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Cell membranes are a key element of life because they keep the
genetic material and metabolic machinery together. All present
cell membranes are made of phospholipids, yet the nature of the
first membranes and the origin of phospholipids are still under
debate. We report here the presence of ethanolamine in space,
NH;CH,CH,O0H, which forms the hydrophilic head of the sim-
plest and second-most-abundant phospholipid in membranes. The
molecular column density of ethanolamine in interstellar space
is N = (1.51 & 0.07) x 10" cm—2, implying a molecular abun-
dance with respect to H, of (0.9 — 1.4) x 10— '°. Previous studies
reported its presence in meteoritic material, but they suggested
that it is synthesized in the meteorite itself by decomposition
of amino acids. However, we find that the proportion of the
molecule with respect to water in the interstellar medium is simi-
lar to the one found in the meteorite (10~5). These results indicate
that ethanolamine forms efficiently in space and, if delivered onto
early Earth, could have contributed to the assembling and early
evolution of primitive membranes.
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Life is based on three basic subsystems: a compartment,
a metabolic machinery, and information-bearing molecules
together with replication mechanisms (1, 2). Among these key
elements, compartmentalization is a fundamental prerequisite in
the process of the emergence and early evolution of life (3, 4).
Indeed, cellular membranes encapsulate and protect the genetic
material, as well as enable the metabolic activities within the
cell. The membranes of all current cells are made of a bilayer
of phospholipids (Fig. 1 4 and B), which are composed of a polar
hydrophilic head (an alcohol phosphate group combined with
a head group such as ethanolamine [EtA], choline, or serine)
and two nonpolar hydrophobic tails (hydrocarbon chains derived
from fatty acids), as depicted in Fig. 1C.

The process through which the first phospholipids were
formed remains unknown. Initial work proposed that phospho-
lipids could be synthesized under possible prebiotic conditions
(5-7), but the availability of the precursor molecules on early
Earth was questioned (3, 8). Alternatively, the building blocks
of phospholipids could have been delivered from space. A
broad repertoire of prebiotic molecules could have been pro-
vided to the early Earth through the bombardment of comets
and meteorites (9, 10). Laboratory impact experiments (11, 12)
have demonstrated that a significant fraction of the prebiotic
molecules in comets and meteorites can survive both passage
through the planetary atmosphere and the impact on the surface.

In particular, some structural parts of phospholipids are
known to be present in meteorites, such as fatty acids, alco-
hols, and phosphonic acids (10, 13, 14). The glycerol phosphate
group has been shown to be synthesized in irradiation exper-
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iments of interstellar ice analogs (15, 16), which supports the
idea that they can form in space. Regarding the different head
groups of phospholipids, EtA (also known as glycinol or 2-
aminoethanol, NH,CH,CH,OH; Fig. 1D) is the simplest one,
and it forms the second-most-abundant phospholipid in biolog-
ical membranes: phosphatidylethanolamine (PE) (see Fig. 1C).
In addition, EtA has been proposed as a direct precursor of
the simplest amino acid, glycine (NH,CH2COOH), in simulated
archean alkaline hydrothermal vents (17), considered as one of
the likely environments for the origin of life (18).

EtA has been found in the Almahata Sitta meteorite (19), yet
its origin is not known. A possible chemical formation route was
proposed to be the thermal decomposition of amino acids under
specific unusual conditions in the parent asteroid. This would
limit the availability of EtA in the early Earth for the formation
of phospholipids and thereafter of cell membranes. Another pos-
sibility is that EtA is formed from smaller interstellar precursors.
However, the detection of EtA in the interstellar medium (ISM)
has remained so far elusive (20).

