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Abstract: The aberrations generated at the image plane of an optical system that includes
freeform surfaces described through Q-polynomials can be calculated using nodal aberration
theory. By analyzing the definition of each Q-polynomial, they can be compared with Zernike
polynomials allowing a relationship between the two bases. This relationship is neither simple nor
direct, so a fitting must be made. Once established, the contribution to the aberration field map
generated by each surface described through the Q-polynomial can be calculated for any surface
that is not at the stop of the system. The Q-polynomials are characterized by their orthogonality
in the gradient instead of the surface, which represents an opportunity to restrict the changes in
the slope in a simple way and facilitate the manufacturing process. The knowledge of the field
aberrations generated by each Q-polynomial allows selecting that which of them are necessary to
be introduced as variables in the optimization process for an efficient optimization.
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1. Introduction

Freeform optics design and fabrication allow the development of smaller and more compact
optical systems, preserving or even enhancing their performances [1]. It allows for instance
increasing the field of view with respect to equivalent traditional systems [2], decentering surfaces
to avoid an obscuration [3] or improving quality of small cameras for cell phones [4], to achieve
ultra-short distances for projectors [5] or to improve illumination systems for automotive industry
[6]. For the aerospace industry, it represents a remarkable advantage allowing less optical
surfaces, less volume and mass with a significant reduction in associated costs in the mission, a
goal strongly pursued in recent years, especially with the growth of the CubeSats [7].

Freeform optics consists on the break of rotational symmetry providing higher degrees of
freedom for optical design, allowing a high optical quality recovery in highly aberrated systems.
The treatment of aberrations in systems using freeform optics requires a different approach than
the traditional theory of aberrations. Raised by Shack [8] and developed by Thompson [9,10],
the Nodal Aberration Theory (NAT) is based on the Hopkins Wave Aberration Theory [11] and
Buchroeder’s work [12] on tilted elements in rotational symmetry optical systems, but it was
Fuerschbach et al. [13] who expanded the theory to systems with freeform surfaces described in
terms of the Zernike basis. NAT provides a mathematical description of the dependence of the
optical aberrations on the field evaluated in the image plane. In addition, NAT can also be used
during the design process to calculate the freeform deformation in terms of Zernike polynomials
that is required to obtain high optical quality at specific field points (nodes) in the image plane
[14]. The theory has been used to analyze the field aberrations generated by freeform surfaces
in combination with decenter and tilt surfaces [15,16], by off-axis systems [17,18] and even by
systems with bi-conic surfaces [19].

As said before, Fuerschbach et al. [13] expanded NAT to optical systems with surfaces
described by Zernike basis and it is the most used representation [20], however, there are more
available mathematical options to model any surface which can be classified according to its
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orthogonality [21]. We are interested in orthogonal bases due to their properties, specifically
in Q-polynomial basis introduced by Forbes [22] in order to represent aspherical and freeform
surfaces, with a specific condition of orthogonality to bring the designer closer to the processes
of fabrication and metrology [22–24]. Any arbitrary surface S(r, θ) can be defined in terms of
this basis as

S(r, θ) = cr2
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where c and K are the curvature and the conic constant of the base surface, r is the radial
coordinate, u is the normalized radial coordinate and θ is the angular coordinate. Qm

n (u2) are
the Q-polynomials and am

n and bm
n are the associated coefficients corresponding to the cosine

and sine components respectively. By last, n represents the radial order while m the azimuthal
order. Equation (1) shows the addition of two terms, the first one is the base surface considered
to be an on-axis conic surface and the second one has two contributions, an aspheric contribution
corresponding to m = 0 and a freeform contribution (m>0). The second term of Eq. (1) is not
defined along the optical axis, instead, it is defined along the direction normal to the base surface.
The factor σ(r) is the cosine of the angle between the optical axis and the direction of the base
surface normal, so it constitutes a projection factor. The Q-polynomials are defined to fulfill that
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which means that they are a base orthogonal in gradient.
Equation (2) represents the main advantage of this set of polynomials, because there is a direct

