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ABSTRACT

Context. The change in the argument of periastron of eclipsing binaries, that is, the apsidal motion caused by classical and relativistic
effects, can be measured from variations in the difference between the time of minimum light of the primary and secondary eclipses.
Poor apsidal motion rate determinations and large uncertainties in the classical term have hampered previous attempts to determine
the general relativistic term with sufficient precision to test general relativity predictions.

Aims. As a product of the TESS mission, thousands of high-precision light curves from eclipsing binaries are now available. Using
a selection of suitable well-studied eccentric eclipsing binary systems, we aim to determine their apsidal motion rates and place
constraints on key gravitational parameters.

Methods. We compute the time of minimum light from the TESS light curves of 15 eclipsing binaries with precise absolute parameters
and with an expected general relativistic contribution to the total apsidal motion rate of greater than 60%. We use the changing primary
and secondary eclipse timing differences over time to compute the apsidal motion rate, when possible, or the difference between the
linear periods as computed from primary and secondary eclipses. For a greater time baseline we carefully combine the high-precision
TESS timings with archival reliable timings.

Results. We determine the apsidal motion rate of 9 eclipsing binaries, 5 of which are reported for the first time. From these, we are
able to measure the general relativistic apsidal motion rate of 6 systems with sufficient precision to test general relativity for the first
time using this method. This test explores a regime of gravitational forces and potentials that had not been probed before. We find
perfect agreement with theoretical predictions, and we are able to set stringent constraints on two parameters of the parametrised

post-Newtonian formalism.
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1. Introduction

Eclipsing binaries have demonstrated to be a basic source of fun-
damental information about stellar properties such as masses and
radii (Andersen 1991; Torres et al. 2010). The comparison of the
observed values with theoretical predictions has been used pro-
fusely to perform critical tests of stellar structure and evolution
models (Pols et al. 1997; Ribas et al. 2000; Torres & Ribas 2002;
Lastennet & Valls-Gabaud 2002; Feiden & Chaboyer 2012; Higl
& Weiss 2017; Tkachenko et al. 2020). But eccentric eclipsing
binaries offer further opportunities to gain indirect insight into
the internal structure of stars through the measurement of the
precession rate of the line of apsides of the orbit, that is, the
apsidal motion rate (w). Such precession motion is found to arise
from two different contributions: a general relativistic (W) term
arising from general relativity (GR), and a classical or New-
tonian (w,) term. These two contributions are additive, so that
@ = Wre] + W (Shakura 1985). The general relativistic term of
the apsidal motion rate, when only considering quadratic correc-

* Full Table 3 is only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/649/A64
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tions, can be calculated with the equation given by Levi-Civita
(1937), in the form presented by Giménez (1985) in degrees per
orbital cycle as:

L (M + My)?
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where e is the orbital eccentricity, M; and M, are the compo-
nent masses in solar units, and P, is the anomalistic period in
days, which measures the time between two consecutive perias-
tron passages, and is related to the sidereal period, Ps, through:

)
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where @ is in degrees per orbital cycle. The classical contribution
to the apsidal motion is produced by perturbations in the grav-
itational potential due to the lack of spherical symmetry in the
shape of the components, which are distorted due to rotational
flattening and tidal oblateness, the so-called quadrupole effect,
and for the most part depends on the degree of mass concen-
tration towards the centre (Shakura 1985). The term ., when
only considering the contributions arising from the second-order
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harmonic distortions of the potential, can be described by the
expressions given by Sterne (1939) and Kopal (1959):

2
@e = 360 x Z (kz,,-clrf’t + kz,,-c;id) deg cycle™,

i=1

3

where the index i refers to the component and k;; are the second-
order internal structure constants characterising the internal mass
distribution of the stars, which can be derived from theoret-
ical models by numerically integrating the Radau differential
equation (Kopal 1978; Hejlesen 1987; Schmitt et al. 2016). The
parameters c¢/** and cE‘d are the rotational and tidal contributions
to the apsidal motion, respectively, which, assuming that the stel-
lar and orbital rotation axes are aligned, can be expressed (Kopal
1978; Shakura 1985) as:
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where Q,, = 2n/Ps is the mean angular velocity of the orbital
motion, €; = vi/R; is the angular velocity of the rotation
of each component, and r; = R;/a are the relative component
radii. In Eq. (3) we do not use terms with k3 and k4 because
they usually produce negligible contributions given the uncer-
tainties of the lower order terms (Claret & Giménez 1993; Rosu
et al. 2020). As all the terms appearing in Eq. (1) can be obtained
from observations, the GR apsidal motion rate is most often cal-
culated analytically and subsequently subtracted from the mea-
sured rate to compare with stellar model predictions and provide
constraints on interior structure (e.g., Claret & Giménez 1993;
Khaliullin & Khaliullina 2007; Rauw et al. 2016; Zasche & Wolf
2019).

Direct GR tests using measured apsidal motion rates have
been hampered by the typical large relative uncertainty due to the
error propagation from the dominant classical term. Eclipsing
binaries suitable to test GR are those with relatively long orbital
periods, where the general relativistic term makes up most of
the apsidal motion contribution, that are still sufficiently short
to produce an apsidal motion rate larger than the expected detec-
tion threshold (see Egs. (16) and (17) in Giménez 1985, and their
Table 1 to see the dependence of the period limits with the eccen-
tricity). The most famous case is that of DI Her, whose detailed
initial analyses showed disagreement with GR predictions (e.g.,
Guinan & Maloney 1985). It was later shown (Albrecht et al.
2009) that this mismatch was actually caused by a strong spin
axis misalignment of the component stars, which leads to a dif-
ferent classical term, with a negative contribution of the rota-
tional term to the total apsidal motion rate. There have been
some attempts to further test GR using larger samples of eclips-
ing binaries but these failed to reach conclusive results (e.g.,
De Laurentis et al. 2012). This was caused by the large relative
uncertainties resulting from the subtraction of the dominant clas-
sical contributions to the total apsidal motion term. The systems
selected had a small fractional contribution of the GR term. With
a carefully selected sample and the use of longer time baselines
and more precise eclipse timings it should be possible to per-
form more accurate analyses and reach conclusive tests of GR.
Precise determinations and even simply the detection of apsidal
motion based on eclipse timings requires in most cases a dedi-
cated long-term monitoring, generally spanning several decades.
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This is particularly difficult for systems whose orbital periods
are long or have very slow apsidal motion rates, which happen
to be the systems with the largest relativistic contributions due
to the decrease of the classical terms with the orbital period as
shown by Giménez (1985).

Data from the Transiting Exoplanet Survey Satellite (TESS)
mission (Ricker et al. 2015) aimed at detecting exoplanets
through photometric transits provide the opportunity to obtain
densely-covered light curves of eclipsing binary systems at very
high precision. Stellar eclipse events are generally much deeper
than exoplanet transits and therefore TESS data are of excel-
lent quality for such studies. Largely uninterrupted monitoring
of the light curves is possible from space without the disturb-
ing effect of the day-night cycle, therefore minimising the exis-
tence of phase gaps. In addition, most eclipsing binary systems
were observed by TESS at the high cadence rate of 2 minutes.
Thanks to all these circumstances, accurate eclipse timings can
be obtained for numerous events. Furthermore, already during
its initial 2 years of mission, TESS has covered a large fraction
of the sky for a duration of at least 27 days, and therefore the
chances of having observed eclipse events of most well-studied
eclipsing binary systems are very high. Of course, the time base-
line of the typical TESS observations is rather modest, but the
high-precision measurements can be combined with past timings
to enlarge the covered time-span significantly.