Results

We have detected EtA toward the molecular cloud G+0.693—
0.027 (hereafter G+0.693), located in the SgrB2 complex in the
Galactic Center, as shown in Fig. 2. This region is one of the
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The detection of ethanolamine (NH,CH;CH,OH) in a molecu-
lar cloud in the interstellar medium confirms that a precursor
of phospholipids is efficiently formed by interstellar chem-
istry. Hence, ethanolamine could have been transferred from
the proto-Solar nebula to planetesimals and minor bodies of
the Solar System and thereafter to our planet. The prebiotic
availability of ethanolamine on early Earth could have trig-
gered the formation of efficient and permeable amphiphilic
molecules such as phospholipids, thus playing a relevant role
in the evolution of the first cellular membranes needed for the
emergence of life.
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Fig. 1. Structure of cellular membranes. (A) Schematic view of a cell. (B) Zoom-in view of the cell membrane, formed by a phospholipid bilayer. (C) Three-
dimensional structure of the phospholipid PE, formed by a hydrophilic head composed of EtA, a phosphate group linked to glycerol, and two hydrophobic
fatty-acid tails (black, red, blue, and white balls denote carbon, oxygen, nitrogen, and hydrogen atoms, respectively). (D) EtA, the molecular species detected
in space and reported in this work.

most chemically rich reservoirs of molecules in the galaxy, with a  of the ice mantles of interstellar dust grains by large-scale low-
plethora of organic species detected (21-25). The extremely rich  velocity (<20 km-s~') shocks (26) induced by a collision between
gas-phase chemical composition of this region is due to erosion  massive molecular clouds (27). For the typical (intermediate)
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Fig. 2. Unblended or slightly blended transitions of EtA toward the G+0.693-0.027 molecular cloud. The quantum numbers involved in the transition are
indicated in the upper left of each panel, and the energies of the upper level are indicated in the upper right. The red thick line depicts the best LTE fit to
the EtA rotational transitions. The thin blue line shows the expected molecular emission from all of the molecular species identified in our spectral survey,
overplotted to the observed spectra (gray histograms). The three-dimensional structure of EtA is shown in the center of the figure; black, red, blue, and
white balls denote carbon, oxygen, nitrogen, and hydrogen atoms, respectively.
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Table 1. Spectroscopic information (rest frequency, Einstein
coefficients [Ay ], and energy of the upper levels [Eyp]) of the 14
unblended or slightly blended rotational transitions of EtA
detected toward the G+0.693 molecular cloud (shown in Fig. 2)

Frequency, GHz Transition logA,;, s~ Eup, K
39.7379429 4(0,4)-3(0,3) —5.64603 4.8
40.4083769 4(2,3)-3(2,2) —5.74549 6.7
41.1366268 4(2,2)-3(2,1) —5.72208 6.7
42.2557255 4(1,3)-3(1,2) —5.59088 5.5
49.1932727 5(0,5)-4(0,4) —5.35979 7.2
73.0048603 7(1,6)-6(1,5) —4.84093 14.6
76.6071016 8(0,8)-7(0,7) 4.76916 16.9
80.0223886 8(2,7)-7(2,6) —4.73500 19.2
82.8757878 8(1,7)-7(1,6) 4.67140 18.6
84.2912932 8(2,6)-7(2,5) —4.66443 19.8
89.7254251 9(2,8)-8(2,7) 4.57750 235
91.6032870 9(3,7)-8(3,6) —4.57780 26.0
91.8301065 9(4,5)-8(4,4) —4.61854 29.2
94.7010488 10(0,10)-9(0,9) —4.48695 25.5

densities of G+0.693 of a few 10* cm ™3 (27), the emission is sub-
thermally excited, yielding very low T in the range of 5 to 15 K
(21, 22). Since only low-energy molecular transitions are excited,
the density of molecular lines is substantially lower than in hot-
ter sources such as massive molecular hot cores or low-mass hot
corinos, alleviating the problems of line blending and line con-
fusion. This, along with the effect of shock-induced desorption
of interstellar ices, makes G+0.693 an excellent target for the
detection of new molecular species in the ISM.

We analyzed the molecular data of a high-sensitivity unbiased
spectral survey carried out with the Institut de Radioastronomie
Millimétrique (IRAM) 30-m and the Yebes 40-m radiotele-
scopes. Detailed information about the observations is presented
in Materials and Methods. The identification of the rotational
transitions of EtA was performed using the SLIM (Spectral Line
Identification and Modeling) tool within the MADCUBA pack-
age (28). We predicted the synthetic spectrum of EtA under the
assumption of local thermodynamic equilibrium (LTE) condi-
tions. Among the numerous (23,655) transitions of EtA that fall
in the spectral range covered by the survey, only tens of them
are expected to be excited considering the low T¢x measured in
G+0.693 (Tex ~5 to 15 K) (21, 22).

