational precision.

The mass of Sgr A∗ and the orbital elements of S0-2
have already been estimated with a few % uncertainties
(GRAVITY collaboration 2018; Do et al. 2019). Using the
mass of Sgr A∗, MSgrA ≈4 × 106 M�, and the pericenter dis-
tance of S0-2 to Sgr A∗, rperi ≈100 au, we can evaluate the
parameter for the PN expansion,

ε ≈ 2GMSgrA

c2rperi
∼ 10−3 , (8)

where G is the Newton’s constant. This gives the order
of the 1PN term in the redshift ≈c ε ∼ 100 km s−1, and
the 1.5th order PN (1.5PN) term ≈c ε3/2 ∼ 1 km s−1. On
one hand, from all available observational data (by the end
of 2018) of the redshift of American, European and our
Japanese groups, the current averaged observational uncer-
tainty of the redshift is ≈38 km s−1. Therefore, the 1PN
terms in c zGR (the components in c zGR depending not on
the spin but on the mass of Sgr A∗) is detectable, but 1.5PN
(the largest component depending on the spin of Sgr A∗)
and higher-order terms in c zGR are not.

Because the PN approximation is designed for a grav-
itationally bounded object like S0-2, the propagation of
photons needs to be considered separately, for example, in
the PM approximation. The 0th-order PM (0PM) approx-
imation corresponds to the photon propagating on the
Minkowski spacetime with neglecting the effect of gravity.
The peculiar effect in the first-order PM (1PM) approxima-
tion is the gravitational lens effect. The bending angle δϕ of
the photon orbit is estimated as

δϕ ≈ 4GMSgrA

c2 rperi
∼ 10−3 . (9)

This is the same order as the PN parameter, δϕ � ε. The
relation between the propagation distance from S0-2 to the
observer in the 1PM approximation, L1PM, and the one in
the 0PM approximation, L0PM, is estimated as

L0PM � L1PM cos δϕ � L1PM(1 − ε2) . (10)

Because the terms proportional to ε2 is ignored within the
present observational precision, it is enough for us to adopt
the 0PM approximation of the photon propagation. The
Roemer delay in the GR case with the 0PM approxima-
tion is also given by tR(t) in equation (4), where the posi-
tion of S0-2 in the 1PN case, xS.1PN(t), is not necessarily
equal to the one in the Newtonian case, xS.NG(t), under our
presupposition on the parameter values (see subsection 2.2
of appendix 2).

For the motion of the observer, we can ignore the
GR effect because of the huge distance to Sgr A∗ from
us � 8 kpc. We assume the velocity of the observer is
constant.

The above discussions justify the 1PN approximation for
the S0-2 motion and the 0PM approximation for the photon
propagation. Hereafter, the combination of these approx-
imations is phrased as the “1PN + 0PM” approximation.
Throughout this paper, the 1PN + 0PM approximation is
used under the assumption of the constant velocity of the
observer.
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The derivations of 1PN + 0PM formulas are shown in
appendix 2, and here we summarize them. The 1PN + 0PM
formula of the GR redshift can be expressed as

z1PN.0PM(t) = 1
c

VS.1PN‖(t + tR) − 1
c

VO.1PN‖(t)

+ V S.1PN(t + tR)2 − VO(t)2

2c2

+ GMSgrA

c2 rS.1PN(t + tR)
, (11)

where V S.1PN is the spatial velocity of S0-2 at the 1PN
approximation, VO.1PN is the constant velocity of the
observer, VS.1PN‖ and VO.1PN‖ are the line-of-sight compo-
nents of the velocities, and rS.1PN is the radial coordi-
nate of S0-2 at the 1PN approximation. The second line
in equation (11), V2

S.1PN − V2
O.1PN, arises from the special

relativistic Doppler effect at the 0PM approximation of
the photon propagation. The third line in equation (11),
GMSgrA/rS.1PN, arises from the gravitational Doppler effect
at the 1PN approximation of the S0-2 motion. Note that
the time evolutions of the velocity, V S.1PN(t), and the radial
coordinate, rS.1PN(t), are the solutions of the geodesic equa-
tions (6) with the 1PN Hamiltonian,

H1PN =−
(

1
2

+ GMSgrA

c2 rS.1PN
+ 2G2 M2

SgrA

c4 r2
S.1PN

)
U2

St

+
(

1
2

− GMSgrA

c2 rS.1PN

)
U2

Sr

+ U2
Sθ

2r2
S.1PN

+ U2
Sϕ

2r2
S.1PN sin2 ϕS.1PN

, (12)

where, because of the stationarity and axial symmetry of
BH spacetime, the temporal and azimuthal components of
the one-form USμ are the constants of motion given by

USt = gtμUμ

S = − ES

MSc2
, USϕ = gϕμUμ

S = LS

MSc
, (13)

where ES, LS and MS are, respectively, the relativistic
energy, angular momentum, and the rest mass of S0-2.
(In our numerical calculations, the values of the constants
USt and USϕ are determined by the initial conditions of
the S0-2 motion, without specifying the values of ES,
MS, and LS.) By solving the geodesic equations (6) with
the 1PN Hamiltonian (12), we obtain the spacetime posi-
tion xμ

S (τ ) and the four-velocity Uμ

S (τ ) = g[xS(τ )]μνUSν(τ ) of
S0-2 at the 1PN approximation. Note that, as shown by
equation (A25) in appendix 2, we find for the spatial com-
ponents of velocity, Ui

S = Vi
S.1PN (i = r, θ, ϕ), at the 1PN

approximation.
Then, our measure of the GR evidence at the 1PN + 0PM

approximation is obtained by substituting equations (3)

and (11) into equation (2),

�z1PN.0PM(t) = z1PN.0PM(t) − zNG(t)

= VS.1PN‖(t + tR) − VS.NG‖(t + tR)
c

− VO.1PN‖(t) − VO.NG‖(t)
c

+ V S.1PN(t + tR)2 − VO.1PN(t)2

2c2

+ GMSgrA

c2 rS.1PN(t + tR)
. (14)

This �z1PN.0PM(t) is the difference of the GR and Newtonian
redshifts under our presupposition on the parameter values.
Note that, while the Newtonian redshift zNG is given as an
explicit function of the observation time t by solving the
Newtonian equations of motion, the GR redshift z1PN.0PM is,
however, given as a function of the affine parameter τ , not
of t. The time t in the GR redshift is, in its exact form, the
coordinate time tGR(τ ) of the S0-2 motion given as a solu-
tion of geodesic equations. Therefore, we solve equation
tGR(τ ) = t numerically for given t, when it is needed.

Some details on �z1PN.0PM(t) are analyzed in
subsection 2.2 of appendix 2; here, let us summarize an
important point. The first and second terms in �z1PN.0PM(t),
which are the difference between the line-of-sight veloci-
ties of GR and Newtonian cases, do not necessarily vanish
and have to be counted as the non-vanishing components
in �z1PN.0PM(t) under our presupposition. The reason is that
the best-fitting values of parameters (e.g., the Sgr A∗’s mass
and the S0-2’s initial conditions) in the GR case is dif-
ferent from those in the Newtonian case, and hence the
same quantities in both GR and Newtonian cases, such as
the line-of-sight velocities of S0-2 and the observer, take
different values in the GR and Newtonian cases.

2.3 On the quantity that measures the difference
between the GR and Newtonian predications

In order to assess the deviation from the Newtonian predic-
tion in the observational data of redshift zobs, it is enough
to calculate the difference,

�zobs := zobs − zNG , (15)

where zNG is the best-fitting Newtonian redshift. If �zobs

does not stay at zero for all observation times, then it is
concluded that the observational data do not obey the New-
tonian prediction. However, in order to assess not only
the deviation from the Newtonian prediction but also the
validity of GR, it is necessary to define a quantity to measure
the evidence of GR. As such a quantity, we introduce the
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difference between the GR and Newtonian redshifts under
our presupposition on the parameter values, �z1PN.0PM(t)
defined in equation (14).

(1) Given the observational data, calculate �z1PN.0PM(t)
under our presupposition. Then, the closer the time
evolution of �z1PN.0PM(t) to the theoretically expected
time evolution of it, the more definite the detection of
the difference between the GR and Newtonian predic-
tions.

Here, the point in this assessment is how we can estimate
the theoretically expected time evolution of �z1PN.0PM(t).
The next subsection is devoted to this point.

In the previous papers (GRAVITY collaboration 2018;
Do et al. 2019), the quantity used to measure the GR
evidence is different from our �z1PN.0PM(t). The point of
discussions in the previous papers is that their treatment
of the parameter values is different from our presupposi-
tion. They have introduced an auxiliary parameter f in the
redshift formula as

z(prev)
GR = z(prev)

NG + f

[
Second and third lines
in equation (11)

](prev)

, (16)

where the upper suffix “(prev)” denotes the treatment of
parameter values in the previous papers. Their treatment is
to determine all parameters including f by fitting the obser-
vational data with the pure GR motion of S0-2 together
with the modified redshift (16). They define the measure of
GR evidence as

�z(prev)
GR := z(prev)

GR − z(prev)
(NG)

= f

[
Second and third lines
in equation (11)

](prev)

, (17)

where the same values of parameters are used in both terms
z(prev)

GR and z(prev)
NG . This �z(prev)

GR is called the “GR effect” in the
previous papers. The points of this �z(prev)

GR can be summa-
rized as follows:

(1) In equation (16), the parameter f is introduced by
hand, while the geodesic equations of S0-2 (and of
photons) are not modified by introducing the param-
eter f . This parametrization is different from the so-
called parametrized-post-Newtonian (PPN) formalism,
which is the parametrization of the spacetime metric
tensor at the 1PN order and causes some modifications
not only of the redshift of photons but also of the S0-2
motion. Because this f is not exactly a parametrization
used widely in the usual PPN formalism, the parameter
f is interpreted as an ad-hoc or a highly specialized
parameter to measure the combination of the special
relativistic and gravitational Doppler effects.

(2) Let the GR motion of S0-2 be substituted in z(prev)
GR .

Then, the case of f = 1 denotes the GR case, because
�z(prev)

GR with f = 1 is exactly the combination of the
special relativistic and gravitational Doppler effects at
the 1PN + 0PM order. However, the case of f = 0
never denotes a Newtonian case, because the “GR
motion” of S0-2 is substituted in z(prev)

GR . In general,
the case of f 	= 1 is not a modified theory of gravity,
because the S0-2 motion is the pure GR case (i.e., the
gravity is not modified for the S0-2 motion) while only
the redshift formula is modified by introducing f .