relationship between the change in the local slope of the surface and the coefficients associated to
the Q-polynomials, therefore, a constraint can be introduced directly in the optimization process
of the optical design to control the surface slopes. It is well known that the cost of manufacture
and the difficulty in metrology of an optical surface increase with the deviation from the best-fit
base surface. Thus, 2D Forbes basis (Q-polynomials) constitutes a powerful tool to perform a
design that takes into account optical quality, cost of manufacture and possible complication of
metrology [25]. Takaki et al. [26] showed an optimization constraint that allows searching for a
balance between manufacturability and optical performance in the design of optical systems with
freeform surfaces described in terms of orthogonal polynomials (Zernike and Q-polynomials),
demonstrating the advantage to use them in optical design process. Additionally, Takaki et al.
[27] in other work also demonstrated a lower dependence of degeneracy in freeform surface
using Q-polynomials instead of Zernike polynomials.

The expressions for Q-polynomials show that the azimuthal order m corresponds to a kind of
shape that increases its order with the radial order n, i.e., azimuthal order m = 0 corresponds to
defocus and spherical deformation for n = 0 and, while the order n increases, the higher orders of
spherical deformation appear. Azimuthal order m = 1 coincides to tilt deformation for n = 0
and, for n>0, coma and higher orders of coma emerge. Azimuthal order m = 2 is an astigmatism
for n = 0 and the higher orders of astigmatism show up for n>0. In the same way, azimuthal
order m = 3 corresponds to trefoil for n = 0 and the higher trefoil orders appear for n>0 and
azimuthal order m = 4 is a tetrafoil for n = 0 and the higher tetrafoil orders emerge for n>0.
These polynomials are mathematically and graphically represented by Forbes in [22].

Q-polynomials are very similar to Zernike polynomials but there are some differences between
the two basis [28]. The first difference between them is that there are no piston and defocus
individual polynomials in the base of Q-polynomials. But, the main difference, as mentioned
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before, is the direction in which each base is defined, i.e., Zernike polynomials are defined along
the optical axis, typically the z-axis, while Q-polynomials are defined along the direction normal
to the base surface in each point on the surface. This is the reason why S(r, θ) expressed by
Q-polynomials needs the projection factor σ(r). For a base conic surface, in first approximation,
the projection factor is

1
σ(r)

=

√
1 − Kc2r2√︁

1 − (1 + K)c2r2
=
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maxu2√︁
1 − (1 + K)c2r2

maxu2
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. (3)

The projection factor from Eq. (3) changes for each radial position on the surface and depends
on the parameter A = c2r2

max and the conic constant K, which implies a dependence on the
specific surface.

Summarizing, NAT is usually used to described aberration fields in systems which surfaces
are described in terms of the Zernike polynomials basis taking advantage of the description
introduced by Fuerschbach et al. [13], however, when a freeform surface is described in using of
Zernike polynomials, the local changes on the slope cannot be easily constrained. [26]. Therefore,
it would be useful to extend the theory to systems containing freeform surfaces expressed in
terms of the Q-polynomials basis, which allows a direct constraint in the local changes of the
surface slopes. In this paper, we present a novel and practical way to apply NAT to a system with
freeform surfaces described by Q-polynomials and obtain the resulting field aberrations generated
by each of them. This is done by previous established relationship between Q-polynomials and
Zernike polynomials via fitting. Both basis at same time allow knowing the evolution of optical
parameters usually described by Zernike polynomials and using the Q-polynomials, the design
can be performed while constraining the deviation of slopes of the surfaces that compose the
optical system, therefore, the transformation among basis contributes for optical designers having
another useful tool. As far as we know, nobody has developed the transformation in explicit form.

2. From Q-polynomials to Zernike polynomials

Q-polynomials are defined along the normal direction to the base surface which is not constant
over the whole surface, except in the case of zero curvature. Therefore, there is not an direct
conversion to Zernikes so a fitting must be performed, except in the case of a plane base surface.