We have detected the 45 brightest transitions of EtA, as pre-
dicted by the LTE simulation (with line intensities 75 > 5 mK),
14 of which appear either unblended or slightly blended with
emission from other molecules. These transitions are shown in
Fig. 2, and their spectroscopic information is provided in Table
1. The remaining 31 transitions are consistent with the observed
spectra but appear blended with brighter emission lines from
other molecular species already identified in this molecular cloud
(see below). These transitions are shown in Fig. 3 and listed in
Table 2.

To confirm that the spectral lines detected at the frequencies
of the transitions of EtA are not produced by any other molecule,
we have performed an extensive search for molecular species in
our spectral survey, which includes all of the species detected
so far in the ISM (29), and all other species reported toward
G+0.693 in previous works (21-25). The predicted contribution
from all molecular species is shown with a blue solid line in Fig. 2,
confirming that 14 transitions of EtA are either clean or not sig-
nificantly contaminated by the emission from other molecules.
We have used these 14 transitions to perform the LTE fit and to
derive the physical parameters of the emission of EtA. We used
the AUTOFIT tool of MADCUBA —SLIM, which finds the best
agreement between the observed spectra and the predicted LTE
model (see details in Materials and Methods). To perform the fit

Rivilla et al.
Discovery in space of ethanolamine, the simplest phospholipid head group

we have considered not only the emission of EtA but also the
predicted emission from all of the species identified in the region
(blue line in Fig. 2). The best-fitting LTE model for EtA gives
a molecular column density of N = (1.51% 0.07) x 10'® cm ™2,
an excitation temperature of Tex = 10.7 £+ 0.7 K, and a veloc-
ity of vLsr = 68.3 + 0.4 km-s™! (the linewidth was fixed to 15
km-s~1; see details in Materials and Methods). The derived Tex
and vLgr are very similar to those from other species previously
analyzed in G+0.693 (21-25). To derive the abundance of EtA
with respect to molecular hydrogen, we have used the Hz col-
umn density inferred from observations of C*®*O (26), obtaining
a value in the range (0.9 to 1.4) x 10~ 1°,

We have also performed a complementary analysis using the
rotational diagram method implemented in MADCUBA (see
further description in Materials and Methods). Fig. 4 shows the
rotational diagram obtained using the 14 EtA transitions from
Fig. 2. We derived physical parameters fully consistent with the
MADCUBA—~AUTOFIT analysis: N = (1.5 4 0.3)x10'* cm ™2,
and Tox = 12 £ 1K

Discussion

We report a clear detection in the ISM of EtA, a precursor
of phospholipids, with a relatively high abundance (10~'° with
respect to molecular hydrogen). This detection adds to that of
precursors of ribonucleotides (23-25) and amino acids (30, 31)
in the ISM. The building blocks of the three subsystems of life
could therefore have been synthesized by interstellar chemistry,
being part of the natal material that formed the Solar System.

The formation routes of EtA in the ISM are, however, poorly
known. Grain-surface formation of EtA has been demonstrated
by laboratory experiments of ultraviolet irradiation of inter-
stellar ice analogs (32). In these experiments, photolysis of
H>0:CH30H:NH3:HCN ices with a 20:2:1:1 mixture yields EtA
as well as other prebiotic species such as the amino acids glycine,
alanine, and serine. However, the detailed routes that result into
the formation of EtA are still not understood. We discuss here
several possible chemical pathways for the formation of EtA in
the ISM, which are summarized in Fig. 5.