(3) From the above two points, the introduction of f
into z(prev)

GR can be interpreted as the assessment of
the hypothesis that the gravitational field of Sgr A∗

is described by GR (neither Newtonian gravity nor a
modified theories of gravity). When the value of f is
determined by fitting the observational data with z(prev)

GR

together with the GR motion of S0-2, the closer the
best-fitting value of f to unity, the more plausible the
hypothesis that the Sgr A∗’s gravity is GR.

The quantity �z(prev)
GR is not a deviation from Newto-

nian prediction, but the measure to assess the “GR hypoth-
esis”. GRAVITY collaboration (2018) has reported the
best-fitting value of f = 0.945 ± 0.090 using GRAVITY
data from 2018, and Do et al. (2019) has reported the best-
fitting value of f = 0.88 ± 0.16 using Keck, Gemini, and
Subaru data from 2018. The evidence of GR has been found
through the assessment of the GR hypothesis.

Both quantities �z1PN.0PM and �z(prev)
GR can assess the

validity of GR as the theory of gravity near Sgr A∗, although
the exact meanings of these quantities are different. Our
quantity �z1PN.0PM focuses on the total deviation of the GR
prediction from the Newtonian prediction under our pre-
supposition. The quantity in the previous papers �z(prev)

GR

focuses on the combination of the special relativistic and
gravitational Doppler effects, excluding the difference of
the time evolution of S0-2’s velocity between the GR and
Newtonian cases. Note that, if the GR is favored by two
different approaches, such as the approach of the pre-
vious papers and the one introduced in this paper, then the
GR can be favored more definitely than the case favored
by only one approach. Our approach does not conflict
with the approach of the previous papers, but provides
us with an additional reference for confirming the validity
of GR.4

4 In the previous papers, in addition to the assessment of GR hypothesis, a direct
comparison of the GR and Newtonian best-fitting orbits of S0-2 has been discussed
through the Bayesian approach (e.g., using the so-called Bayes factor or Occam
factor), or the so-called reduced-chi-squared χ2

red with putting higher weights on
the data in 2018 than the other data.
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2.4 Expected time evolution of �z1PN.0M for
ideally accurate observational data

The theoretically expected time evolution of �z1PN.0PM(t) is
the key issue in this paper. Let us introduce a condition:

Condition (ideally accurate data set):An ideally accurate
observational data set is given. Here, the term “ideally
accurate” denotes that (i) the error assigned to each data
is constant for all observation times, and (ii) the obser-
vational value itself takes exactly the same value as the
GR prediction, where the offset of the astrometric origin
is zero.

Under this condition, we define the theoretically expected
time evolution of �z1PN0PM(t) as the one derived by the
following steps:

Step 1: Fix the values of all parameters which are listed
in sub-subsection 2.4.1. Using these values, calculate
the GR motion of S0-2, xμ

S.1PN(τ ), and the GR redshift,
z1PN.0PM(t), at the 1PN + 0PM approximation.

Step 2: Artificially create the ideally accurate data set, in
which every value of RA, Dec and redshift (z1PN.0PM) of
S0-2 are exactly the same as the GR prediction given in
step 1, and the astrometric offset defined in equation (A3)
is zero, Asky ≡ 0. Let the error assigned to each data be
the averaged error of real observational data.

Step 3: By fitting the artificial data with the Newtonian
motion of S0-2, calculate the Newtonian best-fitting
values of all parameters listed in sub-subsection 2.4.1.
Such Newtonian best-fitting parameter values are not
necessarily equal to the parameter values used in step 1.
Then, calculate the Newtonian redshift, zNG(t), using the
Newtonian best-fitting parameter values.

Step 4: From steps 1 and 3, calculate the time evolution of
the quantity, �z1PN.0PM(t) = z1PN.0PM(t) − zNG(t). This is
interpreted as the theoretically expected time evolution
of the difference between the GR and Newtonian red-
shifts under our presupposition on the parameter values.

In following subsections, we will carry out these steps.

2.4.1 Step 1: Parameter values for GR prediction
As examples, let us use two sets of best-fitting parameter
values given in Boehle et al. (2016) and GRAVITY collab-
oration (2018). Those values are shown in table 1, where
the definitions of the 11 parameters are:

MSgrA: the mass of Sgr A∗.
RGC: the distance between Sun and Sgr A∗.
VO.ra: the Y (RA)-component of the observer’s velocity VO

relative to Sgr A∗, see equation (A2).
VO.dec: the X (Dec)-component of the observer’s velocity VO

relative to Sgr A∗, see equation (A2).

VO.Z: the Z-component of the observer’s velocity VO relative
to Sgr A∗, see equation (A2).

IS: the inclination angle of the orbital plane of S0-2, when
it is evaluated in the Newtonian motion.

�S: the angle of ascending node from Dec direction on
the orbital plane of S0-2, when it is evaluated in the
Newtonian motion.

ωS: the angle of pericenter node from the ascending node
on the orbital plane of S0-2, when it is evaluated in the
Newtonian motion.

eS: the eccentricity of the S0-2 orbit, when it is evaluated in
the Newtonian motion.

TS: the orbital period of S0-2 around Sgr A∗, when it is
evaluated in the Newtonian motion.

tS.apo: the time of the previous apocenter passage in 2010.

Here we need to note two remarks. The first remark
is on the artificial data that will be created in step 2. We
define the artificial data as the ideally accurate data in which
the astrometric offset defined in equation (A3) is not intro-
duced, Asky(t) ≡ 0. Therefore, in table 1, the parameters
corresponding to Asky(t) are not included.

The second remark is on the last six parameters, from IS

to tS.apo. Although these six parameters are given in the form
of orbital elements of the Newtonian motion, it does never
mean that these six parameters are available only for the
Newtonian motion. In solving the geodesic equations (6)
of the S0-2 motion, we simply transform those six param-
eters to the initial conditions, position and velocity, given
at the time tS.apo. We regard those six parameters, from IS

to tS.apo, as the control parameters of the initial conditions
for the GR motion. Hence, if the GR motion is given (for
example, from the best-fitting calculation), then the position
and velocity of S0-2 at the apocenter are transformed to the
six parameters, IS to tS.apo by simple Newtonian formulas
of these six parameters.

2.4.2 Step 2: Ideally accurate data set
For each set of parameter values in table 1, we create the
ideally accurate data set under the following conditions:

Condition 1: Create N data of RA, Dec, and cz1PN.0PM per
year with a constant temporal interval, 1/N yr.

Condition 2: Create the data set corresponding to L years’
observations, where L is sufficiently longer than one
period, TS, in order to follow the whole time evolution of
zGR(t) in one period.5 This L needs to be short enough to
make the shift of the pericenter/apocenter angle be sig-
nificantly smaller than 90◦, because a large shift of the

5 We are interested in the physical property of �zGR, which appears in the time
evolution within a period ≈TS. Hence, we make the ideally accurate data set cover
at least one period of the S0-2 motion.
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Table 1. Two examples of parameter values with which GR motions are calculated.

Parameters for Sgr A∗ and observer MSgrA RGC VO.ra VO.dec VO.Z —
[106 M�] [kpc] [mas yr−1] [mas yr−1] [km s−1] —

Boehle et al. (2016) 4.12 8.02 0.02 −0.55 −15 —
GRAVITY collaboration (2018) 4.100 8.122 −0.076 −0.178 1.9 —
Parameters for S0-2 orbit IS �S ωS eS TS tS.apo

[◦] [◦] [◦] [no dim.] [yr] [AD]
Boehle et al. (2016) 134.7 227.9 66.5 0.890 15.90 2010.293
GRAVITY collaboration (2018) 133.818 227.85 66.13 0.88466 16.0518 2010.35384

angle causes a significant change in the observed time
evolution of zGR(t).

Condition 3: As noted at the beginning of this
subsection 2.4, the error assigned to each data is the
averaged error of real observational data. The error in
RA observation is 9.832 × 10−4 arcsec, in Dec observa-
tion 9.176 × 10−4, and in redshift (times the light speed,
czGR) observation 38.29 km s−1, which are read from the
public data in Boehle et al. (2016), GRAVITY collabo-
ration (2018), and our observations listed in table 4.

The number of each kind of data, RA, Dec, and
cz1PN.0PM, is NL (i.e., 3NL data in total). In the fol-
lowing numerical calculations, we set L = 4TS ≈64 yr,
during an interval tS.apo − 2TS < t < tS.apo + 2TS, centered
at the previous apocenter time in 2010. This duration of
4TS corresponds to the angle of pericenter/apocenter shift
≈4 × 6πGMSgrA/(c2rS) ∼ 4◦, which is sufficiently smaller
than 90◦. Further, we consider three cases of the number
of data per year, N = 10, 15, 20, where N = 15 is roughly
the averaged number of observations per year until 2017.
Because we consider three values of N for each example of
parameters in table 1, we have six cases of artificial data
sets. For these cases, we are going to calculate the expected
time evolution of �z1PN0PM under our presupposition on
the parameter values. Our numerical calculations are per-
formed using Mathematica, version 11.

2.4.3 Step 3: Fitting with Newtonian prediction
We carry out the χ2-fitting of the S0-2 Newtonian motion
with each artificial data set created in step 2. The fitting
method is a simple minimum search of the reduced-chi-
squared, χ2

red, and we have stopped the minimum search
when the improvement of χ2

red becomes less than 10−4. As
the initial-guess values of the parameters in the χ2-fitting, it
is good to use the parameter values used in creating the ide-
ally accurate data set, because the resultant minimum value
of reduced-chi-squared, χ2

red.min, of various initial-guesses
coincide with each other within differences less than 10−2.
Then, the best-fitting values of the parameters for every six
data set created in step 2 are shown in table 2. The fitting

error δX of parameter X = MSgrA, RGC, · · · , tS.apo in table 2
is the formal error defined by (Press et al. 1992)

δX :=
√

CXX , (18)

where C is the covariance matrix (the inverse of the Hes-
sian of “chi-squared” χ2 times 1/2), and CXX is the diagonal
element corresponding to the parameter X. This error (18)
corresponds to 1 σ error in the χ2-fitting when one param-
eter X is varied and if each observational data has perfectly
obeyed a Gaussian probabilistic distribution.