To fit each Q-polynomial to Zernike basis, the first step is the approximation perform to the
case of a plane base surface. Once the Q-polynomial is described as the sum of the first Zernike
polynomial and the residual of the approximation, this residual is analyzed to determine the next
Zernike polynomials to be introduced in the fitting. Taking the polynomial Q2

0(u
2) with radial

order n = 0 and azimuthal order m = 2 as an example, which projection to the optical axis is
√
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the approximation of this polynomial begins with the astigmatism Zernike polynomial in Fringe
ordering (Z5 and Z6), with the cosine component and a2

0 weight associated to Z5 and the sine
component and b2

0 weight associated to Z6. Only the results for the cosine component are shown
(Fig. 1, Fig. 2 and Fig. 3), the sine component has the same behavior. At the moment, the value
of A is kept constant and the fittings are analyzed for different values of the conic constant K.
The cases considered are K = 0 (sphere), K = −0.5 (ellipse), K = −1 (parabola) and K = −1.5
(hyperbola). The first approximations residuals are shown in Fig. 1(a-d) for the different values of
K, note that they exhibit the secondary astigmatism behavior in Zernike polynomial representation
Z12. Introducing them in the fit, a shape like the next order of astigmatism Zernike polynomial
(Z21) emerge and the resultant residuals are shown in Fig. 1(e-h). Again, that polynomial is
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introduced in the fit and the corresponding residuals look like the next order of astigmatism
(Fig. 1(i-l)) and so on. Thus, this Q-polynomial can be rewritten as a series of Zernike polynomials
starting by astigmatism contribution Z5 plus the higher orders of this Zernike polynomial and
the residual continues decreasing by adding more orders. This result does not depend on the
conic constant of the base surface, therefore, for different values of K, the same polynomials are
involved in the series but different values of the fitted coefficients are required.

Fig. 1. Example of fit cases. The rows show fits for different K-values (0, −0.5, −1, −1.5).
First column maps shows residuals (a to d) from fitting to Z5, second column maps shows
residuals (e to h) from fitting to Z5 + Z12, and finally third column maps shows residuals
(i to l) from fitting to Z5 + Z12 + Z21. It can be observed how residuals invite to include a
higher order of the same type in the next iteration.

In addition, increasing radial order n changes the corresponding Zernike polynomials needed
for the first approximation to a plane base surface. That means, having at least n + 1 astigmatism
polynomials as the first step of the fitting process. The polynomial Q2

1(u
2) must include at least

the sum of Z5 and Z12 for the cosine component in the case of considering a plane base. In the
same way, Q2

2(u
2) must have at least the sum of Z5, Z12 and Z21 for the cosine component for a

plane base.



Research Article Vol. 4, No. 2 / 15 February 2021 / OSA Continuum 546

Fig. 2. Residual RMS of fitting Q2
0(u

2) to 1, 2 and 3 Zernike polynomials in case of (a)
K = 0, (b) K = −0.5, (c) K = −1 and (d) K = −1.5 in terms of the A parameter. Note that
for A ≤ 0.25, it is possible to achieve an acceptable fitting with few polynomials.

Fig. 3. Slope dependence with A for different conic constants. It can be observed how for
A<0.1 the dependence of slope on the value of K is negligible.
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All these results for the Q-polynomials of order m = 2 are mathematically summarized as
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The number of Zernike polynomials required for an acceptable fit depends on the value of the
parameter A = c2r2

max. This parameter can be consider like a shape factor associated with the
relationship between the aperture and the radius of curvature of the optical surface and it can only
take values between 0 and 1: A is zero for a flat surface and increases towards 1 as the surface
becomes more curved and/or larger. Figure 2 shows the root-mean-square (RMS) of the residual
obtained after the fitting for the cosine component of Q2

0(u
2) in terms of A, for a different number

of Zernike polynomials considered in the series and for the different values of K. As the value of
A gets higher, the surface is further from a plane and higher orders of Zernike polynomials are
required. This result does not depend on the value of the conic constant either. However, the
residual RMS does depend on K, therefore, the fitting of the polynomial Q2

0(u
2) might require a

different value of polynomials depending of the value of K. For example, for A = 0.35, if the
base surface is a sphere, the adjustment requires three Zernike polynomials while, if the base
surface is a parabola, two are enough.