In this paper we perform apsidal motion determinations in
eccentric eclipsing binaries with relatively long orbital periods
and for which general properties such as mass, radius, and orbital
period are accurately determined. We restrict our analysis to
those systems with a literature-predicted relativistic contribution
to the total apsidal motion rate of at least 60%. In some cases, we
are able to detect apsidal motion for the first time. Particular care
is put in the estimation of the classical terms to determine the GR
term of the apsidal motion rate to the best possible accuracy and
with realistic uncertainties, meaning that a comparison with the-
ory can be performed. We analyse the individual times of eclipse
for 15 eclipsing binaries, from which we aim to determine a pre-
cise value of the GR apsidal motion term for each system. We
then compare these terms with predictions from different gravi-
tation theories. In Sect. 2 we present the analysed sample and its
general properties. In Sect. 3 we explain the methodology used
to determine the times of eclipse, while in Sect. 4 we describe the
methodology followed to determine the apsidal motion for each
of the systems using TESS and archival timings. In Sect.5 we
present the resulting apsidal motion rates, the theoretical predic-
tion of their classical contributions, and compare the differences
with GR predictions. Finally, we use our measurements to test
different gravitational theories in Sect. 6, and provide our con-
cluding remarks in Sect. 7.

2. The eclipsing binary sample

For any useful interpretation of the observed apsidal motion in
eccentric eclipsing binaries, it is essential to have good knowl-
edge of the general properties of the component stars, mainly
their masses and radii. Relevant equations such as Egs. (4)
and (5) have terms with high powers (up to the fifth) of the rel-
ative radii for example, thus enhancing their potential uncertain-
ties. For this reason, we have limited our dynamical study to
cases with well-studied and precise fundamental properties. The
basic source is the compilation of well-studied detached eclips-
ing binaries by Torres et al. (2010). This has been complemented
with systems from the DEBCAT catalogue (Southworth 2015),
which is permanently updated, and includes eclipsing binaries
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Table 1. Properties of 15 eclipsing binary systems with eccentric orbits, accurate absolute dimensions, and literature-predicted relativistic apsidal

motion relative contribution greater than 60%.

System P [d] e M [M;] M) [Ms] Ry [Ro] Ry [Ro]  PoReiprea  Refs.

KX Cnc 31.2197874(14) 0.4666(3)  1.138(3) 1.131(3) 1.064(2)  1.049(2) 99 Sow12
AL Dor 14.90537(2) 0.1952(2) 1.1029(4) 1.1018(5) 1.121(10) 1.118(10) 98 G&G

RW Lac 10.369205(2) 0.0098(10)  0.928(6) 0.870(4) 1.186(4) 0.964(4) 96 Lac05
V530 Ori 6.1107784(3) 0.0880(2) 1.004(7) 0.596(2) 0.980(13) 0.587(7) 92 Torl4
HP Dra 10.7615(2) 0.0367(9)  1.133(5)  1.094(7) 1.371(12) 1.052(10) 89 Mill0
TZ Men 8.569000(10) 0.035(3) 2.49(3) 1.504(10) 2.02(2) 1.432(15) 86 And87
V541 Cyg  15.3378992(7) 0.4684(14) 2.335(17) 2.260(16) 1.859(12) 1.808(15) 86 Torl7
LV Her 18.435954(2) 0.6127(7)  1.193(10) 1.170(8) 1.358(12) 1.313(11) 83 Tor09
V459 Cas 8.45825381(19) 0.0244(4) 2.02(3) 1.96(3) 2.009(13) 1.965(13) 80 Lac04
RR Lyn 9.94508(6) 0.0793(9)  1.927(8)  1.507(4) 2.57(2) 1.59(3) 80 Tom06
V501 Her  8.5976870(10)  0.0956(8)  1.269(4)  1.211(3) 2.002(3)  1.511(3) 78 Lacl4
KW Hya 7.750469(6) 0.094(4) 1.96(3) 1.487(13) 2.124(15) 1.44(2) 77 G&A

V501 Mon  7.0212077(10)  0.1339(6)  1.646(4)  1.459(3) 1.89(3) 1.59(3) 71 Torl5
GG Ori 6.6314936(17) 0.2218(22) 2.342(16) 2.338(17)  1.85(3) 1.83(3) 67 Tor00
EY Cep 7.971488(6) 0.4429(14)  1.523(8) 1.498(14) 1.463(10) 1.468(10) 64 Lac06

Notes. Only systems with primary and secondary eclipse coverage from the TESS mission are considered.

References. Sow12: Sowell et al. (2012); G&G: Gallenne et al. (2019) and Graczyk et al. (2019); Lac05: Lacy et al. (2005); Tor14: Torres et al.
(2014); Mil10: Milone et al. (2010); And87: Andersen et al. (1987); Torl7: Torres et al. (2017); Tor09: Torres et al. (2009); Lac04: Lacy et al.
(2004); Tom06: Tomkin & Fekel (2006); Lac14: Sandberg Lacy & Fekel (2014); G&A: Gallenne et al. (2019) and Andersen & Vaz (1984); Tor15:
Torres et al. (2015); Tor00: Torres et al. (2000); Lac06: Lacy et al. (2006).

with mass and radius measurements with 2% accuracy or better,
following the criterion in Andersen (1991).

From the compilations above and imposing the restriction
of having TESS measurements for both primary and secondary
eclipses, we selected the sample of eccentric eclipsing binaries
in Table 1. Given our objective of testing the theoretically pre-
dicted GR contribution, as given by Eq. (1), with observed apsi-
dal motion rates, we limited the sample to only systems with
a literature-predicted fractional contribution greater than 60%.
We used the general properties, as referenced in Table 1, and
an estimated classical contribution given by Eq. (3), with the
assumption of rotational synchronisation at periastron and co-
aligned rotational axes. Table 1 lists the adopted general prop-
erties of the systems such as the sidereal period, eccentricity,
component masses, and radii of the 15 selected eclipsing bina-
ries, together with the predicted GR contribution to the apsidal
motion (%dwgelpred)- It should be noted that in all tables pre-
sented throughout this paper the values in parentheses indicate
the uncertainties affecting the last digits.

Three additional eclipsing binary systems not included in
Table 1 deserve specific attention. DI Her is known to have mis-
aligned rotational axes (Albrecht et al. 2009). The computation
of the classical term of the apsidal motion therefore requires the
use of the general form of Eq. (3) given by Shakura (1985) and
an analysis of those angles constrained but not directly observed
with the Rossiter-McLaughlin effect (Claret et al. 2010), which
complicates the interpretation. EP Cru has component stars with
rotational velocities 5.8 times higher than synchronisation at
periastron (Albrecht et al. 2013). When such rotational veloci-
ties are considered, the classical term becomes dominant and the
system does not meet our limiting criterion on the fractional GR
contribution to the total apsidal motion rate to be included in
the present study. Finally, a detailed analysis of BF Dra revealed
a trend in the primary and secondary eclipse residuals of the
high-precision TESS timings. Such a trend may likely be pro-
duced by the presence of a third body orbiting the system. The
unconstrained nature of the third companion makes the deter-

mined apsidal motion rate ill-suited for comparison with theoret-
ical predictions. Eclipsing binaries with a relative contribution of
the relativistic term of below 60%, together with DI Her, EP Cru,
and BF Dra, will be analysed in a subsequent paper focusing on
the classical terms (tidal and rotational).

3. Determination of times of minimum light

We used TESS data from sectors 1-29 to compute precise tim-
ings of the primary and secondary eclipses for all of our targets.
We gathered the 2-min short-cadence simple aperture photom-
etry (SAP) produced by the Science Process Operation Centre
(SPOC, Jenkins et al. 2016) available at the Mikulski Archive
for Space Telescopes'. In the cases of V530 Ori and V501 Mon,
for which the 2-min cadence photometry was not available,
we extracted the 30-min cadence simple aperture photometry
from the TESS full frame images (FFIs) using the public TESS
aperture photometry tool ELEANOR? (Feinstein et al. 2019).
Table 2 lists the TESS sectors and cadence at which each sys-
tem has been observed, the time-span between the first and last
eclipse considered for each target, and their Gaia G magnitudes
(Gaia Collaboration 2016, 2018). Possible systematic deviations
present in TESS data may include activity-induced modulations
or other geometric effects that could bias the measurement of
the time of minimum. To mitigate these effects, we employed the
python package george (Foreman-Mackey 2015) to model the
out-of-eclipse photometry using a Gaussian process correlated-
noise model with a squared-exponential covariance function (see
e.g., Gibson et al. 2011; Aigrain et al. 2016, for more details).
The resulting model was used to normalise the entire light curve,
including the eclipses. The length-scale hyperparameter was
constrained to values above twice the duration of the eclipse to
avoid adding spurious high-frequency noise inside the eclipse
region.