Before proceeding to step 4, let us remark an implication
of the very small value of χ2

red.min ≈0.07 in table 2. Because
table 2 is made from the ideally accurate data sets, the
χ2

red.min in table 2 can be interpreted as one quantity that
measures a discrepancy between GR and Newtonian gravity
under the idea of χ2-assessment.6 Therefore, if χ2

red.min in
table 2 was of the order of one or more, χ2

red.min � O(1),
then it was expected that we would be able to confirm
the detection of �z1PN.0PM(t) by the χ2-assessment. In other
words, the small value χ2

red.min ≈0.07 in table 2 implies that
the χ2-assessment does not work well for a detection of
�z1PN.0PM(t), even if very accurate observations would be
performed with the present observational precision.

2.4.4 Step 4: Theoretically expected time evolution of our
GR evidence �z1PN.0PM(t)

The parameter values in tables 1 and 2 provide us with a
theoretically expected time evolution of �z1PN.0PM(t). In this
paper, all figures of redshift are shown in the unit of km s−1,
by multiplying the light speed as cz(t).

Figure 1 shows the theoretically expected time evolu-
tion of the redshift of photons coming from S0-2 at the
1PN + 0PM approximation, cz1PN.0PM(t) in equation (11),
using the parameter values in table 1. The top panel is
for the case of Boehle et al. (2016), and the bottom panel
for the case of GRAVITY collaboration (2018). Here-
after, the dots attached on curves in the figures denote

6 Note that the χ2-assessment for discriminating some theories and the χ2-fitting
for searching the best-fitting parameter values of each theory are different. In this
paragraph we discuss only on the χ2-assessment.
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Table 2. Best fit of Newtonian motion of S0-2 with each data set created in step 2.∗

χ2
red.min and parameters χ2

red.min MSgrA RGC VO.ra

determined by χ2-fitting [no dim.] [106 M�] [kpc] [mas yr−1]

Boehle et al., N = 10 0.0751 4.235 ± 0.028 8.126 ± 0.026 0.054 ± 0.002
Boehle et al., N = 15 0.0739 4.232 ± 0.023 8.123 ± 0.021 0.054 ± 0.002
Boehle et al., N = 20 0.0739 4.231 ± 0.020 8.122 ± 0.018 0.054 ± 0.002
GRAVITY collaboration, N = 10 0.0689 4.208 ± 0.027 8.223 ± 0.025 −0.045 ± 0.002
GRAVITY collaboration, N = 15 0.0687 4.205 ± 0.022 8.220 ± 0.020 −0.045 ± 0.002
GRAVITY collaboration, N = 20 0.0687 4.205 ± 0.019 8.220 ± 0.018 −0.045 ± 0.002
Parameters VO.dec VO.Z IS �S

[mas yr−1] [km s−1] [◦] [◦]
Boehle et al., N = 10 −0.533 ± 0.002 2.484 ± 1.512 134.764 ± 0.084 227.106 ± 0.096
Boehle et al., N = 15 −0.533 ± 0.002 2.422 ± 1.235 134.756 ± 0.067 227.113 ± 0.078
Boehle et al., N = 20 −0.533 ± 0.001 2.423 ± 1.070 134.754 ± 0.058 227.115 ± 0.067
GRAVITY collaboration, N = 10 −0.163 ± 0.002 19.029 ± 1.512 133.872 ± 0.078 227.111 ± 0.092
GRAVITY collaboration, N = 15 −0.163 ± 0.002 19.228 ± 1.235 133.863 ± 0.064 227.122 ± 0.075
GRAVITY collaboration, N = 20 −0.163 ± 0.001 19.248 ± 1.070 133.863 ± 0.055 227.122 ± 0.065
Parameters ωS eS TS tS.apo

[◦] [no dim.] [yr] [AD]
Boehle et al., N = 10 65.817 ± 0.091 0.8896 ± 0.0003 15.8985 ± 0.0004 2010.2956 ± 0.0005
Boehle et al., N = 15 65.826 ± 0.073 0.8896 ± 0.0002 15.8985 ± 0.0003 2010.2958 ± 0.0004
Boehle et al., N = 20 65.828 ± 0.063 0.8896 ± 0.0002 15.8985 ± 0.0003 2010.2958 ± 0.0003
GRAVITY collaboration, N = 10 65.497 ± 0.087 0.8842 ± 0.0003 16.0505 ± 0.0004 2010.3566 ± 0.0005
GRAVITY collaboration, N = 15 65.510 ± 0.071 0.8842 ± 0.0002 16.0503 ± 0.0003 2010.3567 ± 0.0004
GRAVITY collaboration, N = 20 65.510 ± 0.061 0.8842 ± 0.0002 16.0503 ± 0.0003 2010.3567 ± 0.0004

∗ N is the number of data per year, for each of RA, Dec, and cz. The error in χ2-fitting is given by definition (18).

Fig. 1. Time evolution of the observed redshift, cz1PN.0PM(t). The top
panel is for the parameter values in Boehle et al. (2016). The bottom
panel is for the parameter values in GRAVITY collaboration (2018). Dots
on the curves denote the pericenter passage of S0-2.

the pericenter and apocenter passages of S0-2 estimated
by the 1PN + 0PM approximation, not by the Newtonian
case. The pericenter time in the Newtonian case is delayed
slightly by 0.002 yr ≈0.7 d after the pericenter time in
the 1PN + 0PM approximation.7 Note that, because the
parameter values in GRAVITY collaboration (2018) are

7 The gravitational potential of BH estimated in GR is stronger than the one in New-
tonian gravity. This makes the speed of S0-2 in the GR case tend to be greater than
the speed in the Newtonian case, and the pericenter time in the GR case precedes
the pericenter time in the Newtonian case.

Fig. 2. Theoretically expected time evolution of c�z1PN.0PM(t). The top
panel is for the case of Boehle et al. with N = 20 in table 2. The bottom
panel is for the case of GRAVITY collaboration with N = 10 in table 2.
Dots on the curves denote the pericenter passage of S0-2 estimated by
the 1PN + 0PM approximation. All other cases in table 2 show almost
the same behavior.

based on observations until June 2018 while those in Boehle
et al. (2016) are based on observations until 2013, we find
a horizontal shift between the top and bottom panels in
figure 1. The discrepancy probably arises from the five-year
difference of the observations. However, this discrepancy
does not affect the result of this section.

Under our presupposition on the treatment of the param-
eter values, figure 2 shows the theoretically expected time
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Fig. 3. Decomposition of �z1PN.0PM into two components. The top panel
is for the theoretically expected time evolution of the sum of the third
and fourth terms in equation (14) [�v2

S/(2c) + GMSgrA/(crS)]. The bottom
panel is for the theoretically expected time evolution of the sum of the
first and second terms in equation (14) (noted as �LSV in the panel).
Both panels are drown with the case of GRAVITY collaboration with
N = 10. Dots on the curves denote the pericenter passage of S0-2 esti-
mated by the 1PN + 0PM approximation.

evolution of c�z1PN.0PM(t). The upper and bottom panels
correspond, respectively, to the cases of Boehle et al.
with N = 20 and GRAVITY collaboration with N = 10
in table 2. It is significant that the two peaks appear before
and after the pericenter passage in both panels. Although
a horizontal shift is recognized between the two panels, as
already seen in figure 1, the “double-peak appearance” is
not affected by the horizontal shift between the two panels.
The time evolution of c�z1PN.0PM(t) for the other set of
parameters in table 2 also shows the very similar “double-
peak appearance”, although that is not presented here.

In order to understand the origin of the “double-peak
appearance”, it is useful to consider each component of
c�z1PN.0PM(t) defined in equation (14). As an example, we
focus on the case of GRAVITY collaboration with N = 10
in table 2.

The top panel in figure 3 shows the theoretically expected
time evolution of the sum of the third and fourth terms of
c�z1PN.0PM(t) in equation (14),

V S.1PN(t + tR)2 − VO.1PN(t)2

2c
+ GMSgrA

c rS.1PN(t + tR)
. (19)

This summation is the “special relativistic and gravitational
Doppler” component in c�z1PN.0PM(t) that has already been
recognized in the previous papers. On the other hand, the
bottom panel in figure 3 shows the theoretically expected
time evolution of the sum of the first and second terms of
c�z1PN.0PM(t) in equation (14),

[ VS.1PN‖(t + tR) − VS.NG‖(t + tR)]

− [VO.1PN‖(t) − VO.NG‖(t)] . (20)

This summation is the “line-of-sight velocity (LSV)”
component in c�z1PN.0PM(t), and has not been consid-
ered so far in the previous papers. Note that tables 1
and 2 imply that the difference of observer’s LSV is esti-
mated to be VO.1PN‖(t) − VO.NG‖(t) ≈VO.Z(1PN) − VO.Z(NG) �
−17 km s−1. This is smaller by one order than the LSV
component in the bottom panel of figure 3 ≈−200 km s−1.
Therefore, the time evolution of LSV component is
determined mainly by the LSV of S0-2, VS.1PN‖(t + tR) −
VS.NG‖(t + tR). Some theoretical analyses on this LSV com-
ponent are given in the subsection 2.2 of appendix 2.

The point in the LSV component (20) is that, as indi-
cated by the bottom panel of figure 3, the LSV of S0-2
in the Newtonian best-fitting case becomes faster than the
LSV in the GR case, VS.NG‖ > VS.1PN‖, around the pericenter
passage. This is reasonable due to the following facts:

(i) In general, the χ2-fitting provides us with the parameter
values that minimize the discrepancy between theory
and data. Therefore, all sets of parameter values in
table 2 must be adjusted so that the orbit and redshift
of S0-2 in the Newtonian case become as similar as
possible to those in the GR case.

(ii) The Newtonian redshift, czNG(t) in equation (3),
includes no counter-term to the “special relativistic and
gravitational Doppler” component (19).

By facts (i) and (ii), it is expected that the motion of
S0-2 with the Newtonian best-fitting parameter values is
adjusted so as to compensate the special relativistic and
gravitational Doppler component (19). Further, because of
fact (ii), it is only the LSV component VS.NG‖(t + tR) in the
Newtonian motion of S0-2 that can compensate the special
relativistic and gravitational Doppler component. Hence,
as shown in figure 3, the LSV component (20) takes the
negative value ≈−200 km s−1 (bottom panel of figure 3) so
as to compensate the positive value ≈200 km s−1 of the spe-
cial relativistic and gravitational Doppler component (top
panel of figure 3). This means that the LSV of the Newto-
nian best-fit is faster than the LSV of the GR case.