These results can be generalized for any value of m establishing the relationship between the
polynomials in both basis. Consequently, any surface S(r, θ) expressed by Q-polynomials can be
fitted to the corresponding Zernike polynomials in the case of a plane base plus its higher orders.
Again, the number of Zernike polynomials needed for the fitting depends on the value of A and K.

A relationship between coefficients can also be calculated and there is a linear dependence
between a2

0 and C5 and, analogously, between b2
0 and C6. The coefficient of determination in the

linear fitting always fulfill R2 ≥ 0.99 for each relationship between Q-Zernike coefficients in
every case of K. The value of the slope obtained by mentioned linear fitting is the same for both
components, as a consequence, the relationship between those coefficients can be expressed by
C5 = P5/6a2

0 and C6 = P5/6b2
0. Note that the R2 value means a linear dependence that does not

change with K, only the magnitude of the slope does.
The linear relationship appears for all values of A, but the value of the slope changes. Figure 3

shows an example of slope P5/6 dependence with regard to A parameter using different values of
K. Therefore, the slope depends on A and K and must be calculated for each specific surface.

The relationship between Zernike coefficients (Ci) and Q-coefficients (am
n , bm

n ) can be gen-
eralized. For m = 0, Ci = Pia0 and for m>0, (Ci Ci+1)

T = Pi/i+1(am
0 bm

0 )
T , where T means

transpose.

3. Aberration fields generated by the Q-polynomials

Nodal Aberration Theory establishes that a freeform surface placed on a position coincident
with the aperture stop of an optical system generates aberrations that do not depend on the
field. However, while that freeform surface is moved longitudinally away from the stop, the
aberrations generated produce a field dependence that is a consequence of the beam displacement
on the surface for off-axis fields. For small fields of view the footprint for different fields are
approximately circular and identical. Under these conditions the displacement has a linear
dependence with the field being defined by ∆h⃗ ≡ (ȳ/y)H⃗ = (ūt/y)H⃗, where ȳ is the chief ray
height on the surface, y is the marginal ray height on the surface, ū is the chief ray angle, t is the
distance between the surface and the stop of the system and H⃗ is the normalized field vector [13].
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If the surface is described in terms of Zernike polynomials, the expression for the resulting
wavefront error by this surface at the stop of the system is given by W = ((n2−n1)λ

−1)
∑︁

i CiZi(u, θ)
[16], therefore, the expression for the wavefront error when the surface is at the stop can be
rewritten in terms of Q-polynomials using their fitting to Zernike polynomials and the relationships
between coefficients. The field aberrations generated while the surface is longitudinally displaced
from the stop in terms of Q-polynomials are obtained by introducing the pupil shift u⃗ → u⃗ + ∆h⃗
that is produced by the beam displacement [13].

Notice that freeform surfaces do not introduce any new kind of aberrations but they cause a
redistribution of the aberrations with the field. The result is the appearance of nodes of aberrations
that are displaced from the optical axis [10,12,13].

Since we are working with Q-polynomials, the notation for the pupil coordinates followed
in this paper is that introduced by Forbes [22–24]. Let be u⃗ the normalized pupil vector, u the
normalized radial component and θ the polar component. It differs from the notation adopted
in the description of NAT where, ρ⃗ is the normalized pupil vector, ρ the normalized radial
component and ϕ the polar component.

