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Abstract

We present a comprehensive analysis of the 0.3–5 μm transit spectrum for the inflated hot Jupiter HAT-P-41b. The
planet was observed in transit with Hubble STIS and WFC3 as part of the Hubble Panchromatic Comparative
Exoplanet Treasury (PanCET) program, and we combine those data with warm Spitzer transit observations. We
extract transit depths from each of the data sets, presenting the STIS transit spectrum (0.29–0.93 μm) for the first
time. We retrieve the transit spectrum both with a free-chemistry retrieval suite (AURA) and a complementary
chemical equilibrium retrieval suite (PLATON) to constrain the atmospheric properties at the day–night terminator.
Both methods provide an excellent fit to the observed spectrum. Both AURA and PLATON retrieve a metal-rich
atmosphere for almost all model assumptions (most likely O/H ratio of = -

+Z Zlog 1.4610 0.68
0.53

 and
= -

+Z Zlog 2.3310 0.25
0.23

 , respectively); this is driven by a 4.9σ detection of H2O as well as evidence of gas
absorption in the optical (>2.7σ detection) due to Na, AlO, and/or VO/TiO, though no individual species is
strongly detected. Both retrievals determine the transit spectrum to be consistent with a clear atmosphere, with no
evidence of haze or high-altitude clouds. Interior modeling constraints on the maximum atmospheric metallicity
( <Z Zlog 1.710  ) favor the AURA results. The inferred elemental oxygen abundance suggests that HAT-P-41b
has one of the most metal-rich atmospheres of any hot Jupiters known to date. Overall, the inferred high metallicity
and high inflation make HAT-P-41b an interesting test case for planet formation theories.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheric composition (2021); Exoplanet atmospheres (487)

Supporting material: data behind figures, machine-readable table

1. Introduction

Transit spectroscopy has been fundamental in understanding
the physics and chemistry of hot exoplanet atmospheres.
Transit observations with the Hubble Space Telescope (HST)
and the Spitzer Space Telescope have been especially fruitful in
illuminating the composition and atmospheric structure of
close-in planets, starting with the first measurements of sodium
absorption (Charbonneau et al. 2002) and the first detection of
thermal emission (Deming et al. 2005) for the atmosphere of
HD209458b.

The installation of the Wide Field Camera 3 (WFC3)
instrument and the refurbishment of the Space Telescope
Imaging Spectrograph (STIS) on HST opened up a new era of
transit spectroscopy measurements for hot Jupiters. WFC3 has
provided the first repeatable and well-validated detections of
the presence of water vapor (Deming et al. 2013; Huitson et al.
2013; Mandell et al. 2013; Wakeford et al. 2013), and has

opened the field to population studies looking at H2O
abundance and metallicity as a function of stellar and planetary
properties (Sing et al. 2016; Tsiaras et al. 2018; Pinhas et al.
2019; Welbanks et al. 2019). The upgraded STIS instrument
has been a key contributor in illuminating the critical role that
aerosols play in driving the continuum opacity for transit
measurements of hot planets (Pont et al. 2013; Nikolov et al.
2014; Sing et al. 2016; Chachan et al. 2019).
One of the most intriguing topics from these studies is the

question of atmospheric metallicity. Studies of individual
planets suggested a wide diversity of atmospheric metallicity as
a function of planetary mass (e.g., Kreidberg et al. 2014;
Madhusudhan et al. 2014b; Wakeford et al. 2017, 2018).
However, recent homogeneous statistical analyses of many
planets reveal that a paucity of water vapor in hot planet
atmospheres is the norm (Barstow et al. 2017; Pinhas et al.
2018; Welbanks et al. 2019). One strategy to investigate the
relationships between mass and atmospheric metallicity is to
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study the best targets within the Saturn and Jupiter mass range,
in order to achieve high signal-to-noise ratio and leverage the
expectation of a high primordial gas fraction and large transit
signals.

First discovered in 2012 (Hartman et al. 2012), the inflated
hot Jupiter HAT-P-41b (Teq=1940 K, P=2.7 days) is a
strong candidate to inform these trends. It is among the most
inflated hot Jupiters (R=1.69RJup, M=0.8MJup), and it orbits
a relatively inactive mid-F dwarf (R=1.68Re, Teff=6390 K).
HAT-P-41b’s extended atmosphere and its host star’s lack of
significant variability make it highly amenable to characteriza-
tion through transit spectroscopy. Johnson et al. (2017)
determined the spin–orbit misalignment of the system to be
moderate (−22°), while the host star appears to be part of a
multi-stellar system, with a wide-orbit late-type companion
discovered at ∼1000 au (Hartman et al. 2012; Wöllert &
Brandner 2015; Evans et al. 2016).