From the above discussions, we find that, under our pre-
supposition on the parameter values, the time evolution
of c�z1PN.0PM(t) shows the “double-peak appearance” as in
figure 2. In contrast with our presupposition, if one uses the
method of the other groups summarized in subsection 2.3,
their quantity �z(prev)

GR defined in equation (17) shows a
single peak feature similar to the one in the top panel of
figure 3. (Note that the top panel of figure 3 corresponds to
the case f = 1 of �z(prev)

GR .)
Finally in this section, we show c�z1PN.0PM(t) together

with the artificial data in figure 4 for the case of GRAVITY
collaboration with N = 10. Further, because the existing
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Fig. 4. Time evolution of �z1PN.0PM(t) plotted with the artificial accurate
data set created in step 2, for the case of GRAVITY collaboration with
N = 10.

Fig. 5. Time evolution of �z1PN.0PM(t) from 2000 to 2020, for the case
of GRAVITY collaboration with N = 10. Dots denote the pericenter and
apocenter passage of S0-2 estimated by 1PN + 0PM approximation. All
other cases in table 2 show almost the same behavior.

real observational data of S0-2 covers the previous peri-
center passage in 2002, we show in figure 5 the theoretically
expected time evolution of c�z1PN.0PM(t) for a rather wide
temporal range. As implied by this figure, the theoretically
expected time evolution of c�z1PN.0PM(t) under our presup-
position shows the “double-peak appearance” not only for
the pericenter passage in 2018 but also for that in 2002.

3 Our observations and data analysis

Readers who want to see the results of the fitting of our
observational data and the “double-peak appearance” may
refer to our observational data in table 4 and go to section 4.

The observational data used in our fitting calculation
are all public data released by 2017 (Boehle et al. 2016;
Gillessen et al. 2017) and our spectroscopic data obtained
with the Subaru telescope by 2018. We have observed
S0-2 for more than 10 nights with the Subaru telescope.
However, due to unfortunate bad weather conditions at
the island of Hawaii in 2018, we have obtained spectra
with lower SN ratios than the previous years. Our spec-
troscopic data, including ones reported in our previous
paper (Nishiyama et al. 2018), are listed in table 4. Details
on our Subaru observations are as follows.

3.1 Observation

We have carried out spectroscopic observations of S0-2
using the Subaru telescope (Iye et al. 2004) and IRCS
(Kobayashi et al. 2000), in the Echelle mode. The spec-
tral resolution of the IRCS Echelle mode is ≈20000 in
the K band. During our observations, we have used the

Subaru AO system (Hayano et al. 2008, 2010) and the
laser guide star (LGS) system (Minowa et al. 2012). In the
LGS mode observations, R = 13.8 mag star USNO 0600-
28577051 was used as a tip-tilt guide star, and in the natural
guide star (NGS) mode, the star was used as the NGS. The
details of the observations, such as exposure time and the
number of frames taken in the nights, are shown in table 3.
The details of the observations from 2014 to 2016 are also
described in Nishiyama et al. (2018).

3.2 Data reduction

The reduction procedure for our data sets includes:

(1) dark subtraction;
(2) flat-fielding;
(3) sky subtraction;
(4) bad pixel correction; and
(5) cosmic ray removal.

A sky field was observed once or twice per night, and
used for the correction of atmospheric emission. The S0-2
spectra are then extracted from the reduced images. The
wavelength calibration was carried out using the sky OH
emission lines. Spectra of nearby early-A type stars was
used for the telluric correction. The details of the procedure
above are described in Nishiyama et al. (2018).

3.3 Combining the S0-2 spectra

To determine the profile of the Br-γ absorption line and
redshifts of S0-2 accurately, we have combined spectra of
S0-2 from 2014 to 2017. In our previous paper (Nishiyama
et al. 2018), we fitted the Br-γ line using a Moffat function
with all parameters set as free. However, since some low
signal-to-noise (SN) ratio spectra are included in our data
sets, the line shape could be different in such low SN ratio
spectra. Hence we have combined S0-2 spectra from 2014
May to 2017 August, to determine the profile of the Br-γ
absorption line with a good SN ratio. Here we have not
combined the spectra in 2018, because the redshift of S0-2
changes rapidly hour by hour.

To combine S0-2 spectra, first we fit the Br-γ line in each
spectrum from 2014 to 2017 with a Moffat function, and
determine the peak wavelength. The spectra are shifted to
have zero redshift using IRAF dopcor task, and then com-
bined to make a preliminary combined spectrum. Next,
the Br-γ line in the preliminary spectrum is fitted to deter-
mine the parameter of the Moffat function. The parameters
determined in this fit are used to determine the peak wave-
length in each spectrum from 2014 to 2017 again. In this
procedure, only the peak wavelength of a Moffat function
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Table 3. Summary of Subaru observations.

Date Setting∗ IT† Nframe
‡ Nused

§ Slit angle‖ AO#

(UTC) [s] [◦]

2014 May 19 K+ 300 32 30 8 LGS
2015 Aug 21 K+ 300 24 24 8 NGS
2016 May 18–19 K+ 300 48 44 8, 128 LGS
2017 May 5–8 K+ 300 100 98 8, 117, 127 160, 178 LGS
2017 Aug 9–11 K+ 300 68 57 8, 127 NGS/LGS
2018 March 29–30 K+ 300 39 39 8, 127 NGS/LGS
2018 May 20 K+ 300 34 32 68 NGS
2018 Jul 4–6 K− 300 48 42 70, 117, 160 NGS/LGS
2018 Aug 18 K− 300 24 24 8, 70 NGS

∗IRCS Echelle setting.
†Integration time for each exposure.
‡The number of frames taken in the night(s)
§The number of frames used in data analysis.
||The angular offset measured from north to east, counterclockwise.
#The guide star of the AO system. The “LGS” mode uses the laser guide star system, and the “NGS” mode uses only a natural guide star.

Table 4. Redshift and uncertainties of S0-2 in Subaru/IRCS observations.

Time∗ RedshiftLSR �redshiftLSR
† σtot σJK σsys

[yr] [km s−1] [km s−1] [km s−1] [km s−1] [km s−1]

2014.379 485.6 +24.6 26.6 25.6 6.6
2015.635 886.6 −15.7 16.5 15.5 5.6
2016.381 1096.2 +24.5 16.9 15.2 7.3
2017.343 1768.7 +29.9 20.4 20.0 5.9
2017.348 1798.8 +29.2 14.4 12.9 6.3
2017.605 2133.3 −12.6 27.2 26.1 7.8
2017.609 2169.6 −13.0 36.6 35.7 8.3
2018.240 4001.9 +39.6 36.7 35.4 9.5
2018.243 4096.6 +39.4 39.6 37.7 12.2
2018.382 2466.4 +24.1 67.5‡ 66.9‡ 9.1‡

2018.508 −1102.3 +2.2 53.1 52.5 7.9
2018.628 −1785.7 −15.0 40.9 39.8 9.3

∗Time is counted in the unit of year, setting 1 yr as 365.25 d.
†The local standard of rest velocity at the average time of integration.
‡The shown uncertainties for 2018.382 are lower limits.

was set to be free. The spectra are shifted to have zero red-
shift according to the newly determined peak wavelengths,
and are then combined. Here we obtain new combined
S0-2 spectrum, and fit it to determine the parameters of the
Moffat function. The procedure above was repeated itera-
tively until any of the redshifts for individual years changes
no more than 1 km s−1.

Figure 6 shows the combined S0-2 spectra around
2.16 μm, using the Subaru/IRCS data sets from 2014 to
2017. The total exposure time is 21.8 hours, and the
smoothing parameter of s = 11. We can find two clearly
separated absorption profiles, He I 2.16137 μm (left) and
Br-γ 2.16612 μm (right). The Moffat profile used to fit the
Br-γ 2.16612 μm line is shown by the red curve. In the fol-
lowing procedure, this profile will be used to measure the

peak wavelength of the Br-γ line. Only the peak wavelength
and scaling factor (corresponding to the continuum level)
are set to be free in the following profile fits.

3.4 Identification of Br-γ feature

The S0-2 spectra from 2014 May to 2018 August obtained
with Subaru/IRCS are shown in figure 7. As shown there,
the obtained spectra in 2018 are noisy. This is because
of bad weather conditions, low power output of the LGS
system, and frequent satellite closures during the observa-
tions in 2018. At first glance, it is not clear which feature is
the Br-γ absorption line of S0-2. We therefore carried out
an analysis to identify the Br-γ absorption before the fitting
to determine the redshifts of S0-2.
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Fig. 6. Combined S0-2 spectrum (s = 11) around the Br-γ absorption
line, obtained with Subaru/IRCS from 2014 to 2017. We can see a He I

absorption line at 2.16137 μm as well as the Br-γ 2.16612 μm line. The
Br-γ line is fitted with a Moffat function (red curve). (Color online)

To identify the feature, we have used the combined spec-
trum of S0-2 around the Br-γ absorption line (figure 6).
By fitting the feature, we have obtained parameters of a
Moffat function which fit the feature in the combined spec-
trum well. Using the obtained parameters of the Moffat
function for the combined spectrum, we have fitted each
spectrum in 2018, by changing the central wavelength of
the Moffat function. For example, in the case of the 2018
March spectra, we fitted it by changing the central wave-
length of the Moffat function from 2.170 μm to 2.200 μm,
and calculate χ2 values for the fit. When we plot χ2 as
a function of the central wavelength, we can find a clear
minimum of χ2 at around 2.194–2.195 μm. This suggests
that the absorption feature around 2.194–2.195 μm is best
matched with the shape of the combined spectrum, com-
pared to other features on the 2018 March spectrum.

We have carried out the fitting described above for all the
spectra obtained in 2018. We have found a clear minimum
of χ2 at 2.194 μm, 2.158 μm, and 2.153 μm for the 2018
March, July, and August spectra, respectively, and thus we
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2014 May (s = 17)
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Fig. 7. Spectra including Br-γ absorption line of S0-2 from 2014 May (top) to 2018 August (bottom). The fitting results are shown by red curves on
the spectra. The smoothing parameters are 17 for 2014, 23 for 2018 May, and 11 for the rest of the spectra. The LSR correction is not applied. (Color
online)
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have considered the feature at the wavelengths as the Br-γ
absorption line of S0-2.