To calculate the field aberrations introduced by each Q-polynomial that defines S(r, θ), we
start from the approximation to a series of Zernike polynomials. As established by the results
from Section 2., the number of Zernike polynomials required for the fitting depends on the value
of A and K and those values are specific for each base surface. Without lost of generality, we
use small value for A parameter with the purpose of using few terms of Zernike polynomials.
Additionally, we maintain the value of n = 0 while considering different values of m.

Taking the polynomial Q2
0(u) with radial order n = 0 and azimuthal order m = 2 as an example,

it can be approximated to
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Thus, the aberrations generated by the surface at the stop of the system in terms of coefficients
associated to Q2

0(u
2) are
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From Eq. (13) and using NAT as Fuerschbach et al. [13], the aberrations generated when the
surface is moved axially away from the stop and their dependence with the field at the image
plane can be calculated, introducing the pupil change u⃗ → u⃗ + ∆h⃗, as
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In order of appearance, the aberrations shown in Eq. (14) affecting image quality are secondary
astigmatism, trefoil, coma, astigmatism and field curvature.

The analysis for the polynomial Q2
0(u) can also be performed for any other Q-polynomial to

obtain the field aberrations. In the Table 1, we summarize the field aberrations for the orders
n = 0 and m = 0, 1, 2, 3. In the first column of the table we show the Q-polynomial and the
Zernike coefficients introduced for each fitting (for shortness purposes, piston and tilt are not
included).

Table 1. Field aberrations affecting image quality generated by a surface described in terms of
each Q-polynomial that is placed away from the stop of the system. The first column shows the

Q-polynomial and the Zernike coefficients used for the approximation to obtain WNonStop .
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4. Design example

To illustrate the results from previous sections, we include the design of a freeform telescope
for a spectroscopy application to be used in an Earth observation mission. It is a two-mirror
Cassegrain telescope to be embarked on board a CubeSat, therefore, its size is strongly restricted,
the entrance aperture and overall length are constraint to a maximum of 80mm. None of the
mirrors are coincident with the stop of the system as shown in Fig. 4(a). System requirements
establish two off-axis regions of 50 microns of diameter located symmetrically along the optical
axis where the optical quality must be optimized. These two fields are +/−1.4◦ off-axis. We
appeal to freeform optics to achieve high optical quality.

Fig. 4. (a) Freeform telescope layout. Note that the secondary mirror is positioned away
from the stop of the system. Spot diagram for the (b) starting symmetric design and the (c)
final freeform design. The black circle represents the 50-micron region.

The starting optical design corresponds to the optimized non-freeform solution assuming conic
shapes for M1 and M2. All the parameters are summarized in Table 2 and the spot diagrams for
both fields are shown in Fig. 4(b) where the black circles represent the 50-micron regions.

Table 2. Parameters of the starting non-freeform optimized design.

Surface Name Surface Type Y Radius(mm) Conic Constant Thickness(mm)

Stop Sphere Infinity - 68.0

M1 Conic −93.4123 −1.0172 −38.0

M2 Conic −20.8803 −2.1117 50.0

Image plane Sphere Infinity - -

Aberrations that limit optical quality are astigmatism and spherical aberration. Therefore,
we calculate the Q-polynomials needed to reduce those aberrations for the fields selected, that
means, choose the adequate freeform contribution to place the nodes of astigmatism and spherical
aberrations at those fields. The primary mirror M1 remains conic while the secondary mirror M2
contains the freeform term.
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The expressions for those aberrations for the starting design (SD) that preserves the rotational
symmetry are known and they were described by Hopkins [11] as,

WSD
ast =

1
2

W222H⃗2 · u⃗2, (15)

WSD
sph = W040

(︁
u⃗ · u⃗

)︁2 . (16)
Due to the field dependence from Eq. (15) and Eq. (16) and the field behavior deduced in

Section 3., the Q-polynomials proposed to describe the freeform term to be introduced on the
secondary mirror are Q0(u2) and Q2