! https://mast.stsci.edu/portal/Mashup/Clients/Mast/
Portal.html
2 https://adina.feinste.in/eleanor/
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Table 2. TESS sectors and cadence at which the sample of studied
eclipsing binary systems have been observed, the time-span between
the first and last eclipse included in this work, and their Gaia G
magnitudes.

System Sector Cad. At G
[min] [d] [mag]

KX Cnc 21 2 20 7.0363(2)
AL Dor 1-6, 8-13, 27-29 2 783 7.5820(3)
RW Lac 16, 17 2 47  10.4381(3)
V530 Ori 6 30 18  9.6959(4)
HP Dra 14, 15, 26 2 344 7.8117(4)
TZ Men 12, 13,27 2 428  6.1556(8)
V541 Cyg 14 2 22 10.3286(4)
LV Her 25, 26 2 34 10.8853(6)
V459 Cas 18,24 2 186  10.2905(3)
RR Lyn 20 2 20 5.4696(14)
V501 Her 25, 26 2 47  10.9787(6)
KW Hya 8 2 20 6.0529(7)
V501 Mon 6 30 17 12.1884(2)
GG Ori 6 2 16 10.2372(5)
EY Cep 19, 25 2 186  9.7154(3)

The Kwee & van Woerden (1956) method (hereafter, KvW)
was adopted to determine all the times of minimum light. For
consistency, we used the same orbital phase interval for all pri-
mary and secondary eclipses, and we only considered eclipses
for which ingress and egress is well sampled. The median uncer-
tainty in the obtained times of minimum are 2.5 and 12.9 s for the
2-min and 30-min cadence photometry, respectively. The preci-
sion of the KvW method for an equally sampled ideal eclipse
is inversely proportional to the square root of the number of
points used. Given that typically the number of TESS photomet-
ric points in the 2-min cadence eclipses is 15 times larger than
in the 30-min cadence eclipses, we expect an error ratio between

the two cadences of about V15, as approximately observed. In
Fig. 1 we show two examples of eclipses observed with TESS
using 2-min and 30-min cadence observations and we mark the
time of minimum computed using the KvW method.

We computed the bisector of each eclipse to diagnose
local asymmetries that could be caused by stellar activity for
example. Bisector points were determined as the time aver-
age between two symmetric points of the ingress and egress
branches. Cubic spline interpolation was used to define points
of equal flux. From the calculated values, we defined two indi-
cators. The bisyqq parameter is defined as the difference of the
average bisector between 50-100% and 0-50% of the eclipse
depth (i.e. (bisso-100) — (biso-s0)), while the bis.,., parame-
ter is computed as the difference between the average of the
two intervals at the top 75-100% and the bottom 0-25%, and
the average of the middle 25-75% of the eclipse depth (i.e.
(bis75-100, biso-25)—(bisis_75)). These bisector parameters repre-
sent first- and second-order measures of distortions in the eclipse
shapes. We used them as signposts for the potential presence of
biased timing determinations, for example those due to issues
with the data or effects on the stellar surface such as spots. As
a result, we did not consider for further analysis those times of
minimum with one of these indices deviating by more than 30
from their mean. Table 3 provides all the measured times of min-
imum light, the type of eclipse, and the bisector indicators bisyqg
and biSeven- Also, the right panel of Fig. 1 shows two examples
of the bisectors of two eclipses and the uncertainty in the deter-
mination of their time of minimum.
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Fig. 1. Examples of TESS data for an eclipse of V459 Cas (a) with 2-
min cadence, and V501 Mon (¢) with 30-min cadence. In panels (b) and
(d) the black line shows the bisector corresponding to each eclipse. The
computed time of minimum for each system, which is used as reference
time in the plots, is marked as a black-dashed line in panels a and c.
Its uncertainty is illustrated in panels b and d as a read shaded area.
The resulting timing uncertainty is 3.3 s for V459 Cas and 22.0s for
V501 Mon.

Table 3. Computed TESS times of minimum light and bisector indica-
tors of the systems in Table 1.

System T, [BJD] Type bisoad [S] DiSeyen [S]
KX Cnc 2458876.936865(7) 1 -0.1 -14
2458897.01419(4) 2 294 24.3
ALDor 2458330.899178(14) 2 -2.5 2.0
2458345.804510(17) 2 1.7 1.6
2458360.709872(15) 2 -0.2 -0.9

Notes. This table is presented in its entirety at the CDS.

In the eclipses analysed in this work the final measurement
errors are 1-11 times lower than the dispersion of the individ-
ual points used to measure the bisector. Given that the number
of photometric points comprised within the eclipses ranges from
8 to 440, that the bisector points are computed from two photo-
metric points, and that the timing error for an ideal eclipse scales
with N=1/2, we expect errors that are 2—s15 times lower than the
bisector dispersion (i.e. 4/8/2 and v440/2). When applied to
our data, this methodology yields uncertainties that are larger
than those expected for an ideal eclipse, which may be taken
as an indication that the errors are not underestimated. Poten-
tial systematic deviations from an ideal eclipse that are not
accounted for by the KvW method caused several works to
consider the error estimates coming from this method as exceed-
ingly optimistic (Breinhorst et al. 1973; Mikulasek et al. 2014).
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However, with the novel use of the bisectors as indicators for
such deviations, we were able to detect the affected eclipses and
discard them for further use, therefore ensuring that our mea-
surement errors are a good representation of the true statistical
precision.

4. Apsidal motion determinations

Several methods can be employed to estimate apsidal motion
rates in eclipsing binaries, such as the changing position of the
eclipses with respect to each other over time (e.g., Giménez
et al. 1987, Wolf et al. 2006, 2010; Kim et al. 2018), the
change in the shape of the radial velocity curve over time (e.g.,
Ferrero et al. 2013; Schmitt et al. 2016; Rauw et al. 2016), or
the change in the shape of the light curve over time (Bakis et al.
2008; Harmanec et al. 2014; Torres et al. 2017). Here we use the
equations of Giménez & Bastero (1995) defining the times of
eclipse:

T,=T, +NPa<1

+Z< 1y lAzz

P e
+ 2(2] 3)A21+1

)+(J—1)—+

sm(21a)) +

2i+1
cos[(21 + Dw],

(6)

where @ is expressed in degcycle™, jis 1 or 2 for the primary

or secondary eclipse, respectively, T is the time of eclipse at
epoch N = 0, P, is the anomalistic period, and w is the argument
of periastron expressed in radians at time 7', which depends on @
and the argument of periastron at time T, wy, as w = wy + Nw.
Finally, the coefficients A; depend on the eccentricity e and the
inclination of the orbit, and their full expressions are given in
Egs. (16)—(21) of Giménez & Bastero (1995).

Equation (6) is complete up to O(e’) (Giménez & Bastero
1995), and is therefore only valid for orbital eccentricities that
do not reach extremely high values, that is, below 0.7. Fitting
this equation to the actual individual measurements allows the
determination of the apsidal motion rate, w, as well as the orbital
eccentricity, e, the orbital period, the reference time of eclipse,
Ty, and the argument of periastron at that time, wy. It should
be noted that there are significant differences in the calculated
@ when only expressions considering low orders in e are used.
The severity of the deviations is a function of the eccentricity but
we use terms up to e’ for all cases, implying relative errors well
below 1%.