For the 2018 May spectrum, we have found two min-
imums with similar χ2 values at around 2.178 μm and
2.183 μm. To identify the Br-γ feature, we fitted the red-
shifts of S0-2 using all the observed ones but that of 2018
May. The fitting result suggests that the expected redshift of
S0-2 at 2018.382 (2018 May) is ≈2630 km s−1, and the cen-
tral wavelength of the redshift is ∼2.185 μm. Considering
the expected redshift, we have assumed that the absorp-
tion feature at around 2.184 μm is the Br-γ absorption line
of S0-2 at 2018.382. Note that without such prediction
from other observational results, we cannot distinguish the
Br-γ line from other features on the 2018 May spectrum.
Hence the derived uncertainty values for the 2018 May
shown below are lower limits of an actual uncertainty in the
redshift of S0-2.

3.5 Redshifts and uncertainties

On the S0-2 spectra from 2014 May to 2018 August
(figure 7), we show the fitting results of the Br-γ absorp-
tion features using red curves. We use the parameters of
the Moffat function determined for the combined spec-
trum (figure 6), but the peak wavelength and the scaling
factor (corresponding to the continuum level) are left free
in the fits. When we fitted the spectra, we divided the
2018 March dataset into “2018 March 29 (2018.240)”
and “2018 March 30 (2018.243)” datasets. The redshifts
of S0-2 are determined using the central wavelength of the
fitting results, and they are shown in table 4.

To determine the uncertainties of the S0-2 redshifts,
we have conducted the same procedures described in
Nishiyama et al. (2018). To estimate uncertainties, we have
carried out Jackknife analysis. Before combining observed
spectra, we have made N sub-data sets consisting of N − 1
spectra. Here N is the number of frames used in data anal-
ysis (see table 3). Then we have fitted the Br-γ absorption
line of the N spectra of the sub-data sets, and have cal-
culated jackknife uncertainties σJK using equation (2) in
Nishiyama et al. (2018). The obtained jackknife uncertain-
ties are shown in table 4.

Systematic uncertainties σsys includes the following:
(1) uncertainties in spectrum smoothing (typically
1–2 km s−1); (2) uncertainty in the stability of the long-
term wavelength calibration (≈5 km s−1); (3) uncertainty
in the comparison of partly excluded spectra to under-
stand the uncertainty in the telluric correction (3–8 km s−1).
The spectra used for the fitting (figures 6 and 7) are
smoothed ones, because of the faintness of S0-2. The cen-
tral wavelengths could have different values when we use
different smoothing parameters of the spectra. Hence we

have checked how the central wavelength varies with dif-
ferent smoothing parameters. The typical uncertainties are
estimated to be 1–2 km s−1.

The systematic uncertainty due to wavelength calibra-
tions, i.e., long-term stability of this spectroscopic moni-
toring, is examined using the Br-γ “emission” line. The
interstellar gas around S0-2 is ionized by UV radiation from
high-mass stars nearby, and thus emits Br-γ which can be
used to estimate the uncertainty of the wavelength calibra-
tion. Assuming the wavelength of the Br-γ emission line
is stable from 2014 to 2018, we fit the emission line with
a Gaussian function and determine the central wavelength
for each spectrum. The standard deviation of the redshifts
derived by the central wavelengths are 4.9 km s−1.

One of the difficulties in data analysis of ground-based
near-infrared spectroscopy is removal of telluric absorp-
tion features. In our analysis, we have observed telluric
standard stars and used them to remove the telluric lines.
However, the strength and profile of the telluric lines vary
with atmospheric conditions and airmass of targets. Hence
we have examined the change of the central wavelengths of
the Br-γ absorption line by using sub-sets of spectra, part
of which is excluded from the original spectra (for more
detail, see Nishiyama et al. 2018). In this experiment, we
have examined how the central wavelength changes if a part
of the Br-γ absorption feature is affected by uncorrected tel-
luric absorption. The uncertainties derived by the fits of the
partly excluded spectra are 3–8 km s−1 from 2014 to 2018,
and these uncertainties are also quadratically added to the
final systematic uncertainties of σsys (table 4).

Note that, as described in subsection 3.4, it is difficult
to identify the Br-γ absorption feature in the 2018 May
spectrum without a prediction from other data sets. Hence
the uncertainties derived for 2018.382 (table 4) are likely
to be underestimated compared to actual ones.

4 Time evolution of �z1PN.0PM(t) fitted with

observational data

As derived in section 2, the difference between the GR and
Newtonian redshifts under our presupposition �z1PN.0PM(t)
shows the “double-peak appearance” in its time evolu-
tion. In this section, we examine whether the double-
peak appearance is found or not in the observational data,
including our 2018 data.

Note that the observational data used in our analysis
include not only our own data but also all public data
released by the other groups by 2017, while the VLT
group (GRAVITY collaboration 2018) did not use the
astrometric data of the Keck group (Do et al. 2019), and
the Keck group did not use the astrometric data of the
VLT group. Further, the new 2018 data in GRAVITY
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collaboration (2018) and Do et al. (2019) are not used
in our analysis, because those data were not available for
us when this paper was written.

4.1 Parameters determined by our fitting

The parameters determined by the χ2-fitting in the fol-
lowing discussions are not only the 11 parameters listed in
sub-subsection 2.4.1 but also the parameters corresponding
to the origin of the astrometric data of Keck and VLT
groups. Their astrometric origins are set at the position of
an infrared flare near Sgr A∗ at a certain time. The flare posi-
tion at a certain time may be moving relative to Sgr A∗ (and
to our astrometric center “C” introduced in appendix 1).
Therefore, the vector Asky(t) defined in equation (A3) of
appendix 1 does not vanish for either Keck or VLT astro-
metric data. Then, we introduce the following eight param-
eters corresponding to Asky(t):

�RAK.apo: the RA of the astrometric origin Aapo at the apoc-
enter time tS.apo for the Keck data.

�DECK.apo: the Dec of the astrometric origin Aapo at the
apocenter time tS.apo for the Keck data.

VK.ra: the RA-component of the velocity of astrometric
origin V astro for the Keck data.

VK.dec: the Dec-component of the velocity of astrometric
origin V astro for the Keck data.

�RAV.apo: the RA of the astrometric origin Aapo at the apoc-
enter time tS.apo for the VLT data.

�DECV.apo: the Dec of the astrometric origin Aapo at the
apocenter time tS.apo for the VLT data.

VV.ra: the RA-component of the velocity of astrometric
origin V astro for the VLT data.

VV.dec: the Dec-component of the velocity of astrometric
origin V astro for the VLT data.

In total, we determine the 19 parameters by χ2-fitting
of the S0-2 motion with real astrometric and spectroscopic
observational data.

4.2 Results of fitting

As the first step, we perform three χ2-fittings in order to
obtain three sets of parameter values :

Fitting 1 (“GR-best-fit”): We perform the χ2-fitting of the
real observational data with the S0-2 motion at the
1PN + 0PM approximation. Then we obtain the GR
best-fitting values of the 19 parameters, which are shown
in table 5. With these parameter values, the redshift
at the 1PN + 0PM approximation, cz1PN.0PM(t), is cal-
culated using equation (11).

Fitting 2 (“NG-best-fit”): We perform the χ2-fitting of the
real observational data with the S0-2 motion in the New-
tonian gravity. Then we obtain the NG best-fitting values
of the 19 parameters, which are shown in table 5. With
these parameter values, the redshift in the Newtonian
gravity, cz(real)

NG (t), is calculated using equation (3). Here
the upper suffix “(real)” denotes that this Newtonian
redshift is obtained from the real observational data.

Fitting 3 (“NG-art-best-fit”): We create the ideally accurate,
artificial data set using the GR-best-fit values of the 11
parameters listed in sub-subsection 2.4.1, where we set
N = 20 and L = 64 yr, which are the parameters intro-
duced in sub-subsection 2.4.2.8 Then, we perform the
χ2-fitting of this artificial data set with the S0-2 motion
in the Newtonian gravity, and we obtain the NG artifi-
cial best-fitting values of the 11 parameters, which are
shown in table 5. With these parameter values, the red-
shift in the Newtonian gravity, cz(art)

NG (t), is calculated
using equation (3). Here the upper suffix “(art)” denotes
that this Newtonian redshift is obtained from the artifi-
cial data set.

Next, we calculate the following two types of the mea-
sure of GR evidence (14) under our presupposition of the
parameter values:

c�z(observe)
1PN.0PM(t) := cz1PN.0PM(t) − cz(real)

NG (t) (21)

c�z(expect)
1PN.0PM(t) := cz1PN.0PM(t) − cz(art)

NG (t) . (22)

The former, c�z(observe)
1PN.0PM(t), is the observed GR evidence

estimated from only real observational data. The latter,
c�z(expect)

1PN.0PM(t), is the theoretically expected form of the GR
evidence, under the assumption that the GR-best-fit param-
eter values represent the true S0-2 motion. As discussed
in subsection 2.3, if the time evolution of c�z(observe)

1PN.0PM(t)
matches well with that of c�z(expect)

1PN.0PM(t), then it is concluded
that the real observational data are described well by GR.

Figure 8 shows the GR evidence represented by our fit-
ting results listed in table 5. The first and second panels
focus around the recent pericenter passage, where the solid
curve is the time evolution of the observed GR evidence
c�z(observe)

1PN.0PM(t) and the dashed curve is the theoretically
expected time evolution of the GR evidence c�z(expect)

1PN.0PM(t).
The third and fourth panels focus around the previous peri-
center passage. The fifth panel shows the whole temporal
range covering all real observational data, in which the
Subaru data are denoted by blue, the Keck data by red,
and the VLT data by green. Those data points are c�zobs,
defined in equation (15).