0(u
2). Note that only the term described by Q2

0(u
2) is actually

a freeform term while Q0(u2) describes an aspheric term. The contribution to astigmatism and
spherical aberration generated that were calculated in the previous section and correspond to the
corresponding terms from Table 1 are

WFF
ast = 2a0

[︂
60P16

(︂
∆⃗h · ∆⃗h

)︂
+ 6P9 − 30P16

]︂ (︂
⃗∆h2 · u⃗2

)︂
+
[︂
12P12/13

(︂
∆⃗h · ∆⃗h

)︂
+ P5/6 −

16
3 P12/13

]︂ (︂
C⃗2

0 · u⃗2
)︂

,
(17)

WFF
sph = 2a0

[︂
90P16

(︂
∆⃗h · ∆⃗h

)︂
+ 3P9 − 15P16

]︂ (︁
u⃗ · u⃗

)︁2 . (18)

Thus, using the definition of the beam displacement on the surface for off-axis fields ∆h⃗ ≡

(ȳ/y)H⃗, the final expressions of the aberrations are

Wast =
1
2W222H⃗2 · u⃗2 + 2a0

[︃
60P16

(︂
ȳ
y

)︂2 (︂
H⃗ · H⃗

)︂
+ 6P9 − 30P16

]︃ (︂
ȳ
y

)︂2 (︂
H⃗2 · u⃗2

)︂
+

[︃
12P12/13

(︂
ȳ
y

)︂2 (︂
H⃗ · H⃗

)︂
+ P5/6 −

16
3 P12/13

]︃ (︂
C⃗2

0 · u⃗2
)︂

,
(19)

Wsph = W040
(︁
u⃗ · u⃗

)︁2
+ 2a0

[︄
90P16

(︃
ȳ
y

)︃2 (︂
H⃗ · H⃗

)︂
+ 3P9 − 15P16

]︄ (︁
u⃗ · u⃗

)︁2 . (20)

Then, we need to find the expressions or the coefficients a0 and C⃗2
0 that make zero the Eqs. (19)

and (20) for the fields selected. Calling those fields H⃗1 and H⃗2 and writing all vectors in their
exponential form: H⃗1 = H1eiφ1 , H⃗2 = −H⃗1 = H1ei(φ1+π), where ϕ1 = π/2 and H1 = 6.5mm, and
C⃗2

0 = C2
0ei2ξ2

0 , the equations that need to be solved are{︃
1
2W222H2

1ei2(φ1+α) + 2a0

[︃
60P16

(︂
ȳ
y

)︂2
H2

1 + 6P9 − 30P16

]︃ (︂
ȳ
y

)︂2
H2

1ei2(φ1+α)

+

[︃
12P12/13

(︂
ȳ
y

)︂2
H2

1 + P5/6 −
16
3 P12/13

]︃
C2

0ei2ξ2
0

}︃
· u⃗2 = 0,

(21)

{︃
W040 + 2a0

[︄
90P16

(︃
ȳ
y

)︃2
H2

1 + 3P9 − 15P16

]︄ }︃ (︁
u⃗ · u⃗

)︁2
= 0. (22)

In fact, Eq. (21) represents two equations. One first equation for α = 0 corresponding to H⃗1
and a second one for α = π corresponding to H⃗2. Starting with Eq. (22), the expression for the
coefficient a0 results to be

a0 = −
1
2

W040[︃
3P9 − 15P16 + 90P16

(︂
ȳ
y

)︂2
H2

1

]︃ . (23)

This result only depends on the module of the field H1, therefore, the position of the node of
spherical aberration at the focal plane when the term is introduced and defined by a0 looks like a
ring with radius H1.
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In the case of Eq. (21), comparing modules and exponents, the result is

ξ20 = ϕ1 + α, α = 0, π, (24)

C2
0 = −

[︃
1
2W222 + 2a0

[︃
60P16

(︂
ȳ
y

)︂2
H2

1 + 6P9 − 30P16

]︃ (︂
ȳ
y

)︂2
]︃

12P12/13

(︂
ȳ
y

)︂2
H2

1 + P5/6 +
16
3 P12/13

H2
1 . (25)

This result shows that introducing a term generated by C⃗2
0 produces the appearance of 2 nodes

of astigmatism at 2 different positions at the image plane that are symmetric with respect to the
axis. Equations (24) and (25) show that the two nodes share the same module but differ in the
azimuthal coordinate.