Tsiaras et al. (2018) retrieved the WFC3 G141 grism
spectrum (1.1–1.7 μm) with τ-Rex (Waldmann et al. 2015a,
2015b), confirming an 4.2σ atmospheric detection and finding
no evidence of contributions from either high-altitude clouds or
photochemical hazes (e.g., Zahnle et al. 2009). Tsiaras et al.
(2018) also found evidence of and abundance constraints for
water vapor (log X10 H O2( )=−2.77±1.09), though due to
narrow wavelength coverage, the abundance uncertainties are
large. Still, they are able rule out upper atmospheric water
depletion. Fisher & Heng (2018) built upon this result by
retrieving from the same data set with a focus on cloud opacity
and other near-infrared opacity sources (NH3, HCN). They find
a water abundance of - -

+0.9 1.20
0.28, which they note is generally

consistent with that of Tsiaras et al. (2018). However, this
reported abundance is for a cloud-free model with only H2O
and NH3 as opacity sources, and this simplified treatment is not
necessarily directly comparable with more comprehensive
atmospheric models. They also find weak evidence of NH3,
though they are unable to favor the NH3 and H2O model over a
model with gray clouds and H2O.

Wide spectral baselines provide the potential for a more
complete and constrained understanding of atmospheric
properties (Benneke & Seager 2012; Griffith 2014; Welbanks
& Madhusudhan 2019). For example, Line & Parmentier
(2016) demonstrated how individual WFC3 spectra are unable
to constrain mean molecular weight, due to a degeneracy with
partial clouds. Furthermore, for a fully homogeneous cloud
cover, the cloud-top pressure is degenerate with the chemical
abundance (e.g., Deming et al. 2013). Welbanks & Madhu-
sudhan (2019) showed that optical data help alleviate such
degeneracies and improve the precision with which planetary
radius, cloud properties, and molecular/atomic abundances are
inferred. As a practical example, Sing et al. (2016) utilized
optical-to-infrared spectra to jointly constrain cloud, haze, and
chemistry parameters for a sample of ten hot Jupiters. STIS
data have been specifically useful in constraining the atmo-
spheric metallicity of giant exoplanets (Wakeford et al.
2017, 2018; Chachan et al. 2019).

Bayesian spectral retrievals are the most reliable way to
interpret exoplanet spectra, due to their flexibility in describing
diverse exoplanet atmospheres and their ability to evaluate the
full posterior distribution of a forward model’s parameters
(Madhusudhan 2018). This allows for understanding not only
the properties of an exoplanet’s atmosphere, but also the
uncertainties on those properties. Consequently, such retrieval

codes are common in atmospheric characterization (e.g.,
Madhusudhan & Seager 2009, 2010; Benneke & Seager 2012;
Lee et al. 2012; Line et al. 2013; Amundsen et al. 2014;
Waldmann et al. 2015b; Barstow et al. 2017, and many others).
Nested sampling (Skilling 2004) is a particularly powerful
Bayesian sampler, as it naturally determines the Bayesian
evidence of the fitted model (with the posterior distribution
being a byproduct), which is necessary for correct model
comparison (e.g., justifying more complicated models, report-
ing correct detection significances).
Despite their ubiquity, each retrieval code is necessarily

unique, given the assumptions and modeling choices that must
be made. Though these retrievals generally agree, subtle
discrepancies can lead to different conclusions for the same
data (Fisher & Heng 2018; Kilpatrick et al. 2018; Barstow
et al. 2020). Examples include different chemical parameter-
izations (i.e., enforcing chemical equilibrium), cloud para-
meterizations, opacity sources, and prior assumptions.
Therefore, it is important to understand the effect of modeling
assumptions on the retrieved atmospheric parameters (e.g.,
Welbanks & Madhusudhan 2019). Testing a suite of models for
a given retrieval code—and, even better, different modeling
paradigms altogether—more accurately captures the uncer-
tainty in the atmospheric parameters. It is important to be
transparent about the assumptions made in a retrieval analysis
in order to best contextualize and understand the results.
In this paper, we derive the 0.3–5 μm transit spectrum of

HAT-P-41b using transit observations from HST/STIS, HST/
WFC3, and Spitzer (Section 2). Section 3 characterizes both the
variability (incorporating both X-ray and visible photometric
monitoring; Section 3.1) and the parameters (Section 3.2) of the
host star. Section 4 describes the data analysis to derive the
transit spectrum. Section 5 describes the two different retrieval
methods that we use. First, we use a chemical-equilibrium
framework (PLanetary Atmospheric Transmission for Observer
Noobs; PLATON; Zhang et al. 2019, Section 6), and those
results are described in Section 7. We also explore a more
flexible free-chemistry retrieval using the AURA framework
(Pinhas et al. 2018, Section 8). The two retrieval analyses were
independently done by different members of the team, to allow
for an unbiased comparison. We conclude that a high, supersolar
atmospheric metallicity (on the order of 30–200×solar O/H)
best describes the observed spectrum, and—though median
retrieved values differ—this result is not sensitive to model
assumptions. Section 9 discusses the comparison between
retrievals (Section 9.1), the comparison to interior modeling
constraints (Section 9.2), and the implications for planet
formation (Section 9.3). Section 10 provides a summary of our
conclusions.