Strong degeneracies between e and wy can limit the use of
Eq. (6) to derive all parameters simultaneously unless a sig-
nificant fraction of the apsidal motion period is covered with
observational data. Attempts at five-parameter simultaneous fits
using a poorly covered apsidal period may lead to biased solu-
tions because of resulting correlations between e and w. Potential
issues are further exacerbated by the possible presence of light-
time effect variations caused by an orbiting third body. To obtain
non-degenerate results when the time-span of the observations is
limited, the value of the eccentricity, which is directly related
to the amplitude of the variations, should at least be adopted
independently, for example from modelling the light and radial
velocity curves. When the eccentricity is fixed, the instantaneous
shape of the apsidal motion curve can be described by the tan-
gent at wy, which can also be expressed in terms of the difference
between the periods corresponding to primary and secondary

d(T, - T1) wP,

eclipses, as described by Giménez & Bastero (1995), consid-
ering that the value of w at the time of the eclipses does not
differ from wy. This is just the time-derivative of the difference
between the times of secondary (7%) and primary (7'}) eclipses:

21+1
sm[(21 +1Dawpl |,

Z( DA Qi+ 1) 5 )

dr T 180
with @ expressed in deg cycle™.

In our study, we use the values of T, — T} from pairs of close
primary and secondary minima of high-precision data. This is
done to ensure maximum robustness of the apsidal motion deter-
minations and to minimise the possible effects over the measured
orbital period that might be produced by systematic errors aris-
ing from different methodologies or astrophysical variability. We
favour this method over the use of the difference between peri-
ods resulting from linear fits to individual primary and secondary
eclipses. This is equivalent to the right term of Eq. (7). Using
T, — T, from close eclipses has several advantages, namely that
these are more likely to be obtained by the same observer, that
both timings correspond to the same epoch of stellar activity, and
that it avoids effects from light-travel time caused by a potential
third body. However, it should be noted that the presence of a
third body may induce other perturbations such as the eccentric
Lidov-Kozai effect (Lidov 1962; Kozai 1962; Naoz 2016) that
could alter the observed apsidal motion rates. A full characteri-
sation of the system is needed to take into account the effects of a
potential third body. In the absence of such a detailed analysis, a
comparison with the theoretically predicted apsidal motion rate
could be affected.

The downside our adopted approach is that the number of
T, — T measurements (TESS plus archival) for some of the
studied systems presented below is rather low. Depending on
the time baseline and the impact of effects such as stellar activ-
ity, this may lead to some unaccounted-for source of additional
error. However, our entire procedure has been devised to min-
imise such effects (strict selection of minimum timings, bisector
correction criteria, etc.) and therefore we do not expect system-
atic deviations to significantly affect our measurements. Also,
most of the eclipsing binaries that we analyse here do not show
signs of any stellar activity, either because they lack a convective
envelope or because of their low rotational velocities.

The eclipsing binaries in our sample have been typically
monitored between TESS and archival data for less than 1% of
their apsidal motion period, of the order of thousands of years.
Therefore, the observed T, — T values should accurately define
the tangent to the curve described by Eq. (7), and relying on a
previously determined orbital eccentricity, Equation (7) is fully
applicable. The approximation of the derivative is of course sen-
sitive to the argument of periastron and its precision decreases
for values of wy near 0 or 180 degrees, when the variation
of T, — T over time and the corresponding period differences
become close to zero. We assume the eccentricity derived from
the best light and radial velocity curves, with the corresponding
argument of periastron, in order to obtain the apsidal motion rate.
We had to restrict the analysis to systems with high-precision
data, as already discussed, and we focus our analysis on the sys-
tems listed in Table 1, which are discussed individually below.

All obtained secondary minus primary eclipse timings,
T, — T}, for each of the available primary eclipses are given in
Table 4 with the corresponding uncertainty computed from the
propagation of errors of individual timings, given in parentheses.
We also list the orbital cycle (V) computed with respect to the
reference time 7 given in the first column. For those primary
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Table 4. T, — T, computed from TESS light curves.
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System and T N T, - T, [d] dN
KX Cnc 63  20.077329(36) O
2456910.0768
AL Dor 0 6.887539(24) 0
2458368.7277 2 6.887447(18) 0
3 6.887438(22) -1
4 6.887435(17) 0
5 6.887471(19) -1
6 6.887408(20) 1
7 6.887431(18) 0
8 6.887474(20) -1
10  6.887478(19) 0
12 6.887378(18) 0
13 6.887413(22) -1
14  6.887361(23) 1
15  6.887402(24) 0
16  6.887392(25) -1
17 6.887326(22) 1
18  6.887382(22) 0
19  6.887416(23) 0
20  6.887391(16) 0
21 6.88745120) -1
45  6.887292(21) 0
46  6.887294(22) -1
47  6.887226(17) 0
48  6.887218(19) 0
49  6.887235(21) 0
50  6.887228(24) -1
RW Lac 0 5.111455(90) -1
2458744.8166 1 5.111474(75) 0
2 5.11141(10) 0
4 5.111422(82) -1
V530 Ori 0 2.83585(35) 0
2458471.0870 2 2.83657(38) 0
3 2.83681(53) -1
HP Dra 0 5.568563(60) 0
2458692.9375 1 5.568771(48) 0
2 5.568480(55) 0
4 5.56850(19) -1
30 5.568262(58) 0
31 5.568604(36) 0
TZ Men 0 4.371606(67) 0
2458633.4292 1 4.371309(52) 0
2 4.371558(31) 0
3 4.371976(35) 0
5 4.371702(25) 0
48  4.371928(53) -1
49  4.371867(18) 0
V541 Cyg 513 7.032672(81) 1
24550817.9760 514  7.032794(84) 0
LV Her 0 15.898401(63) 0
2458998.6220 1 15.898531(70) 0O
V459 Cas 471 4.164664(60) 0
2454815.5698 472  4.164493(53) 0
490  4.164565(70) 0
492  4.164777(56) 0
RR Lyn 0 4.478175(71) -1
2458851.9265 1 4.478547(46) 0
V501 Her 388  4.120736(96) 0
2455648.5943 389  4.121067(84) 0
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Table 4. continued.

Systemand Ty N T, — Ty [d] dN
390 4.121030(76) O
392 4.12087(10) -1
393 4.120252(98) O
KW Hya 657 3.549856(13) O
2453430.9533 658 3.549921(16) -1
659 3.549835(23) -2
V501 Mon -1 3.14676(16) 0
2458477.9808 1 3.14675(29) 0
GG Ori 983 2.790712(33) O
2451952.4777 985 2.790716(35) O
EY Cep -2 3.14013429) O
2458836.4248 0  3.140225(32) O
19  3.139902(31) O
21 3.139882(335) O

Notes. The BJD value below each system name defines the origin epoch
of the orbital cycle count (N).

eclipses without any secondary counterpart on the same orbital
cycle, we computed the secondary minus primary eclipse tim-
ings as T, — T1 — dN X P, where P; is the sidereal period listed
in Table 1 and dN is the difference in orbital cycles between the
two minima. We list dN in the last column in Table 4.

Below we discuss the studied systems in detail and describe
the methodology applied to determine their apsidal motion rates
in those nine cases where such a measurement was possible. For
6 out of the 15 systems in Table 1, namely, RW Lac, V530 Ori,
HP Dra, TZ Men, LV Her, and RR Lyn, we could not find a mea-
surable apsidal motion rate in spite of having high-precision
TESS data available, but we have nevertheless included their
time of minima and 7, — T values in Tables 3 and 4, which
could be valuable for future determinations. For the systems in
which we could determine an apsidal motion rate, additional val-
ues needed for their analysis, such as the relative radii or the pro-
jected rotational velocities, are listed in Table 5, together with the
values of wq and the reference time 7TY.

4.1. KXCnc

The general properties of this highly eccentric system (e =
0.4666 + 0.0003), such as mass, radius, eccentricity, and period,
shown in Table 1, are the result of the combined analysis of
the light and radial velocity curves carried out by Sowell et al.
(2012), who reported no apsidal motion. The TESS data listed
in Table 4 yield T, — T = 20.077329 + 0.000036 days. This
measurement can be compared with 7, — T values from the
literature to search for the presence of apsidal motion. Some
published minima by Davies (2007) have insufficient precision
and we therefore considered the light curve obtained by Sowell
et al. (2012). The authors give a phase for the secondary eclipse
of 0.64325, which is not measured directly but results from the
joint analysis of the light curve and the radial velocity curve.
We therefore decided to retrieve the original photometric data,
b- and y-band in the Stromgren system, and calculated the posi-
tion of the eclipses using the same method as for the TESS
measurements, yielding a value of 7, — T} = 20.08076 =
0.00015 days, which is equivalent to a phase of the secondary
of 0.64321. Comparing the value of 7, — T with the TESS
results, we observe a decrease of —0.00343 + 0.00015 days after
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Table 5. Other properties used to compute the apsidal motion of the systems analysed.