To our knowledge, the only route proposed in the literature
(33, 34) is the hydrogenation chain of HNCCO on dust-grain
surfaces (see gray shaded area in Fig. 5). HNCCO could be
formed on grains by N addition to ketenyl (HCCO) (34). HCCO
is rarely found in the ISM, with only two detections reported
toward the cold dark clouds Lupus-1A and 1483 (35). We have
also searched for HCCO in G+0.693, and tentatively detected
it. The details about this detection are provided in Materials and
Methods. We obtain a column density of ~ 0.5 x 10*® cm™2, a
factor ~3 lower than that of EtA. HCCO is expected to be a
highly reactive radical on dust grains. This would result in a low
ice abundance of HCCO, and consequently also in the gas phase,
due to shock-induced sputtering desorption. Alternatively, the
amount of HCCO detected toward G+0.693 might have been
produced directly in the gas phase through the reaction CCH +
OH — HCCO + H proposed by ref. 36, since CCH is highly
abundant in this cloud (37).

HNCCO could also be formed on dust grains from ketene
(H2CCO), after two hydrogen abstractions, and reaction with the
imine radical NH (Fig. 5). G+0.693 presents a variety of imines
with relatively high abundances (22, 23, 37), which confirms
that imine radicals are available on grain surfaces. This route is
plausible since ketene is abundant toward G+0.693 (21) with a
column density of N = 2.9 x10™* cm™2, a factor of ~20 larger
than that of EtA. Alternatively, the formation of HNCCO on
grains could proceed as proposed by ref. 38 (Fig. 5) through the
combination of HNC and CO, species expected to be abundant
on grain surfaces.

The subsequent hydrogenation of HNCCO can form
NH>CHCO (Fig. 5). This species might also form through other
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Fig. 3. Transitions of EtA that appear blended in the observed spectra of G+0.693. All of them have line intensities >5 mK, according to the best LTE fit
described in the text. The quantum numbers involved in the transition are indicated in the upper left of each panel, and the energies of the upper level are
indicated in the upper right. The red thick line depicts the best LTE fit obtained fitting the EtA rotational transitions shown in Fig. 2. The thin blue line shows
the predicted molecular emission from all of the molecular species identified in our spectral survey, overplotted to the observed spectra (gray histograms).

surface-chemistry routes. Ref. 39 proposed a barrierless reac-
tion between NHj, CO, and atomic C (Fig. 5). Given that
three-body reactions are less efficient that two-body reactions,
this route could contribute to the formation of NH,CHCO
only if a relatively high abundance of atomic C is available.

40f8 | PNAS
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Since it has been observed that the abundance of C is indeed
large in Galactic Center molecular clouds, around half of that
of CO (40), and considering that C is expected to be highly
reactive, this route might be indeed viable in G+0.693. We
note that the barrierless NH,CH + CO reaction proposed by
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Table 2. Spectroscopic information (rest frequency, Einstein
coefficients [Ay ], and energy of the upper levels [Eyp]) of the
transitions of EtA that appear blended in the observed spectra of
G+0.693 (see Fig. 3)

10.5

N=(1.5+0.3)x10"® cm™?

T, =12+1 K

Frequency, GHz Transition logA,, s~ Eup, K
31.7653500 3(1,2)-2(1,1) —6.00114 3.5
38.3746402 4(1,4)-3(1,3) —5.71626 5.1
47.8493375 5(1,5)-4(1,4) —5.40899 7.4
50.4153833 5(2,4)-4(2,3) —5.39849 9.1
73.4680803 7(2,5)-6(2,4) —4.85633 15.7
75.9126193 8(1,8)-7(1,7) —4.78270 17.0
81.4338930 8(3,6)-7(3,5) 4.74841 21.6
81.4392902 8(4,5)-7(4,4) —4.80721 24.8
81.4863522 8(4,4)-7(4,3) 4.80646 24.8
82.2698610 8(3,5)-7(3,4) —4.73500 21.7
85.1653931 9(1,9)-8(1,8) 4.62876 21.0
85.6467486 9(0,9)-8(0,8) —4.62059 21.0
91.7192567 9(4,6)-8(4,5) —4.62007 29.2
92.4964225 9(1,8)-8(1,7) —4.52562 23.0
93.0416052 9(3,6)-8(3,5) —4.55708 26.2
94.3821793 10(1,10)-9(1,9) —4.49166 25.6
95.0023981 9(2,7)-8(2,6) —4.49975 24.3
99.3388437 10(2,9)-9(2,8) —4.43880 28.3
101.7229298 10(3,8)-9(3,7) —4.42905 30.9
101.8639901 10(1,9)-9(1,8) —4.39813 27.9
102.0183898 10(4,7)-9(4,6) —4.45929 34.1
102.2528632 10(4,6)-9(4,5) —4.45637 34.1
103.5718907 11(1,11)-10(1,10) —4.36815 30.5
103.7762062 11(0,11)-10(0,10) —4.36532 30.5
103.9759166 10(3,7)-9(3,6) —4.39964 31.2
105.5481523 10(2,8)-9(2,7) —4.35654 29.4
108.8642389 11(2,10)-10(2,9) —4.31491 335
111.0166375 11(1,10)-10(1,9) —4.28448 33.2
111.7757005 11(3,9)-10(3,8) —4.29721 36.3
112.7422238 12(1,12)-11(1,11) —4.25550 35.9
112.8698247 12(0,12)-11(0,11) —4.25393 35.9