The freeform mirror M2 has 9.1815mm of aperture which means that A = 0.1934. With that
value of A and the conic constant from Table 2, the vales of the slopes for M2, calculated as
shown in Section 2., are P5/6 = 0.7495, P12/13 = 0.0126, P9 = −0.1715 and P16 = −0.0039.
The values of W222 = −0.0187λ and W040 = 5.0077λ (at λ = 560nm) are obtained from the
analysis of the starting design in Code V (Synopsys, USA). Thus, the values for a0 and C⃗2

0 can be
calculated analytically, where a0 = 1.5819µm, C2

0 = 4.7006µm and ξ20 = π/2 + α with α = 0, π.
Note that C2

0 and ξ20 are the module and phase respectively of vector (a2
0, b2

0). The values obtained
for ξ20 make the value of the sine component b2

0 to be zero and the value of the cosine component
a2

0 to be the value of the module C2
0 (nodal axis is in vertical direction). With those values, the

full-field displays (FFDs) are calculated analytically for astigmatism and spherical aberrations
and shown in Fig. 5(c,d). This figures clearly show the appearance of the two nodes of aberrations
in compare to the FFDs obtained by Code V for the starting non-freeform design (Fig. 5(a,b)).

Fig. 5. Full-field maps. (a) Astigmatism and (b) spherical aberration calculated by Code
V for the starting non-freeform design. There is only one node of aberration placed at
the optical axis. (c) Astigmatism and (d) spherical aberration analytically calculated for
the freeform design. The nodes of aberrations appear at the field positions selected. (e)
Astigmatism and (f) spherical aberration calculated by Code V for the freeform design. The
position of the nodes matches the obtained by the analytical calculations.
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Identical values for a0 and C⃗2
0 are obtained when the freeform system has been optimized in Code

V adapting the merit function to the one used analytically, which minimizes only astigmatism
and spherical aberration.

The system has been further optimized in Code V with a merit function containing all the
aberrations. In this case, the values for the coefficients are a0 = 1.0974µm and C2

0 = 4.6784µm,
the spot diagram is shown in Fig. 4(c) and the full-displays obtained are shown in Fig. 5(e,f)
for astigmatism and spherical aberration. The differences in the values of a0 and C2

0 and the
FFDs are associated with merit function used in Code V. The analytical analysis only minimizes
astigmatism and spherical aberration according to the fulfillment of the instrument requirements
while Code V can minimize more aberrations.

5. Discussion

In this paper, we have performed an analysis of Q-polynomials basis to achieve an efficient
transformation to Zernike polynomials. The main difference between the two bases is the axis in
which they are defined. In Zernike basis is along the optical axis while in Q-polynomials basis is
along the normal to the base surface. This implies that the angle between the two axes changes
along the aperture of the surface and the transformation need to be by fitting. However, both
axes are coincident in the case of having a plane base surface, so instead of trying to make the
fitting using a large number of Zernike terms we start approximating the base surface to a plane.
The residual of this fit is approximated again to a Zernike basis and the process repeats itself in
a recursive way observing that only similar but higher order Zernike modes appear when the
iterations are extended.