System Ty wy r r vy sini Vo sini i
[BID] [deg] [kms™'] [kms™'] [deg]

KXCnc 24569100768 6376  0.019404) 0.01913(4) 6.4(1.0) 6.5(1.0) 89.825(3)
AL Dor 2458368.7277 107.45 0.0333(3) 0.0334(3) 4.6(1.0) 4.6(1.0) 88.79(11)
V541 Cyg  2450817.9760 262.72 0.0431(2) 0.0419(3) 15(1) 15(1) 89.83(3)
V459Cas 24548155698 24032  0.0726(3)  0.07103)  54(2) 432)  89.467(7)
V501 Her  2455648.5943 250.10 0.08375(11) 0.06323(11) 14.3(1.0) 12.5(1.0) 89.11(4)
KW Hya 2453430.9533 225.29 0.0853(5) 0.0594(8) 15(2) 13(2) 87.5(3)
V501 Mon  2458477.9808 23279  0.0838(13)  0.0707(13) 16.5(1.0) 12.4(1.0) 88.02(8)
GG Ori 2451952.4777 122.89  0.0746(10) 0.0737(10) 24(2) 23(2) 89.30(10)
EY Cep 2458836.4248 110.14 0.0603(4) 0.0606(8) 10(1) 10(1) 89.89(3)

Notes. The table lists: the reference time and the corresponding argument of periastron, the stellar relative radii and projected rotational velocities,

and the orbital inclination of the system.

177 orbital cycles, indicating a measurable apsidal motion. With
only two data points available, an analytical derivation of the
statistical uncertainty in the slope could be imprecise and biased.
Therefore, we performed 10° Monte Carlo simulations of T,—T},
following a Gaussian distribution with the corresponding uncer-
tainty, and computed the standard deviation of all the solutions.
From the resulting slope, and combining it with the eccentricity
given by Sowell et al. (2012) from their joint solution, an apsidal
motion rate of @ = 0.000131 + 0.000010 deg cycle™" is derived,
including the uncertainty in the adopted orbital parameters.

4.2. AL Dor

The general properties given in Table 1 are derived from the
radial velocity curve of Graczyk et al. (2019), combined with
the astrometric solution by Gallenne et al. (2019). No indica-
tion of apsidal motion was reported. The adopted parameters,
including the sidereal period, are not based on a light-curve solu-
tion. Fortunately, our TESS eclipse timings, shown in Table 3,
yield a good number of accurate minima values indicating a slow
apsidal motion without any need for archival measurements, as
illustrated in Fig. 2. We tried to enlarge the time baseline to
improve the apsidal motion determination, but we could not find
earlier data of sufficient precision. The linear weighted fit to
the T, — T values listed in Table 4 corresponds to a slope of
—(5.0 £ 0.5) x 107%days cycle™!. The uncertainty of the side-
real period is large compared to the errors of periods based on
a light-curve solution. For this reason we only used values of
T, —T, within the same orbital cycle to eliminate the effect of the
uncertainty in the sidereal period. Complementarily, we consid-
ered all the individual timings to fit the periods corresponding to
primary and secondary eclipses, obtaining a difference between
them of —(5.08+0.19)x 107 days cycle™', in agreement with our
value based on measurements within the same orbital cycle. The
eccentricity given by Gallenne et al. (2019), e = 0.1952+0.0002,
produces a final value of & = 0.000163 + 0.000006 deg cycle™".

4.3. V541 Cyg

Apsidal motion in V541 Cyg was measured by Khaliullin (1985)
and revised by Volkov & Khaliullin (1999). Wolf et al. (2010)
used the individual times of minimum light to obtain @
0.00032 + 0.00006 deg cycle™!, leaving the eccentricity as a free
parameter, while Kim et al. (2018) obtained @ = 0.000397 +
0.000013 deg cycle™, fixing the orbital eccentricity to the value
of 0.479 given by Lacy (1998). Torres et al. (2017) obtained
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Fig. 2. Ephemeris curve for AL Dor as a function of the orbital cycle.
The dotted and dashed lines represent fits to the primary (blue circles)
and secondary (red triangles) eclipses, respectively. For a better visuali-
sation, an arbitrary shift to the primary and secondary minima has been
applied.

a new radial velocity curve and reanalysed the V-band light
curve of Khaliullin (1985). For the apsidal motion determination,
Torres et al. (2017) carried out a global analysis of all the data,
photometric and spectroscopic, with variable argument of peri-
astron. In this way, the authors determined the optimal value of
the eccentricity to be e = 0.4684 + 0.0014 and an apsidal motion
rate of @ = 0.000360 + 0.000012 deg cycle™.

For our analysis, we included in Table 6 the 7, — T val-
ues derived from Table 4 of Torres et al. (2017) which we
complement with the values computed from the TESS data
in Table 4. This was done using precise primary and sec-
ondary eclipses and the closest possible counterpart when cal-
culating the timing differences. As mentioned by Torres et al.
(2017), some values had to be excluded because of their unusu-
ally large residuals. In Fig. 3, the variation of T, — T over
time is shown and clearly indicates a well-defined increase of
(3.12 + 0.03) x 107> days cycle™!. For the value corresponding
to orbital cycle 19, the authors did not report any error bar and
we assumed the same uncertainty as the largest one in Table 6,
namely 0.003 days. As a simple consistency test, we checked
that the observed slope yields T, — T = 6.9872 + 0.0003 days

A64, page 7 of 14


https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040004&pdf_id=2

A&A 649, A64 (2021)

Table 6. 7, — T, values used to compute the apsidal motion rate of
V541 Cyg.

N T, — T; [d] Refs
—387 7.0048 + 0.0008  Vol99
—-129 7.0118 +0.0010 DA
-82  7.0139 +0.0010 LG
19 7.0186 +£0.0030  Vol99
180 7.0225 + 0.0003 WS
395 7.0295 +£0.0030 Hubl5

References. Vol99: Volkov & Khaliullin (1999); DA: Diethelm (1992)
and Agerer et al. (1994); LG: Sandberg Lacy et al. (1995) and Guinan
etal. (1996); WS: Wolf et al. (2010) and Smith & Caton (2007); Hub15:
Hubscher (2015) and Hubscher & Lehmann (2015).
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Fig. 3. T, — T, as a function of the orbital cycle for V541 Cyg.

at the time of the photographic light curve of Karpowicz (1961),
while the actual measurement given by Torres et al. (2017) in
their Table 4, after a careful analysis of the original data, is
6.988 + 0.004 days. Both values are in very good agreement in
spite of the extrapolation by about 550 orbital cycles. Further-
more, the predicted position of the secondary eclipse in phase
at epoch 248 is 0.45798 + 0.00002, in excellent agreement with
the light-curve solution by Torres et al. (2017) in their Table 5.
Adopting e = 0.4684 + 0.0014 (Torres et al. 2017), we obtain an
apsidal motion rate of @ = 0.000352 + 0.000004 deg cycle™",
more precise but in good agreement with the value of w =
0.000360 + 0.000012 deg cycle™! derived by Torres et al. (2017)
using a completely different method, based on a simultaneous fit
to photometric and spectroscopic data.