All transitions have line intensities >5 mK, according to the best LTE fit
described in the text.

ref. 41 might also contribute to the formation of NH,CHCO
(Fig. 5).

The hydrogenation of NH2CH could yield the NH,CHo radi-
cal, which might be a key precursor of EtA. In recent laboratory
experiments (42, 43) of the nonenergetic formation of simple
amino acids and sugars under prestellar conditions, intermedi-
ate radicals such as NHo,CH; and CH,OH are efficiently formed
in the hydrogenation reactions toward methylamine (CH3NH>)
and methanol (CH3OH). These radicals represent the structural
units of EtA and, hence, this species could be produced by the
nondiffusive reaction between NH2 CH2 and CH2OH on the sur-
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Fig. 4. Rotational diagram of EtA. The analysis procedure is described in
Materials and Methods. The red dots correspond to the 14 EtA transitions
shown in Fig. 2 and Table 1. The black line is the best linear fit to the data
points. The derived values for the molecular column density (N) and the
Tex, along with their uncertainties, are indicated in blue in the upper right
corner.

face of dust grains (Fig. 5). Similar radical-radical reactions have
been proposed as viable routes to form other complex species in
the ISM (44-46). NH,CHy, is expected to be present on the dust
grains of G+0.693 since it is an intermediate product between
methanimine (CH2NH) and methylamine (CH3NHz) (41, 42,
47), two species that are abundant in G+0.693 (22).

Moreover, NH2CHs could react with CO, as proposed by ref.
41, to form NHoCH2CO, which can be hydrogenated to form
EtA (Fig. 5). Unfortunately, there is no rotational spectroscopy
available for HNCCO, NH,CHCO, or NH>CH,CO, so we can-
not search for any of these possible precursors of EtA in the
G+0.693 spectral survey.

The penultimate step of the hydrogenation chain that
results into EtA is aminoacetaldehyde (NH2CH2CHO). The
rotational spectra of this species have been studied theoretically
by ref. 48, although the accuracy of the predicted frequen-
cies (~0.2%) is still not high enough for any reliable iden-
tification in the ISM. Our detection of EtA toward G+0.693
makes NH>CH2CHO a promising species for future interstellar
searches and should motivate new laboratory work to obtain its
microwave rotational spectrum with higher accuracy.

The detection of EtA reported in this work with an abun-
dance of ~ 107 with respect to Hz enables a rough comparison
with the concentration of this species measured in meteoritic