8 The values of N = 20 and L = 64 yr are one example. The other cases satisfying
the conditions given in sub-subsection 2.4.2 result in the same conclusion with this
section.
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Table 5. Results of our χ2-fitting.∗

χ2
red.min and parameters χ2

red.min MSgrA RGC VO.ra

determined by χ2-fitting [no dim.] [106 M�] [kpc] [mas yr−1]

GR-best-fit 1.1903 4.232 ± 0.066 8.098 ± 0.066 −0.162 ± 28.782
NG-best-fit 1.2134 4.274 ± 0.067 8.114 ± 0.067 −0.168 ± 29.056
NG-art-best-fit 0.0754 4.352 ± 0.020 8.207 ± 0.018 −0.128 ± 0.002
Parameters VO.dec VO.Z IS �S

[mas yr−1] [km s−1] [◦] [◦]
GR-best-fit 0.174 ± 28.787 −8.345 ± 3.213 134.239 ± 0.217 227.766 ± 0.242
NG-best-fit 0.166 ± 29.061 5.261 ± 3.196 134.063 ± 0.214 227.518 ± 0.245
NG-art-best-fit 0.191 ± 0.001 9.307 ± 1.070 134.306 ± 0.056 226.974 ± 0.066
Parameters ωS eS TS tS.apo

[◦] [no dim.] [yr] [AD]
GR-best-fit 66.204 ± 0.333 0.8903 ± 0.0007 16.0504 ± 0.0023 2010.3383 ± 0.0015
NG-best-fit 66.049 ± 0.340 0.8911 ± 0.0007 16.0468 ± 0.0022 2010.3432 ± 0.0014
NG-art-best-fit 65.521 ± 0.062 0.8899 ± 0.0002 16.0489 ± 0.0003 2010.3410 ± 0.0003
Parameters �RAK.apo �DECK.apo VK.ra VK.dec

[mas] [mas] [mas yr−1] [mas yr−1]
GR-best-fit 0.576 ± 0.611 −1.796 ± 0.611 0.262 ± 28.790 −0.708 ± 28.790
NG-best-fit 0.689 ± 0.620 −1.725 ± 0.620 0.309 ± 29.063 −0.692 ± 29.063
Parameters �RAV.apo �DECV.apo VV.ra VV.dec

[mas] [mas] [mas yr−1] [mas yr−1]
GR-best-fit −1.061 ± 0.611 2.152 ± 0.611 0.154 ± 28.790 −0.220 ± 28.790
NG-best-fit −0.964 ± 0.620 2.223 ± 0.620 0.200 ± 29.063 −0.199 ± 29.063

∗GR-best-fit is the result of fitting the real observational data with the S0-2 motion at the 1PN + 0PM approximation of GR. NG-best-fit is the
result of fitting the real observational data with the S0-2 motion in the Newtonian gravity. NG-art-best-fit is the result of fitting the artificial
accurate data with the S0-2 motion in the Newtonian gravity, where the artificial data are created from the GR-best-fit. The error in χ2-fitting
is given by definition (18).

The double-peak appearance around the recent and pre-
vious pericenter passages are recognized in the observed GR
evidence (solid curve in figure 8). In order for a quantitative
assessment of the detection of the GR evidence under our
presupposition on the parameter values, we need a quan-
tity that can measure the discrepancy/similarity between the
solid curve and the dashed curve in figure 8. Such a quantity
is defined in subsection 4.3.

Here we summarize some points found in figures 9
and 10. Figure 9 shows the “previously used” GR evidence
(the special relativistic and gravitational Doppler compo-
nents in �z1PN.0PM) given by the formula (19), which corre-
sponds to the case of f = 1 of �z(prev)

GR in equation (17). We
find that our largest magnitude of the previously used GR
evidence ≈200 km s−1 appears around the pericenter pas-
sage (2018.3850 yr in 1PN + 0PM motion of S0-2). This is
consistent with the results of the other groups.

Note that the largest magnitude of �z1PN.0PM ≈
100 km s−1 under our presupposition (see figure 8) is
about a half of that of the previously used GR evidence
≈200 km s−1. Even when the previously used GR evidence
would be detected with a given observational data set, the
significance for the detection of �z1PN.0PM would be smaller
under our presupposition.

Figure 10 shows the difference of the LSV between the
1PN + 0PM motion of S0-2 (GR-best-fit parameters) and
the Newtonian motion of S0-2 (NG-best-fit or NG-art-best-
fit), given by equation (20). For the solid curve, the Newto-
nian motion is given by the NG-best-fit parameters. For the
dashed curve, the Newtonian motion is the NG-art-best-fit
parameters (corresponding to the bottom panel of figure 3).
The negativity of both solid and dashed curves denotes that
the Newtonian LSV is faster than the GR LSV in both NG-
best-fit and NG-art-best-fit. Further, from figures 9 and 10,
it is recognized that the summation of the previously used
GR evidence and the LSV difference results in the double-
peak appearance of our GR evidence �z1PN.0PM(t) shown
in figure 8. This is consistent with the simulation (figure 3)
performed in sub-subsection 2.4.4.

4.3 A quantity to measure the discrepancy
between the GR and the Newtonian gravity

As discussed in the second paragraph of sub-
subsection 2.4.3, the χ2-assessment within the present
observational precision is not useful for detecting the dis-
crepancy between the GR and the Newtonian gravity. Fur-
ther, we do not introduce any auxiliary parameter (see
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Fig. 8. GR evidence described by our fitting results. In all panels, the
solid curve is the real GR evidence, c�z(real)

1PN.0PM(t), obtained from the real
observational data, and the dashed curve is the theoretically expected
GR evidence, c�z(art)

1PN.0PM(t). The blue data are of Subaru observations,
red data of Keck, and green data of VLT, where all data are subtracted
by the Newtonian best-fitting redshift cz(real)

NG (t). Magenta dots denote
the pericenter and apocenter passages. The first and second panels
focus around the recent pericenter passage. The third and fourth panels
focus around the previous pericenter passage. The fifth panel shows
the temporal range including all real observational data. (Color online)

Fig. 9. Previously used GR evidence given by equation (19) with GR-
best-fit parameters. The top panel shows the temporal range for all
observational data. The bottom panel focuses around the recent peri-
center passage. The blue data are of Subaru observations, red data of
Keck, and green data of VLT, where all data are subtracted by the LSV part
of GR redshift (first and second terms of equation (11)). (Color online)

Fig. 10. Difference of LSV between 1PN + 0PM (GR-best-fit) and New-
tonian cases. For the solid curve, the Newtonian case is given by the
NG-best-fit parameters. For the dashed curve, the Newtonian case is
given by the NG-art-best-fit parameters, corresponding to the bottom
panel of figure 3.

subsection 2.3) under our presupposition on the parameter
values. Then, instead of the χ2

red whose definition is based
mainly on the statistical mathematics, we define the fol-
lowing quantity, δz, that is based mainly on the double-peak
appearance of the GR evidence under our presupposition:

δz(t0, δt) :=

∫ t0+δt

t0

dt
∣∣∣�z(observe)

1PN.0PM(t) − �z(expect)
1PN.0PM(t)

∣∣∣∫ t0+δt

t0

dt
∣∣∣�z(expect)

1PN.0PM(t)
∣∣∣ , (23)

where t0 and δt have the dimension of time. The interpreta-
tion of this definition (23) is as follows:

(1) The denominator of δz(t0, δt) represents an absolute
amount of the theoretically expected GR evidence
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Table 6. Error, δz(t0, δt), that estimates a discrepancy between

the observed GR evidence �z(observe)
1PN.0PM and the theoretically

expected GR evidence �z(expect)
1PN.0PM for the real observational

data set.

δz(t0, δt) Counted from t0 [yr] With duration δt [yr]

0.651 2000.475∗ 18.135†

0.603 2018.628 − TS
‡ TS

0.623 tS.apo TS

0.636 2000.475 TS

0.620 tS.apo − TS
§ TS

0.584 tS.apo − TS
2

|| TS

∗The first spectroscopic data was observed at 2000.475 by Keck, and the latest
data was at 2018.628 by Subaru shown in table 4.

†Temporal range of the real spectroscopic data is δt = 2018.628 −
2000.475 = 18.135 yr.

‡TS and tS.apo are in the GR-best-fit parameters in table 5, that correspond to,
respectively, the recent apocenter time in 2010 and the period of the S0-2
motion.

§tS.apo − TS is about the time at previous apocenter in 1994.
||tS.apo − TS/2 is about the time at previous pericenter in 2002.

�z(expect)
1PN.0PM(t) for duration δt from t0. For example, in

the first panel of figure 8, the denominator corresponds
to the area between the horizontal axis and the curve of
c�z(expect)

1PN.0PM(t) (dashed curve).
(2) The numerator of δz(t0, δt) represents an absolute

amount of the difference between the observed GR
evidence �z(observe)

1PN.0PM and the theoretically expected one
�z(expect)

1PN.0PM for duration δt from t0. For example, in the
first panel of figure 8, the numerator corresponds to
the area between the curve of c�z(observe)

1PN.0PM(t) (solid curve)
and the curve of c�z(expect)

1PN.0PM(t) (dashed curve). Note the
mathematical fact that, if the real observational data
expresses exactly the theoretically expected time evolu-
tion of the GR evidence under our presupposition, then
the numerator of δz must be zero.

(3) The quantity δz(t0, δt) defined in equation (23) is
the ratio of the “difference between �z(observe)

1PN.0PM and
�z(expect)

1PN.0PM” to the “amount of �z(expect)
1PN.0PM”, for duration δt

from t0. In other words, this δz expresses to what extent
the GR evidence in the real observational data matches
well with the theoretically expected GR evidence under
our presupposition on the parameter values.

We propose this δz(t0, δt) as a measure of the discrep-
ancy/similarity between the GR and the Newtonian gravity
under our presupposition on the parameter values.

To calculate the value of δz(t0, δt), we need to determine
not only the values of t0 and δt but also the three sets
of parameters GR-best-fit, NG-best-fit, and NG-art-best-
fit. Using the three sets of best-fitting parameters listed in
table 5, some values of δz(t0, δt) for some combinations
of (t0, δt) are listed in table 6. This table implies that the

present real observational data include about 60% error in
measuring the double-peak appearance of the GR evidence.
In order to reduce this error and to confirm the detection of
the double-peak appearance, we need additional data sets.

5 Summary and discussion

Under the presupposition on the parameter values given
in section 1, we have proposed a theoretical discussion on
the GR evidence that appears in the spectroscopic data of
the S0-2 motion. The GR evidence under our presuppo-
sition, �z1PN.0PM(t) defined in equation (14), is the differ-
ence between the GR and Newtonian redshifts of photons
coming from S0-2. In section 2, under our presupposition,
we have revealed that the theoretically expected time evo-
lution of �z1PN.0PM(t) shows two peaks, before and after
the pericenter passage of S0-2. This “double-peak appear-
ance” is a significant feature which expresses the discrep-
ancy between GR and Newtonian gravity under our presup-
position on the parameter values. (The double peaks reduce
to a single peak under the treatment of the parameter values
by other groups, as summarized in subsection 2.3.) It has
also been found that the χ2-assessment under the present
averaged observational uncertainties is not useful to con-
firm the detection of the double-peak appearance.