4.4. V459 Cas

Lacy et al. (2004) determined the general properties of V459 Cas
and estimated the apsidal motion rate using all available minima
at that time, obtaining a rather uncertain value of @ = 0.0014 +
0.0011 deg cycle™!. This could not be improved by Dariush et al.
(2006) because of the narrow time-span of their reliable data.
Torres et al. (2010) nevertheless quote an apsidal motion rate of
0.00057 + 0.00006 deg cycle™! as provided preliminarily to the
authors by M. Wolf. This value was not confirmed later by Wolf
et al. (2010), who reported 0.00071 + 0.00008 deg cycle™!, using
again all available individual timings at that time.
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Table 7. T, — T, values used to compute the apsidal motion rate of
V459 Cas.

N T, -T, [d] Refs
-349  4.1634 +£0.0005  LacO1
-273  4.16373 £ 0.00022 Wol10
-266 4.16372 +0.00014 LN
-223  4.1640 + 0.0005 WH
-216  4.1634 + 0.0005 Lac04
0 4.1640 £ 0.0005  Woll0
28 4.1645 £0.0005  Woll0

References. LacO1: Lacy et al. (2001); Wol10: Wolf et al. (2010); LN:
Lacy (2002) and Nelson (2003); WH: Wolf et al. (2010) and Hubscher
et al. (2005); Lac04: Lacy (2004).
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Fig. 4. T, — T as a function of the orbital cycle for V459 Cas.

The low eccentricity of 0.0244 +0.0004 (Lacy et al. 2004) of
the system makes it difficult to determine the apsidal motion rate
using the observed T, — T values. We searched in the list pro-
vided by Wolf et al. (2010), in their Table A.1, and in Table 1
of Lacy et al. (2004) for the closest photoelectric pair of pri-
mary and secondary timings, which we list in Table 7. The best
linear fit to these values, together with the TESS T, — T| mea-
surements, is shown in Fig. 4, and yields a slope of (1.30 +
0.19) x 107 deg cycle™!, although with a large dispersion of the
older timings due to the small variation in 75 — T in the con-
sidered time-span. Using the orbital eccentricity of Lacy et al.
(2004), we obtain an apsidal motion rate of @ = 0.00065 +
0.00010 deg cycle™!, which agrees with the value given by Wolf
et al. (2010), although with a slightly larger uncertainty.

4.5. V501 Her

The absolute parameters of V501 Her are given in Table 1 as
derived by Sandberg Lacy & Fekel (2014) from their own light-
curve and radial velocity measurements, from which no apsidal
motion could be reported. The large relative radii indicate the
evolved nature of the components and the difficulty in obtain-
ing accurate times of eclipse due to their long duration. The
TESS measurements given in Table 4 present an internal dis-
persion that is larger than the estimated errors of the individual
measurements. The weighted mean value is T, — T} =4.1208 +
0.0004 days, equivalent to a phase of the secondary eclipse of
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0.47929 + 0.00005 using the orbital period given by Sandberg
Lacy & Fekel (2014). These authors give a secondary eclipse
phase of 0.4791 + 0.0002, implying that no significant vari-
ation is observed. From the most complete and precise light
curve in Sandberg Lacy & Fekel (2014) and using the ele-
ments in their Table 4, we estimated the phase of the secondary
eclipse at 0.47915 + 0.00005, compatible with but more pre-
cise than the one given by their times of eclipse, and equiva-
lent with a 7, — T of 4.1196 + 0.0004 d. Comparing this value
with that from the TESS observations, we measure a change
in T, — T; of 0.0012 + 0.0006 days over 354 orbital cycles,
yielding a slope of (3.4 + 1.7) x 107%degcycle™'. This shows
the presence of apsidal motion in V501 Her but with a poorly
determined rate. The corresponding apsidal motion rate is @ =
0.00041 + 0.00020 deg cycle™!.

4.6. KWHya

The only accurate masses and radii for this system date back
to Andersen & Vaz (1984), resulting from the analysis of both
light and radial velocity curves. Such results were confirmed
more recently by Gallenne et al. (2019) with astrometric obser-
vations, and we adopted those values as listed in Table 1. Apsidal
motion was not reported for KW Hya, despite the large time-
span between the two orbital studies, because of the uncertainties
involved in the determination of the argument of periastron.

The weighted mean of the TESS measurements in Table 4
provides an accurate value of the 7, — T difference of 3.54987 +
0.00004 days. This can be compared with the corresponding tim-
ing difference measured by Andersen & Vaz (1984), 1740 orbital
cycles before, of 3.5454 + 0.0007 days. No other value of suffi-
cient precision could be found in the literature. These two avail-
able measurements yield a slope of 2.6+ 0.4 x 10~ days cycle™.
Adopting the eccentricity given by Gallenne et al. (2019), e =
0.094 + 0.004, gives an apsidal motion rate of @ = 0.00045 =
0.00007 days cycle™".

4.7. V501 Mon

A detailed analysis of the light and radial velocity curves of
V501 Mon was carried out by Torres et al. (2015) and the corre-
sponding absolute parameters are given in Table 1. In their study,
an analysis of the available times of eclipse at that time was car-
ried out together with the radial velocities in order to determine
the orbital elements and the possible variation in the argument of
periastron simultaneously. The authors obtained an estimate of
the apsidal motion rate of 0.00045 + 0.00024 deg cycle™!, which
we now try to improve by combining the TESS measurements
given in Table 4 with the data used by Torres et al. (2015). The
weighted mean of the TESS T, — T values gives a separation
between primary and secondary eclipses of 3.14676 + 0.00020,
which does not show significant variation with respect to the
solution by Torres et al. (2015).

We then fitted all the individual timings corrected to BJD in
order to identify a possible difference between the linear peri-
ods of the primary and secondary eclipses. Using all the times
of eclipse available in Table 1 of Torres et al. (2015; adopt-
ing also the same scaling for the photoelectric timings) and the
TESS individual eclipses, we computed the periods resulting
from primary and secondary eclipses, and obtained a difference
of AP = 3.85 + 0.89 x 107% days cycle™!, which corresponds to
the left-hand side term in Eq. (7) (Giménez & Bastero 1995).
With the value of the eccentricity e = 0.1339 + 0.0000, this
AP value yields an apsidal motion rate of @ = 0.00046 +
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Fig. 5. Same as Fig. 2 for V501 Mon.

0.00011 degcycle™! , which is in excellent agreement with the
value published by Torres et al. (2015) but with a reduced uncer-
tainty. Figure 5 displays the linear best fit to primary and sec-
ondary individual timings. The data points on the left, showing a
large dispersion, correspond to the photographic measurements
in Table 1 of Torres et al. (2015), for which we assumed uncer-
tainties of 0.025d.

4.8. GG Ori

The general properties of GG Ori were determined by Torres
et al. (2000), as listed in Table 1, together with an apsidal motion
rate of @ = 0.00061 + 0.00025 deg cycle™'. Torres et al. (2000)
followed a method based on the combination of eclipse tim-
ings with radial velocities, the same used in their analysis of
V501 Mon mentioned above. Later, Wolf et al. (2010) revised
the analysis of the individual eclipse timings available at the time
and obtained a more precise @ = 0.00057 +0.00006 deg cycle™,
with an orbital eccentricity of e = 0.220 + 0.001.

In order to improve the apsidal motion rate determination
combining early timings with TESS, we compiled 7, — 7| mea-
surements from the best minima given by Wolf et al. (2010)
acquired within less than ten orbital cycles, but only three pairs
of primary and secondary eclipses met this criterion. We derived
@ = 0.00060 + 0.00003 degcycle™'. We then performed lin-
ear fits to primary and secondary individual timings, respec-
tively, obtaining the linear period for primary and secondary
eclipses and obtained a difference of AP = —-8.33 + 0.16 X
107® days cycle™! using only those eclipses with weight ten in
Wolf et al. (2010). Furthermore, using the eccentricity obtained
by Torres et al. (2000), e = 0.2218+0.0022, we obtain an apsidal
motion rate of 0.00061+0.00003 deg cycle™" , in good agreement
with the previous determinations albeit much more precise. The
ephemeris curve of the individual primary and secondary eclipse
timings is shown in Fig. 6.