CH;NH CH5NH,
CCH ‘H M H + CH,OH
L OH HNC NH,CH —— NH:CH»
l +CO +CO +CO l

HCCO \N‘

+H l 'ZH

H>CCO “NH iC | +CO
NH3

+2H

HNCCO L NH,CHCO X+ NHCH»CO ™+ NH,CH;CHO —21+ NH,CH,CIH,0H

Fig. 5. Summary of the chemical routes proposed for the formation of EtA in the ISM. The molecular species in red have been detected toward the G+0.693
molecular cloud. The gray shaded area corresponds to a hydrogenation chain. The chemical reactions indicated with colored arrows have been proposed in
previous work: magenta (36), blue (38), orange (41), cyan (39), and green (41, 47). In black, we show the formation routes proposed in this work. The solid
arrows indicate surface chemistry reactions, and dashed arrows denote gas-phase chemistry.
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material (19). Considering that the abundance of water in the
ISM is of the order of 10~* (49), the EtA/H>O abundance ratio
measured in G+0.693 is of the order of 107°. The Almahata
Sitta meteorite, where EtA was detected (19), has been clas-
sified as a ureilite with an anomalously high fraction of other
materials, the enstatite chondrites (EC) being the most abundant
(50). Interestingly, EC meteorites have recently been proposed
as the origin source of most of Earth’s water (51). Therefore,
meteorites such as Almahata Sitta could have simultaneously
delivered to Earth not only water but also prebiotic chemicals
such as EtA. From the concentration of EtA measured in the
Almahata Sitta meteorite of 20 ppb (19), and the average con-
centration of water in EC meteorites (~7,500 ppm) (51), we
derive a meteoritic EtA/H,O abundance ratio of 3 x107°. This
value is consistent with that derived in the ISM. Although iso-
topic analysis of EtA would be needed to confirm its interstellar
origin in meteorites, our results suggest that phospholipid pre-
cursors such as EtA formed in the ISM could have been stored
in planetesimals and minor bodies of the Solar System, to be
subsequently transferred to early Earth.

Once EtA was available on Earth’s surface, it could form phos-
pholipids (in particular PE; see Fig. 1C) under plausible early
Earth conditions, as proposed by ref. 6 and confirmed by pre-
biotic experiments (7). It is commonly assumed that the first cell
membranes could have been composed of amphiphilic molecules
such as fatty acids/alcohols, which are chemically simpler than
phospholipids (3, 8). However, the availability of EtA in an
early Earth could have enabled the progressive replacement of
fatty acids/alcohols by more efficient and permeable amphiphilic
molecules such as phospholipids. In this scenario, the protocells
could have been able to incorporate from the environment the
precursor molecules required to start the synthesis of RNA and
eventually other polymeric molecules (52, 53) needed for the first
replicative and metabolic processes of life. This has important
implications not only for theories of the origin of life on Earth
but also on other habitable planets and satellites anywhere in the
universe.

Materials and Methods

Astronomical Observations. \We have analyzed a high-sensitivity spectral sur-
vey of the molecular cloud G+0.693-0.027 conducted with the Yebes 40-m
telescope (Guadalajara, Spain) and the IRAM 30-m telescope (Granada,
Spain). The observations were centered at the equatorial coordinates of
G+0.693: RA(J2000) = 17 h 47 m 22s, DEC(J2000) = —28° 21’ 27".

Yebes 40-m telescope. The observations were carried out with the Yebes
40-m telescope located in Yebes (Guadalajara, Spain), during six observing
sessions in February 2020, as part of the project 20A008 (Principal Investi-
gator 1.J.-S.). We used the new Nanocosmos Q-band (7-mm) high-electron-
mobility transistor receiver that enables ultrabroad-band observations in
two linear polarizations (54). The receiver is connected to 16 fast Fourier
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transform spectrometers with a spectral coverage of 2.5 GHz and a spectral
resolution of 38 kHz. The final spectra were smoothed to a resolution of
251 kHz, corresponding to a velocity resolution of 1.7 km-s~' at 45 GHz.
We covered a total spectral range from 31.075 GHz to 50.424 GHz. The
position switching mode was used, with the reference position located at
(—885", +290"’) with respect to G+0.693 (24, 27). The telescope pointing and
focus were checked every 1 or 2 h through pseudo-continuum observations
toward VX Sgr, a red hypergiant star near the target source. The spectra
were measured in units of antenna temperature, T, since the molecular
emission toward G+0.693 is extended over the beams (55). The noise of the
spectra depends on the frequency range, reaching values as low as 1.0 mK,
while in some intervals it increases up to 4.0 mK. The half-power beam width
(HPBW) of the telescope is 48"’ at 36 GHz.

