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ABSTRACT We report the draft genome of Pseudomonas sp. strain T2.31D-1, which
was isolated from a drilling core sample obtained 414 m below surface in the
Iberian Pyrite Belt. The genome consists of a 4.7-Mb chromosome with 4,428 coding
sequences, 1 rRNA operon, 59 tRNA genes, and a 31.8-kb plasmid.

P seudomonas stutzeri is a Gram-negative gammaproteobacterium that has been iso-
lated from a wide variety of environments (1). P. stutzeri is described as a faculta-

tive anaerobe that is able to denitrify (2), fix nitrogen (3), and biodegrade aromatic
compounds (4). Pseudomonas sp. strain T2.31D-1 was isolated, using the Hungate roll
tube method (5), from a strict anaerobic denitrification enrichment culture (6) of a
powdered core sample (;6 g) that was obtained 414 m below surface during the de-
velopment of the Iberian Pyritic Belt Subsurface Life (IPBSL) drilling project (7)
(January to March 2012) in Peña de Hierro (Iberian Pyrite Belt), Spain (37°43945.420N,
6°33923.570W).

Genomic DNA extraction from the T2.31D-1 strain was performed from a culture in
Reasoner’s 2A (R2A) liquid medium using the cetyltrimethylammonium bromide (CTAB)-
based method (8), and the 16S rRNA gene was amplified and sequenced as described
previously (6). Quality-based editing and assembly of 16S rRNA gene reads were carried
out as described previously (9). Comparison of the complete 16S rRNA gene sequence
with the GenBank database (10) of the NCBI using BLAST (11) showed that the closest
sequence corresponded to P. stutzeri ATCC 17588T (99.93% similarity).

MicrobesNG prepared the library with the Nextera XT library preparation kit
(Illumina, San Diego, CA, USA) by following the manufacturer’s protocol with the fol-
lowing modifications: 2 ng of DNA instead of 1 ng was used as the input, and the PCR
elongation time was increased from 30 s to 1min. The library was then sequenced
using the Illumina MiSeq technology, yielding a mean coverage of 61.75� and 659,784
paired-end 2 � 250-bp reads. Trimming and quality analysis were performed using
Trimmomatic v0.36 (12) and FastQC v0.11.9 (http://www.bioinformatics.babraham.ac
.uk/projects/fastqc) software, respectively. De novo assembly was completed using
SPAdes v3.14.1 (13). Extrachromosomal genetic elements were assembled using
Recycler (14). Mauve Aligner v2.4.0 (15) was used to align plasmid contigs against the
chromosomal assembly. Contigs were ordered in scaffolds using SSPACE software (16).
Unless otherwise specified, default parameters were used for all software. A 4,762,555-
bp chromosome was obtained in 47 scaffolds with an N50 value of 282.20 kb and a GC
content of 63.90%, similar in size and GC content to other sequenced P. stutzeri strains
(1, 4, 17–19). In addition, this strain harbored one plasmid of 31,837 bp assembled in
two scaffolds, similar to other strains of this species (20).

Prokka v1.14.5 software (21) and the RAST platform (22) were used for gene
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prediction and annotation, using P. stutzeri ATCC 17588 as a genome reference. A total
of 4,428 coding DNA sequences, 1 rRNA operon, a second copy of a 5S rRNA gene, 59
tRNAs, and 1 transfer-messenger RNA were identified. Genes involved in denitrification,
thiosulfate oxidation, phosphite oxidation, catabolism of aromatic compounds, fer-
mentation, and heavy metal (Cd, Co, Cr, Cu, and Zn) resistance were detected in the
chromosome.

Data availability. Reads were deposited in DDBJ/ENA/GenBank under the accession
number ERR3773731 and the complete genome sequences and annotations under the
accession number CAJFAG010000000 for the chromosome (annotation under the acces-
sion number GCA_903995555) and the accession number CAJFAF010000000 for the
plasmid (annotation under the accession number GCA_903995525). All of the reads and
sequences are included under the study number PRJEB35933.
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