4.9. EYCep

This binary system was studied by Lacy et al. (2006), who
obtained the general properties given in Table 1. Given the short
time-span of their photometric and spectroscopic observations,
the authors were not able to detect any indication of apsidal
motion. The new TESS data listed in Table 4 include two sectors
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Fig. 6. Same as Fig. 2 but for GG Ori.

Table 8. 7, — T, values used to compute the apsidal motion rate of
EY Cep.

N T, - T, [d] Ref
—817 3.1565 +0.0003 Lac06
—815 3.1564 +£0.0004 Lac06
—781 3.1557 £0.0005 Lac06
Reference. Lac06: Lacy et al. (2006).
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Fig. 7. T, — T, as a function of the orbital cycle for EY Cep.

and the T, —T) variation already indicates the presence of apsidal
motion, though the modest time-span does not allow a precise
rate determination. We further used the eclipses given by Lacy
et al. (2006) to obtain the time differences in Table 8.

The graphical representation of the variations is shown in
Fig. 7 and the linear least-squares fit yields a well-defined slope
of (=1.97+0.06)x 107> days cycle™!. Using the eccentricity given
by Lacy et al. (2006), e = 0.4429 +0.0014, this yields an apsidal
motion rate of @ = 0.000507 + 0.000016 deg cycle™', which is
very precise thanks to the accurate TESS data, the high orbital
eccentricity, and a time coverage of more than 800 orbital cycles.
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5. Comparison between theory and observations

The values of wyps obtained from the apsidal motion analysis
using data from TESS and archival times of minima are listed
in Table 9. Of the nine systems studied for which we were able to
perform apsidal motion rate determinations, five are reported for
the first time. The precision of the determinations varies widely
but they are well above the 30 threshold, except for the case of
V501 Her, which has an apsidal motion rate determination with
a significance of only 20 Table 9 provides the values of @, and
W for the systems with detected apsidal motion, computed using
Egs. (1) and (3). Calculating the classical term requires employ-
ing two additional parameters for each component, namely the
internal structure constant, k», and the rotational velocity.

The values of k, given in Table 9 were specially calcu-
lated by A. Claret using theoretical models based on the Mod-
ules for Experiments in Stellar Astrophysics package (MESA;
Paxton et al. 2011, 2013, 2015) and following the methodology
described in the series of papers by Claret & Torres (2017, 2018,
2019). A coarse-grid search was performed over evolutionary
tracks calculated for the measured masses of each component,
allowing the convective core overshooting parameter (foy) and
the mixing length parameter (aMmrr) to vary freely, with a vari-
able metallicity (Z) common to both components. The log &, val-
ues were determined from the best match between the grid of
evolutionary tracks and the observed masses, radii, and effective
temperatures. The theoretical internal structure constants, k;, for
the models fitting the observed parameters, were integrated using
the differential equations of Radau as given by Egs. (1)—(3) in
Claret & Giménez (2010).

The other parameter used to estimate @, is the rotational
velocity. The values listed in Table 5 were taken from the same
spectroscopic analyses in the literature from which we adopted
the general properties in Table 1. Nevertheless, in the case of
AL Dor, no rotational velocity was reported for the component
stars and we used the predicted values under the assumption of
pseudo-synchronisation, as described by Hut (1981).

All the parameters needed to apply Egs. (1) and (3) are listed
in Tables 1 and 5. The errors of the input parameters were propa-
gated to obtain the uncertainty in @ and @. The uncertainties
of the stellar rotation and k, dominate the error budget in the
classical term, while the uncertainties in the component masses
are the main source of error in the GR term. In Fig. 8 we compare
the observed apsidal motion rates with the total calculated theo-
retical value (W = W¢ + Weel), as given in Table 9. We excluded
V501 Her from Fig. 8 given the poor significance of the apsidal
motion determination (below 2¢), although the observed value
agrees with theory within the uncertainties.

The comparison of the observed apsidal motion rates with
those calculated using Egs. (1) and (3), and the parameters in
Tables 1 and 5, show good agreement and no systematic devi-
ations within their uncertainties. An equivalent approach to test
GR effects was employed before by Torres et al. (2010), who also
considered systems with accurate masses and radii and limited
the comparison between observed and theoretical apsidal motion
rates to those having a relative contribution of the GR term of
at least 40%. Figure 8 therefore complements Fig. 11 in Torres
et al. (2010), including additional systems with a relative contri-
bution of the GR term above 60%. The values used by Giménez
(1985, 2007) for the system’s general properties were of insuffi-
cient precision to allow for a meaningful and unbiased test of the
GR term. Claret & Giménez (1993) searched for systematic devi-
ations in the comparison between observed and theoretical val-
ues of log k; to falsify the predictions of the Moffat (1986) theory
of gravitation. Claret (1997) and Wolf et al. (2010) studied the
complementary problem, where the GR term was theoretically
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Table 9. logk, values and apsidal motion rates, both observed and theoretically predicted, for the eclipsing binaries with apsidal motion

measurement.
System log kz,] log k2,2 Wobs w Wel Wrel a)rel,mea d)rel,mea/ Wrel
[degcycle™] [degcycle™'] [degcycle™!]  [degcycle™'] [degcycle™]
KXCnc  -1.88(4) —1.88(4) 0.000131(10) 0.0001241(2) 0.0000029(1) 0.00012127(16) 0.000128(10)  1.06(8)
AL Dor -1.953) -1.95(4) 0.000163(6) 0.0001659(4) 0.0000075(4) 0.00015838(3) 0.000156(6) 0.98(4)
V541Cyg  -237(3) —2.34(3) 0.000352(4) 0.0003516(21) 0.0000392(17) 0.0003124(12) 0.000313(4) 1.001(14)
V459Cas  —248(3) —2473) 0.00065(10) 0.000555(9) 0.000226(9) 0.0003297(23) 0.00043(10)  1.3(3)
V501 Her -2.13(3) —-1.96(4) 0.00041(20) 0.000521(13) 0.000281(13) 0.0002400(3) 0.00013(20) 0.5(8)
KWHya  -250(3) -2.45(10) 0.00045(7) 0.000417(7)  0.000096(7) 0.0003211(19) 0.00035(7)  1.10(22)
V501 Mon -2.54(3) —2.523) 0.00046(11) 0.000446(8) 0.000124(8)  0.0003219(3) 0.00034(11)  1.0(3)
GG Ori -2.336(20) —2.337(20) 0.00061(3)  0.000630(9) 0.000176(9) 0.0004541(16)  0.00043(3) 0.96(7)
EYCep  -238(5) —2.40(5) 0.000507(16) 0.000501(12) 0.000146(12) 0.0003549(14) 0.000361(20)  1.02(6)
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Fig. 8. Comparison between total computed and total observed apsidal
motion rates. The black dashed line indicates the 1:1 relation.

estimated and subtracted from the observed value. The resulting
classical term was then compared with model predictions of the
ky parameter.

6. A test of gravitational theories

For a more in-depth analysis, the two apsidal motion components
should be analysed separately. As explained above, we care-
fully selected the sample to ensure a maximum contribution of
the GR term, so that, after subtraction of the (model-calculated)
quadrupole Newtonian contribution, a comparison with gravita-
tional theories could be carried out. De Laurentis et al. (2012)
attempted a test of gravitational theories using a similar method
but their eclipsing binary sample was not appropriate, with over
half of their sample having a GR term contribution below 10%.
Their results were therefore inconclusive.

Thanks to the improved precision in the apsidal motion deter-
minations that we have attained, we can perform a comparison
of the predicted theoretical relativistic apsidal motion rate with

Fig. 9. Measured GR apsidal motion as a function of the theoretically
computed GR apsidal motion. The black dashed line and grey shadow
area correspond to the best fit to Eq. (8), assuming a; = {» = 0, and
its 1o uncertainty. The colour code is chosen such that redder colours
correspond to systems with the smaller relative error, and therefore are
dominating the fit.

the difference between the observed values and the computed
classical terms, as listed in Table 9. For this procedure to suc-
ceed, the uncertainty in the classical contribution needs to be
well below this latter difference and therefore this limits the com-
parison to systems with a small non-relativistic contribution to
the observed apsidal motion. In Table 9 we also include the mea-
sured GR rate calculated as Wyel mea = Wobs—Wel, Where wops 1S the
observed apsidal motion from precise minima timings derived
in this work. Given the stringent requirements on the system
characterisation (to ensure good estimates of the internal struc-
ture parameters and classical apsidal motion contribution), we
excluded the cases of V459 Cas and V501 Mon in spite of their
good agreement shown in Fig. 8.