IRAM 30-m telescope. \We have carried out a spectral survey at 3 mm using
the IRAM 30-m telescope. The observations were performed in two observ-
ing runs during 2019: 10 to 16 April and 13 to 19 August, from project
numbers 172-18 (Principal Investigator J.M.-P.) and 018-19 (Principal Inves-
tigator V.M.R.). We used the broad-band Eight Mixer Receiver (EMIR) and
the fast Fourier transform spectrometers in FTS200 mode, which provided
a channel width of ~200 kHz. The final spectra were smoothed to a 609
KHz, i.e., a velocity resolution of 1.8 km-s~—" at 100 GHz. The full spectral
coverage is 71.770 to 116.720 GHz. The telescope pointing and focus were
checked every 1.5 h toward bright sources. The spectra were also measured
in units of antenna temperature, T;. The noise of the spectra (in 7;) is 1.3
to 2.8 mK in the range 71 to 90 GHz, 1.5 to 5.8 mK in the range 90 to

Table 3. Spectroscopic information (rest frequency, Einstein

coefficients [A, ], and energy of the upper levels [Eyp]) of the
rotational transitions of ketenyl (HCCO) tentatively detected
toward the G+0.693 molecular cloud (shown in Fig. 6)

Frequency, GHz Transition logA,, s~ Eup, K
43.3176674 2(3,3)-1(2,2) —6.0192 3.1
43.3211451 2(3,2)-1(2,1) —6.1404 3.1
43.3295421 2(2,2)-1(1,1) —6.0343 3.1
43.3354627 2(2,1)-1(1,0) —6.2739 3.1
43.3368615 2(3,2)-1(2,2) —6.6741 3.1
43.3373040 2(2,1)-1(2,1) —6.4207 3.1
86.6191857 4(4,3)-3(3,3) 6.9202 10.4
86.6423419 4(5,5)-3(4,4) —5.0703 10.4
86.6438483 4(5,4)-3(4,3) 5.0942 10.4
86.6558306 4(4,4)-3(3,3) —5.0772 10.4
86.6574849 4(4,3)-3(3,2) 5.1070 10.4
86.6652791 4(5,4)-3(4,4) —6.3845 10.4
108.2823800 5(5,4)-4(4,4) —6.7293 15.6
108.3040553 5(6,6)-4(5,5) —4.7698 15.6
108.3051187 5(6,5)-4(5,4) —4.7840 15.6
108.3178903 5(5,5)-4(4,4) —4.7747 15.6
108.3190248 5(5,4)-4(4,3) —4.7916 15.6
108.3280559 5(6,5)-4(5,5) —6.2997 15.6
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115 GHz, and ~10 mK in the range 115 to 116 GHz. The HPBW of the obser-
vations vary between 21.1"" and 34.3". The position switching mode was
used in all observations with the off position located at (—885’/, +290")
from the source position.

SLIM Molecular Line Fitting. The identification of the molecular lines
was performed using the SLIM tool of the MADCUBA package.” SLIM
solves the radiative transfer equation, as described in detail in ref. 28,
and generates the expected synthetic spectra of the molecular species
under the assumption of LTE conditions. SLIM implements a stand-alone
HyperSQL database (http://hsqldb.org/) that contains the spectral line cat-
alogs of the Jet Propulsion Laboratory (https://spec.jpl.nasa.gov/) (JPL)
(56) and the Cologne Database for Molecular Spectroscopy (CDMS)
(https://cdms.astro.uni-koeln.de/) (57, 58).

For the case of EtA, we have used the spectroscopic entry 61004 (version
September 2003) of the JPL database, based on different laboratory works
(59-61). The value of the partition function (Q) at the temperatures of the
fit (Tex ~ 11 K) has been interpolated from the values reported in the JPL
catalog in the logQ-logT plane, using the two adjacent temperatures: Q
(9.375 K) = 254.2935 and Q (18.75 K) = 716.8160.

To derive the physical parameters from the molecular emission, we have
used the AUTOFIT tool of SLIM (28), which performs a nonlinear least-
squares fitting of simulated LTE spectra to the observed data. It uses
the Levenberg-Marquardt algorithm (62, 63), which combines the gradi-
ent descent method and the Gauss—-Newton method to minimize the x?2
function.