This is a very efficient strategy because Zernike polynomials with zero coefficients will
never be included in the fitting of the corresponding Q-polynomial. The results show that
each Q-polynomials can be expressed as a series of Zernike polynomials. The first term is the
corresponding Zernike polynomial in case of having a plane base surface and it is followed
by the higher orders of this polynomial. It has been shown that the transformation between
basis depends on the parameter A associated to the shape of the base surface. The value of A,
which goes from 0 to 1, indicates how strong the curvature of the base surface is with respect
to its aperture. It is also related to the angle between the definition axes for each of the basis
and determines the number of polynomials needed for the fitting. A = 0 means that the base
surface is a plane while approaching 1 makes the curvature stronger and requires a greater
number of Zernike polynomials to achieve an acceptable fitting. This is a significant information
for the designer because it allows to search for a value as close as possible to 0 reducing the
complications in the transformation and, consequently, on the use of NAT for a specific design.
Furthermore, this property is relevant in typical catoptric systems such as those used for example
in aerospace applications where A values are expected to be low (large apertures and moderate
curved surfaces). In this case the validity of the fit is demonstrated with a few terms.

The results shown in this document should be seen as an extension of the NAT to optical
systems with freeform surfaces described in terms of Q-polynomials and placed far from the stop.
They have been achieved by fitting the Q-polynomials to the Zernike polynomials which depends
on the value of A which is different for each surface. However, with the results presented, the
designer does not need to fit each surface to know which Q-polynomials the system requires.
The specific coefficients that must be entered as variables in the optimization process can be
obtained only through the field dependence of aberrations as presented in Section 3. It is even
possible to obtain an initial value for these coefficients and enter it in the optical design without
performing the fit. Fitting is only necessary if the exact value of each coefficient needs to be
calculated analytically.

Results show several steps to obtain a freeform design described by Q-polynomials in an
effective way. The first step would be the optimization of a starting non-freeform design and the
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analysis of the main aberrations limiting the optical quality for the specific fields and fulfilling
all the constraints for the system. Next, select the adequate Q-polynomials to described the
freeform contribution to the system according to the field dependence shown in Table 1. These
can be rewritten in terms of Zernike polynomials and the relationship between coefficients can be
obtained. The specific values for coefficients associated to Q-polynomials (C⃗m

n ) that locates the
nodes of aberrations at the fields of interest can also be calculated. With these calculations, the
system would be optimized and can also be introduced in Code V for a more precise optimization
than achieved analytically. Code V also allows to introduce the constraint on the local changes of
the slope of the system. To fulfill that constraint might not be enough to introduce the order n = 0,
higher n-orders with the same value of m may be required. Last, the results from Section 2 provide
the option of changing the basis to Zernike polynomials. It is useful to use both basis, each of
them in the most adequate context. When designing, using Q-polynomials allows introducing the
constraint in the slopes so a manufacturing oriented design can be performed. However, Zernike
basis is more appropriate because it is the most extended basis, provides a better understanding
of the individual modes and import/export function for other applications.

The proposed method is limited to moderate fields so the shift ∆h⃗ can be approximated to have
a linear dependence with the field. Also, the so useful orthogonality condition that Q-polynomials
exhibit is limited to circular apertures. Last, as the system requires a fitting with higher order
Zernike polynomials, the mathematical analysis becomes complex.

As an illustrative example of the results, the design of a 2-mirror Cassegrain telescope with a
freeform contribution defined by Q2

0(u
2) has been shown. Following the procedure described

before, the analytical solution has shown to predict the behavior of the main aberrations of the
system and the distribution of nodes at the image plane.

6. Conclusions

Q-polynomials basis brings the manufacturing and metrology processes closer to the designer
thanks to the orthogonality in the gradient that allows introducing a restriction in the changes of
the slope of a surface in a simple way. The adaptation of the Nodal Aberration Theory to freeform
systems where surfaces are described in terms of Q-polynomials is an added value that allows
calculating the field aberrations generated by these surfaces and the positions of the aberration
nodes in the image plane. NAT definition by Q-polynomials made in this work constitutes a
manufacturing-oriented tool for the optical designer that allows, as seen in the practical case, to
customize the fields of minimum aberration during the optimization process taking advantage of
their orthogonality condition.
Disclosures. The authors declare that there are no conflicts of interest related to this article.
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