Figure 9 shows the comparison between predicted Wy,
according to Eq. (1), and @ye;mea- The measured values for all
systems are compatible with the GR predictions within their
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Fig. 10. Ratio of measured and predicted GR apsidal motion rates as
a function of the dimensionless reduced mass 7. The black dashed line
and grey shadow area correspond to the best fit of Eq. (8), assuming
v =B =1, and its 1-0 uncertainty. We highlight the broken x-axis and
the different scales. The colour code is chosen such that redder colours
correspond to systems with the smaller relative error, and therefore are
dominating the fit.

errors. A more general form of Eq. (1), which also allows to
test other possible gravitation theories in addition to GR is given
by Eq. (66) of Will (2014). This uses the parametrised post-
Newtonian (PPN) formalism, with several parameters whose val-
ues depend on the gravitation theory chosen:

1 1
d)rel,mea = d)rel (5(2 + 27 _ﬂ) + 6(20'] —ay t+a3+ 2{2)’7 . (8)

Here, @ is the value of the apsidal motion predicted by GR,
which is given by Eq. (1), 7 = M, M,/(M; + M,)* is the dimen-
sionless reduced mass, and v, 8, {», and «; are the PPN param-
eters. In any fully conservative theory of gravity, @; = {, = 0,
while for GR, ¥ = 8 = 1 and a; = {; = 0, recovering the expres-
sion in Eq. (1). The PPN formalism is appropriate for weak grav-
itational fields and slow motions, such as the conditions in stellar
eclipsing binary systems (see Will 2014, for more details).

Therefore, a test of GR can be performed by checking that
the measured and theoretical GR apsidal motion rates are com-
patible with values of @ and 8 predicted by the theory, assuming
a fully conservative model (i.e. @; = {, = 0). The black dashed
line shown in Fig. 9 corresponds to the best fit to the measured
and predicted values of the GR apsidal motion, assuming only a
varying slope. This slope, as deduced from Eq. (8), corresponds
to A = (2 + 2y —B)/3. We derive a value of A = 1.002 + 0.012,
which is fully compatible with the value predicted by GR of 1.
It is clear from Fig. 9 that the stronger constraints are set by the
systems with the smaller relative uncertainties, that is, AL Dor
and V541 Cyg. However, it should be noted that the fit is still
compatible with GR when removing these two targets, obtaining
A =1.015 + 0.036.
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From our determination of A, the validity of alternative
gravitational theories in the PPN formalism can be assessed.
For example, constraints can be put on the coupling constant
wpp of the Brans-Dicke theory (Estabrook 1969), which takes
A = (4 + 3wpp)/(6 + 3wpp). Furthermore, our measurements
can also be used to place bounds on the standard individual PPN
parameters. Adopting the limit of (y — 1) from the Shapiro time-
delay measurements using the Cassini spacecraft, of 2.3 x 107>
(Bertotti et al. 2003), our measurement yields a constraint on
B given by (8 — 1) = —0.005 = 0.035. Equivalently, adopt-
ing the limit of (8 — 1) from the perihelion shift of Mercury,
of 8 x 107 (Verma et al. 2014), we find a constraint to y of
(y—-1)=0.002 +0.017.

A test of non-conservative models can be carried out by mea-
suring the value of B = (2a; —ay +@3+24,)/6 in Eq. (8). Assum-
ing now y = 8 = 1, we can determine the value of B by fitting the
relation @rejmea/@rel = 1 + B1n. Such an assumption is justified
by the measurements of the perihelion shift of Mercury, which
correspond to a very small value of 7, and determine A = 1 at
high significance. In the last column of Table 9 we list the ratio
between the measured and predicted GR apsidal motion rates,
which we plot as a function of 7 in Fig. 10. The black dashed
line and the grey shadow region represent the best fit of B and
the 1o uncertainty. We obtain B = 0.01 + 0.05, which again is
fully consistent with the predicted null value from GR. Only one
system, KW Hya, has a value of  that is significantly different
from the bulk of the sample at = 0.250. This clustering of
measurements at a small range in 1 limits the effectiveness of
the sample at placing strong constraints on the slope B. For this
reason, we cannot perform a fit varying simultaneously A and B
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from Eq. (8). This would be enabled by considering systems with
very unequal component masses, which are difficult to discover
and measure with high precision.

Our analysis provides weaker constraints to PPN parameters
compared to for example those from the perhielion shift of Mer-
cury (Verma et al. 2014), the Shapiro time-delay measured by the
Cassini mission (Bertotti et al. 2003), or the spin precession of
millisecond pulsars (Shao et al. 2013). Nevertheless, the results
obtained from the eclipsing binaries analysed in this work per-
form a test to gravity in a yet unexplored regime of the potential-
curvature diagram. Figure 11 reproduces this latter diagram from
Baker et al. (2015) where we add the systems studied here. Stel-
lar eclipsing binaries are one of the many probes of gravity in
different environments, in this case covering the range between
Solar System planets and binary pulsars.

7. Conclusions

The goal of the present study is to employ precise and
broad photometric coverage provided by the TESS mission to
determine precise eclipse timings of a number of binaries and
determine their apsidal motion rates. We carefully selected a
sample of eccentric eclipsing binaries with accurately deter-
mined general properties such as masses and radii, and relatively
long orbital periods to ensure a dominant contribution of the GR
term over the classical term to the apsidal motion rate. The con-
tinuous monitoring and the excellent precision of the TESS new
times of minima allowed us to derive determinations of 75 — T
and therefore investigate possible variations. From our analysis
we were able to detect apsidal motion in 9 out of the 15 sys-
tems included in our sample. In some cases, we improved previ-
ous determinations, but for 5 of the systems (KX Cnc, AL Dor,
V501 Her, KW Hya, and EY Cep) we present the first measure-
ment of apsidal motion. Furthermore, we were able to determine
apsidal motion in one system, AL Dor, using data from TESS
alone, which cover a very small fraction of the apsidal motion
orbital cycle, thus highlighting the excellent performance of the
mission for this kind of study.

A comparison between observed apsidal motion rates and
theoretically predicted values yields excellent agreement. The
good precision of the observed apsidal motion rates, the accurate
stellar properties employed, and the relatively modest contribu-
tion from the classical term made it possible to calculate reli-
able estimates of the observed GR term. In some cases, when the
classical contribution is especially insignificant, the GR apsidal
motion could be measured with a relative precision approaching
1 per cent. This allows a test of GR for the first time using this
method. Our results strongly favour the predictions of GR, with
no deviations observed at the level of 10~2. Furthermore, we set
constraints on two of the PPN parameters. These latter are not
quite as stringent as those resulting from other methods (which
can be three orders of magnitude more constraining; Will 2014)
yet they probe a regime of gravitational forces and potentials
that has not been explored before (Baker et al. 2015). Given the
excellent agreement with GR, the parameter space for alternative
theories continues to narrow.

The results we present are mildly model-dependent as they
may be affected by deviations of the k, values. However, because
of the small contribution of the classical term, variations of the
ky values within their quoted uncertainties induce relative varia-
tions in w for the two targets dominating our fits, V541 Cyg and
AL Dor, of lower than 1%.

With new TESS data still to come, observing new systems
and increasing the data coverage of those already observed,

promising systems still without a detection of apsidal motion
could be added to further extend our study. In order to perform
even more stringent tests of gravitation theories, an increase in
the number of systems with a GR apsidal motion relative contri-
bution larger than the threshold used in this work is needed. We
therefore encourage spectroscopic monitoring and precise deter-
mination of absolute properties of long-period, eccentric eclips-
ing binaries with TESS photometric data.
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