For the analysis of EtA, we fixed the linewidth (full width at half max-
imum, FWHM) to 15 km-s—", which reproduces well the observed spectral
profiles of the EtA transitions and is consistent with those measured for
other molecules in the region (22, 24, 25). We note that the upper energy
levels (Eyp) of the transitions used in the analysis span a range between 4.8
and 29.2 K, allowing us to determine the Tex of the emission. The molecular
column density (N), Tex, and the velocity (v sg) were left as free parameters.
The best-fitting LTE model gives N = (1.51 & 0.07)x 10" cm ™2, Tex = 10.7 £
0.7 K, and vsg = 68.3 + 0.4 km-s~".

To compute the relative molecular abundance with respect to molecular
hydrogen we have used the value of the H, column density inferred from
observations of C'%0, 1.35 x 102> cm 2 (26). We have assumed a 20% error
uncertainty in the determination of the H, column density and propagated
the error accordingly. The EtA molecular abundance falls in the range (0.9
to 1.4) x 1070,

Rotational Diagram Method. The rotational diagram is calculated follow-
ing the standard procedure (64) implemented in MADCUBA (28). For the
case of optically thin emission the velocity integrated intensity over the
linewidth (FWHM = 15 km-s~"), W (in kelvin kilometers per second), is con-
verted into the column density in the upper level of the transition Nyp (in
centimeters—2) using the expression

Nyp = 87ki* W /(hGAy), [11

where k is the Boltzmann constant, the frequency of the transition, h is the
Planck’s constant, c is the speed of light, and A, is the Einstein coefficient
of spontaneous emission from the upper level u to lower level /. Then, the
level population derived for all observed transitions can be combined to
determine the total molecular column density, N (in centimeters—2), and
the Tex (in kelvin) through the equation

log(Nup /gup) = 10g(N/Q(Tex)) — log(e) x Eup/(kTex), [2]

*Madrid Data Cube Analysis on Image) is a software developed at the Center of
Astrobiology (CAB) in Madrid: https://cab.inta-csic.es/madcubal.
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where gy, and Eyp are respectively the statistical weight and energy (in
kelvin) of the upper levels of the transitions and Q is the partition function.

Fig. 4 shows the plot of log(Nup/gup) versus Eyp, for all of the unblended or
slightly blended transitions (see Fig. 2 and Table 1). The error bars indicate
the uncertainty of the velocity integrated intensity (AW), which is derived
using the expression

AW = rms x (Av/FWHM)®> x FWHM, 3]

where rms is the noise of the spectra and Av is the spectral resolution of the
data in velocity units. The coefficients of the straight line that fits the data
points (black line in Fig. 4) provide the values for log(N/Q) and log(e)/Tex,
from which MADCUBA derives N and Ty, calculating Q (Tex) as explained
above.

Blended Transitions of EtA. We present in Fig. 3 the transitions of EtA with
line intensities T4 >5 mK, as predicted by the LTE simulation described in
the main text, that appear blended with emission from other molecular
species already identified in the G+0.693 molecular cloud. The spectroscopic
information of these transitions is shown in Table 2.

Tentative Detection of Ketenyl (HCCO) toward G+0.693-0.027. \We have used
the CDMS entry 041506 (June 2019), based on several spectroscopic works
(65-67). We have tentatively identified three groups of HCCO lines cor-
responding to the rotational transitions 2—1, 4—3, and 5—4. The spectra
are shown in Fig. 6, and the spectroscopic information of the transitions is
listed in Table 3. This detection should be considered tentative, since only
two transitions, the 5(6,6)—4(5,5) and 5(6,5)—4(5,4) (at 108.3040553 GHz
and 108.3051187 GHz, respectively) are not contaminated by emission from
other species (Fig. 6). We have produced LTE spectra using MADCUBA-SLIM
and assuming visg = 65 km-s~" and FWHM =20 km-s~'. The predicted spec-
tra reproduce well the two unblended transitions for a Tex of 10 K and a
column density of N~ 0.5 x 103 cm ™2 (thick red line in Fig. 6). This column
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Data Availability. Molecular spectra and fits of the unblended transitions
of ethanolamine have been deposited in the Centro de Astrobiologia
repository at https://cab.inta-csic.es/astrochem/data.html (68).
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