In section 3, our observations with the Subaru telescope
by 2018 have been summarized. Due to unfortunate bad
weather conditions at Hawaii island in 2018, our data
in 2018 have lower SN ratio than the previous years. In
section 4, it has been shown that the double-peak appear-
ance can be recognized in the present observational data
(figure 8). However, as shown in figure 8, the uncertain-
ties of our 2018 data are so large that we cannot exclude
the Newtonian case (zobs ≡ zNG). Further, according to the
quantity δz which measures the discrepancy between the
GR and the Newtonian gravity under our presupposition
on the parameter values, the error in measuring the double-
peak appearance in the present data set is about 60%. In
order to reduce this error and to confirm the detection of
the double-peak appearance, we need additional data sets.

Finally, let us discuss one method for the test of GR or
the so-called modified theories of gravity, under our presup-
position on the parameter values. Note again that the quan-
tity δz estimates the discrepancy between the GR and the
Newtonian gravity under our presupposition. Therefore, if
we replace the GR with a modified theory of gravity in the
definition of δz, then the modified δz can be interpreted as
a measure of the discrepancy between the modified theory
of gravity and the Newtonian gravity. Hence, if the value
of δz of the GR is lower than the value of δz of the other
theories of gravity, then it is reasonable to conclude that the
GR is more promising than the other theories of gravity.
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Appendix 1. Set-up of our coordinate system

In calculating the motion of S0-2, we fix the coordinate
system, (t, r, θ, ϕ), centered at Sgr A∗. For the Newtonian
case, the spatial coordinates (r, θ, ϕ) are the usual spherical
polar coordinates. For the GR case, the spacetime coor-
dinates (t, r, θ, ϕ) are the Boyer–Lindquist coordinates in
Kerr spacetime, although the spacetime metric tensor will be
approximated to be the first-order post-Newtonian (1PN)
form in subsection 2.2. In both GR and Newtonian cases,
the origin of time is set at the apocenter passage of S0-2 in
2010. Further, due to the huge distance between the Sun
and Sgr A∗, ≈8 kpc, we assume that the relative velocity of
the observer measured from Sgr A∗, VO, is constant. This
coordinate system set-up is schematically shown in the top
panel of figure 11. In this figure, the direction of BH spin
is ignored because we consider the 1PN form (the effect of
BH spin is ignored) in the main text of this paper, and the
coordinates (X, Y, Z) are given by

X = r sin θ cos ϕ , Y = r sin θ sin ϕ , Z = r cos θ , (A1)

where the Z-axis points to us (observer) from Sgr A∗

(BH) at the apocenter time tS.apo, and the directions of
the X and Y axes are, respectively, parallel to the direc-
tions of declination (Dec) and right ascension (RA). The
line-of-sight direction, which points to S0-2 from the
observer, changes due to the motions of S0-2 and the
observer.

In combining our numerical calculation with the astro-
metric observational data of S0-2, we use the relation
between (X, Y, Z) and the astrometric coordinates (RA and
Dec) as shown in the bottom panel of figure 11. We put
the center “C” of RA and Dec axes at distance RGC from
the observer in the direction parallel to Z-axis. The W-axis
points to the observer from C, and its direction is parallel

BH
Z

S0-2

R.A.
(// Y)

Dec. (// X)

Apocenter
     at tS.apo

Observer

Z = RGC at tS.apo

VO

X (// Dec.)

BH
C

S0-2

Observer
    W
(// Z)

 Origin of
astrometry

     Coordinates (X,Y,Z) for
S0-2's and observer's motions

      Relation between
(X,Y,Z) and (R.A.,Dec.)

Vastro

Y (// R.A.)

PS

Psky Asky

xS

W = RGC

Fig. 11. The top panel denotes the coordinate system (X, Y, Z) for calcu-
lating the motions of S0-2 and observer. The origin of (X, Y, Z) is fixed at
Sgr A∗, and the origin of time is set at the apocenter time of S0-2, tS.apo.
The bottom panel shows the relation between (X, Y, Z) and the astro-
metric coordinate system, right ascension (RA) and declination (Dec).
The center “C” of RA and Dec is at distance RGC in the direction par-
allel to Z-axis, and the origin of astrometric observations is, in general,
moving relative to C. (Color online)

to Z-axis. The spatial position of S0-2 measured from C at
a time t, P S(t), is give by

P S(t) = xS(t) − (t − tS.apo)VO , (A2)

where xS(t) is the spatial position of S0-2 measured from
Sgr A∗ at time t, and the second term is the spatial position
of Sgr A∗ measured from C at time t. Our definition of RA
and Dec of S0-2 is given by the projection of P S(t) on to
the sky-plane, P sky(t).
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In real astrometric observations, the origin of astrometry
is not necessarily the same as our center C, and is given by
the following vector on the sky-plane,

Asky(t) = Aapo + (t − tS.apo)V astro , (A3)

where Aapo is the position of the astrometric origin at the
apocenter time tS.apo, and V astro is the relative velocity of
the astrometric origin measured from C. Here we assume
V astro is constant. The real astrometric observational data
are compared with the numerical values of RA and Dec of
S0-2 given by P sky(t) − Asky(t),

RA of S0-2 : arctan
(

Psky.R − Asky.R

RGC − PS.W

)
(A4)

Dec of S0-2 : arctan
(

Psky.D − Asky.D

RGC − PS.W

)
, (A5)

where the suffixes “R”, “D”, and “W” denote, respec-
tively, the components of vector in RA, Dec, and W
directions.

Finally, we make two comments. First, because the
center C at the apocenter time tS.apo is just at Sgr A∗

[the origin of coordinates (X, Y, Z)], the first term Aapo

in equation (A3) is also the position of astrometric origin
measured from Sgr A∗ at tS.apo. Secondly, because the veloc-
ities V astro and VO are, respectively, measured from C and
Sgr A∗, the relative velocity of the astrometric origin mea-
sured from Sgr A∗ is given by V astro + V XY, where V XY is
the projection of VO on to the X-Y plane.

Appendix 2. Derivation of z1PN.0PM(t) and

some analyses of �z1PN.0PM(t)

A.2.1 Derivation of the GR redshift (11)

This appendix is for the derivation of the GR redshift of
photons coming from S0-2 at the 1PN + 0PM approxima-
tion (11). This redshift can be obtained by substituting the
definition of frequency (5) into the definition of redshift (1)
under the 1PN + 0PM approximation.

Before introducing the PN expansion, let us consider the
situation that the S0-2 is regarded as a test particle moving
in the Kerr spacetime of mass MSgrA and spin angular
momentum JSgrA. The components of metric tensor of Kerr
spacetime, gμν , are read from the line element,

ds2 = gμνdxμdxν (A6)

=−�D
Z

dt2 + Z
�

sin2 θ
(
ω dt − dϕ

)2 + �

D
dr2 + �dθ2 ,

where the coordinates xμ = (t, r, θ, ϕ) are the
Boyer–Lindquist system, and the functions in the metric

components are

D(r ) = r2 + a2 − 2mr, (A7)

�(r, θ ) = r2 + a2 cos2 θ, (A8)

Z(r, θ ) = (r2 + a2)�(r, θ ) + 2mr a2 sin2 θ, (A9)

ω(r, θ ) = 2ma r
Z(r, θ )

, (A10)

where the mass parameter m = GMSgrA/c2, the spin param-
eter a = JSgrA/(cMSgrA), and m and a have the dimension of
length.

In the usual GR discussion, the spatial velocity of S0-2 is
defined using a tetrad basis. In our situation, it is reasonable
to use the tetrad basis associated with the so-called “locally
non-rotating frame (LNRF)” in Kerr spacetime. The unit
timelike vector in the tetrad basis of LNRF, eμ

(t), is perpen-
dicular to the spacelike hypersurface at t = constant in the
outside of BH horizon,

eμ

(t) =
(√

Z
�D

, 0 , 0 , ω

√
Z

�D

)
, (A11)

where the components are given with the Boyer–Lindquist
coordinates. As the spacelike unit vectors that compose the
tetrad basis with eμ

(t), we adopt the following three vectors,

eμ

(r ) =
(

0 ,

√
D
�

, 0 , 0

)
(A12)

eμ

(θ) =
(

0 , 0 ,
1√
�

, 0
)

(A13)

eμ

(ϕ) =
(

0 , 0 , 0 ,
1

sin θ

√
�

Z

)
, (A14)

where the components are given with the Boyer–
Lindquist coordinates. By definition of the tetrad basis,
the orthonormal conditions are satisfied, gμνe

μ

(α)e
ν
(β) = η(α)(β),

where η(t)(t) = −1, η(t)(i) = 0, η(i)( j) = δ(i)( j) (Kronecker’s
delta), and i, j = r, θ, ϕ. Then, we define the spatial velocity
of S0-2 in the context of GR, V S.GR, using the tetrad
components of the four-velocity of S0-2, Uμ

S ,

Vi
S.GR := gμνe

μ

(i)U
ν
S

−gμνe
μ

(t)U
ν
S

, (A15)

where i = r, θ, ϕ, and all spacetime coordinates substituted
into this formula are just at the spacetime position of S0-2,
xμ

S (τ ) = [tS(τ ), rS(τ ), θS(τ ), ϕS(τ ) ], which are the solution of
the equations of motion (6).
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By the definition of LNRF, the time-like vector eμ

(t) has
no angular velocity with respect to the spacelike hypersur-
face at t = constant. However, this vector has a non-zero
ϕ-component, eϕ

(t) 	= 0, in the Boyer–Lindquist coordinates.
The angular velocity of eμ

(t) measured in the Boyer–Lindquist
coordinates (not in a coordinate system fixed to the hyper-
surface at t = constant), eϕ

(t)/et
(t) = ω(r, θ ), is regarded as the

angular velocity of the so-called “frame dragging effect”
of a Kerr BH measured in the Boyer–Lindquist coordi-
nates. However, as shown below, the frame dragging effect
cannot be detected within the observational precision of
current telescopes (which corresponds to the 1PN and 0PM
approximations of GR).

Next, let us proceed to introduce the PN expansion.
The small parameter of the PN expansion, ε, is given in
equation (8). Using this ε, the components of the inverse
metric, gμν , are expanded to be

gtt =−1 − 2m
r

ε̄ − 4m2

r2
ε̄2

− 2m(4m2 − a2 cos2 θ )
r3

ε̄3 + O(ε4), (A16)

gtϕ =−2ma
r3

ε̄3 + O(ε4), (A17)

grr = 1 − 2m
r

ε̄ + a2

r2
sin2 θ ε̄2 + 2ma2

r3
ε̄3 + O(ε4), (A18)

gθθ = 1
r2

ε̄2 + O(ε4), (A19)

gϕϕ = 1
r2 sin2 θ

ε̄2 + O(ε4) , (A20)

where an auxiliary parameter ε̄ is introduced to count the
order of the PN expansion, for example the term 4m2ε̄2/r2

is understood as the 2PN order term. Although we only need
the 1PN approximation within the present observational
precision, as discussed in subsection 2.2, the PN expansion
of gμν up to some higher-order terms shown in the above
equations may be useful for readers who will follow our the-
oretical calculations, because those higher-order terms are
necessary to obtain the appropriate form of the Hamilto-
nian of S0-2 at the 1PN approximation (12). On the other
hand, for our purpose, it is enough to expand the LNRF
tetrad basis up to the 1PN order,

eμ

(t) =
[

1 + m
r

ε̄ + O(ε2) , 0 , 0 , O(ε3)
]
, (A21)

eμ

(r ) =
[

0 , 1 − m
r

ε̄ + O(ε2) , 0 , 0
]
, (A22)

eμ

(θ) =
[

0 , 0 , 1 − 1
r
ε̄ + O(ε2) , 0

]
, (A23)

eμ

(ϕ) =
[

0 , 0 , 0 , 1 − 1
r sin θ

ε̄ + O(ε2)
]
. (A24)

Note that, in the expansions of gμν and eμ

(ν), the auxiliary
parameter ε̄ should be set at unity, ε̄ = 1, after finishing
the calculation of the PN expansion, because ε̄ is simply
introduced in order to count the order of the PN expansion.

The four-velocity of S0-2, Uμ

S , at the 1PN approxima-
tion is obtained by substituting the 1PN form of the LNRF
tetrad into V S.GR defined in equation (A15). In this calcu-
lation, we need to take two items into account; (i) the nor-
malization condition, gμνU

μ

S Uν
S = −1, and (ii) the relation,

(V S.GR/c)2 ∼ m/rs.1PN ≈ε, implied by the fact that S0-2 is
gravitationally bounded by Sgr A∗. Then, we obtain,

Uμ

S =
[

1 + 1
2

(
VG.1PN

c

)2

+ m
rS.1PN

, V S.1PN

]
, (A25)

where V S.1PN is the spatial velocity of S0-2 at the 1PN
approximation, and rS.1PN(τ ) is the radial coordinate of S0-
2 that is the solution of geodesic equations at the 1PN
approximation. We find, at the 1PN approximation, the
spatial components of Uμ

S are equal to V S.1PN.
Remember that, as discussed in subsection 2.2, we

assume that the spatial velocity of the observer, VO, is con-
stant and free from the gravity of Sgr A∗. This indicates that
the special relativistic form is applicable to the four-velocity
of the observer,

Uμ

O = ( γO , γOVO ) , (A26)

where γO = 1/
√

1 − (VO/c)2.
Next, let us introduce the 0PM approximation of the

null vector tangent to the null geodesics of photons coming
from S0-2 to the observer,

Kμ = (
Kt , K

)
. (A27)

This is the four-wave-vector of the photon. At the 0PM
approximation, the null geodesic is approximated as a
straight line connecting the emission event of the photon
by S0-2 and the observation event of the photon by the
observer. Within this approximation, the spatial directional
vector at the emission, K S.0PM, and the vector at the obser-
vation, KO.0PM, are parallel,

K S.0PM ∝ KO.0PM . (A28)

However, because the dispersion relation of the photon is
given by the null condition, gμν KμKν = 0, the frequency of
the photon varies according to the spacetime position on
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the straight null geodesic. At the emission event, the null
condition gives

∣∣∣K S.1PN0PM

∣∣∣ =
(

1 + 2m
rS.1PN

)
F , (A29)

where the 1PN approximation of the metric tensor is used,
and F = −Kt = gtμKμ is a constant conserved along the
null geodesic due to the stationarity of BH spacetime. Then,
using the same constant F , the null condition at the obser-
vation event gives

∣∣∣KO.1PN0PM

∣∣∣ = F . (A30)

Finally, we collect the above preparations in order to cal-
culate the GR redshift at the 1PN + 0PM approximation.
By substituting the above 1PN + 0PM formulas of gμν , Uμ

S ,
Uμ

O, and Kμ into the definition of frequency (5), we obtain
the frequency at the emission event,

νS.1PN0PM =
(

1 + m
rS.1PN

) (
1 − V(K)

S.1PN + V2
S.1PN

2

)
F , (A31)

and the frequency at the observation event,

νO.1PN0PM =
[

1 + 1
2

(
VO

c

)2
] (

1 − V(K)
O.1PN

)
F , (A32)

where V(K)
S.1PN (and V(K)

O.1PN) is the component of V S.1PN (and
VO.1PN) that is parallel to K S.1PN0PM, whose positive direc-
tion is from S0-2 to the observer. Here, note that the
“line-of-sight” direction introduced in subsection 2.1 is
parallel to K S.1PN0PM but the positive direction is opposite,
V(K)

S.1PN = −VS.1PN‖ and V(K)
O.1PN = −VO.1PN‖. Hence, by substi-

tuting the above frequencies into the definition of the GR
redshift (1), we finally obtain the redshift at the 1PN + 0PM
approximation, z1PN.0PM(t) in equation (11). Further, note
that because the spin parameter, a, does not appear in
equation (11), the component of GR effect depending
on the BH spin cannot be observed within the present
observational precision.

A.2.2 Some analyses of the GR evidence (14)

The GR evidence under our presupposition on the param-
eter values, �z1PN.0PM(t) at the 1PN + 0PM approximation,
is given in equation (14). For a deeper understanding of
�z1PN.0PM(t), let us make some theoretical analyses. The
temporal component of the geodesic equations at the 1PN
approximation reads

dtGR(τ )
dτ

= 1 + 2GMSgrA

c2rS.1PN(τ )
, (A33)

where tGR is the coordinate time in GR (not in the New-
tonian case), and τ is the proper time of S0-2. From this
equation, we can estimate as

tGR ≈ τ + 2GMSgrA

c2rS.1PN
δτ ≈ τ + εδτ , (A34)

where ε is the PN parameter (8), and the order of δτ may
be estimated by a typical time scale of our system,

δτ ∼ O(rperi/c) , (A35)

where rperi is the pericenter distance of S0-2 to Sgr A∗.
In comparing the GR prediction with the Newtonian

prediction, one may consider that the Newtonian time
tNG corresponds to the proper time of S0-2, tNG ↔ τ , or
to the Lorentz-transformed case, tNG ↔ τ/

√
1 − (VS/c)2.

However, the difference between these correspondences of
the temporal coordinates do not affect the following discus-
sions at the 1PN + 0PM approximation. Note that the latter
correspondence is estimated as tNG ↔ τ/

√
1 − (VS/c)2 ≈

(1 + ε)τ , where the order relation VS/c ∼ O(ε1/2) is used.
The term ετ can be absorbed into the second term in
equation (A34). Therefore, the latter correspondence degen-
erates to the former one, tNG ↔ τ , at the 1PN + 0PM
approximation. This correspondence of the temporal coor-
dinates is assumed in the following discussions.

The position of S0-2 may be expanded as

xS(tGR) ≈ xS.1PN(τ ) + εV S.1PN(τ ) δτ . (A36)

The second term is of the 1.5PN order because of the
order relation VS/c ∼ O(ε1/2). Therefore, the Roemer time
delay equation (4) at the 1PN + 0PM approximation is
determined by the first term of equation (A36) within the
present observational precision. Note that one may count
the first term, xS.1PN(τ ), as a 0PN approximation term, but
the parameter values in this term are determined by fitting
the given observational data with the 1PN + 0PM motion
of S0-2 under our presupposition on the parameter values.
This denotes that the Roemer time delay in the GR red-
shift does not necessarily equal the one in the Newtonian
redshift, tR.1PN0PM 	= tR.NG, under our presupposition.

Next, the spatial velocity of S0-2 may be expanded as

V S(tGR) ≈V S.1PN(τ ) + δτ V̇ S.1PN(τ ) , (A37)

where V̇ S.1PN is the acceleration of S0-2. Note that one may
count the first term in equation (A37) as a 0PN approxi-
mation term, but the parameter values in this term are the
best-fitting values in the 1PN + 0PM approximation under
our presupposition on the parameter values. Furthermore,
the second term in equation (A37) is of the 1PN order,
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because the term is estimated by the equations of motion
as

δτ V̇ S.1PN ≈ δτ
GMSgrA

r2
peri

≈ cε . (A38)

Therefore, the spatial velocity of S0-2 in the GR redshift
at the 1PN + 0PM approximation is different from the one
in the Newtonian redshift, V S.1PN(t) 	= V S.NG(t). This result,
together with the result in the previous paragraph on the
Roemer time delay, denote that the first term in the GR
evidence (14), [VS.1PN‖(t + tR) − VS.NG‖(t + tR)]/c, does not
vanish and has to be counted as a non-vanishing component
in �z1PN.0PM(t).

The squared velocity of S0-2 is estimated as

V S(tGR)2 ≈V S.1PN(τ )2 + c2ε1.5 , (A39)

where the order relation, VS/c ∼ O(ε1/2), is used. Because
the second term is of the 1.5PN order, the squared velocity
at the 1PN + 0PM approximation is actually determined
by the first term of equation (A39). Note that, one may
count the first term as a 0PN approximation term, but the
parameter values in this term is the best-fitting values in
the 1PN + 0PM approximation under our presupposition
on the parameter values. This fact, together with the result
on the Roemer time delay, denote that the third term in
the GR evidence (14), [V S.1PN(t + tR)2 − VO.1PN(t)2]/(2c2),
under our presupposition is not a purely special relativistic
term. The reason is as follows: If one wants to calculate
the purely special relativistic value of this term, then the
motion of S0-2 has to be Newtonian, because the special
relativity is the theoretical framework that ignores the effect
of the spacetime curvature (which is the GR’s own gravi-
tational effect and never arises in the framework of special

relativity). Hence, because the parameter values used in the
third term of �z1PN.0PM is not the Newtonian values but
the 1PN + 0PM values under our presupposition on the
parameter values, the resultant value of the third term of
�z1PN.0PM has to be interpreted as a non-linear combination
of the special relativistic and GR predictions.
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