2. Observations

2.1. HST

We observed one transit of HAT-P-41b with the WFC3
instrument on HST and three transits with the STIS instrument
as part of the PanCET Program (ID 14767, P.I. Sing). The
WFC3 observations were taken on 2016 October 16 using the
G141 prism, which covers a wavelength range of approxi-
mately 1.1–1.7 μm with a spectral resolving power of R∼150.
The STIS observations were taken with the G430L and G750L
grisms, which cover a wavelength range of approximately
0.3–1.0 μm with a spectral resolving power of R∼500. The
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STIS data were acquired on 2017 September 4 (G430L visit
83), 2018 May 7 (G430L, visit 84), and 2018 June 11 (G750L,
visit 85). For each visit, the target was observed for 7 hr over
five consecutive HST orbits. An HST gyro issue prevented the
acquisition of the third orbit for visit 85. A collection of the
HST observations is available via MAST: doi:10.17909/t9-
h6m5-h670.

For the WFC3 observations, data were taken in spatial scan
spectroscopic mode with a forward scanning rate of 0 065 s−1

along the cross-dispersion axis, resulting in scans across
approximately 46 pixel rows. We utilized the 256×256 pixel
subarray and the SPARS-10 sampling sequence, with 12
nondestructive reads (NSAMP=12) resulting in a total
integration time of 81 s for each exposure. We obtained a
total of 17 exposures in the first HST orbit following
acquisition and 19 exposures in each subsequent HST orbit.
Typical peak frame counts were ∼33,000 electrons per pixel,
which is within the linear regime of the WFC3 detector.

For the STIS observations, each visit consisted of five orbits,
with gaps of ∼45 minutes due to Earth occultations. We
utilized the wide 52″×2″ slit to minimize slit light losses and
an integration time of ∼253 s for each exposure, for a total of
48 spectra for each visit. Data acquisition overheads were
minimized by reading out a subarray of the CCD with a size of
1024×128 pixels.

2.2. Spitzer

The Spitzer Infrared Array Camera (IRAC) observations
were taken in 2017 January and February as part of Program
13044 (P.I. D. Deming). A single transit of HAT-P-41b was
observed in each of the IRAC1 (3.6 μm) and IRAC2 (4.5 μm)
channels. Each transit was preceded by a 30 minute peakup
sequence that also mitigates the steepest portion of a temporal
ramp due to the detector. The transit was observed over ∼12 hr,
with equivalent in-transit and out-of-transit coverage. Three
hundred and thirty-eight exposures were obtained for each
transit, and each exposure consisted of 64 subarray frames of
32×32 pixels, using an exposure time of 2.0 s per frame.

2.3. Photometric Monitoring Observations

To better diagnose the likelihood of stellar variability
impacting the transit spectrum, we complemented our transit
observations with monitoring observations at both visible
(AIT) and X-ray wavelengths (XMM-Newton). XMM-Newton
observed HAT-P-41 on 2017 April 7 with an overall 17 ks
exposure time (Proposal ID 80479, P.I. J. Sanz-Forcada). The
target was not detected in any of the EPIC detectors; we discuss
the implications of this in Section 3.1.

We obtained nightly ground-based photometric observations
of HAT-P-41 during its 2018 and 2019 observing seasons with
the Tennessee State University Celestron 14 inch (C14)
automated imaging telescope (AIT) located at Fairborn
Observatory in the Patagonia Mountains of southern Arizona
(see, e.g., Henry 1999; Eaton et al. 2003). The AIT is equipped
with an SBIG STL-1001E CCD camera; observations were
made through a Cousins R filter. Details of our observing,
data reduction, and analysis procedures are described in Sing
et al. (2015).

We collected a total of 207 successful nightly observations
(excluding a few isolated transit observations) over the two
observing seasons. Our observing activities at Fairborn must

come to a halt each year during the southern Arizona rainy
season, which typically lasts from approximately July 1 to
September 10. Since HAT-P-41 comes to opposition around
July 18, each observing season is broken into two intervals,
which we designate as intervals A and B. Information for a
portion of the AIT observations are shown in Table 1; the full
table is available in the electronic edition of ApJ.

3. Stellar Properties

3.1. Analysis of Stellar Variability

The results of analysis of the AIT photometric observations
(Section 2.3) are given in Table 2. The low numbers of
observations in 2018 B, 2019 A, and 2019 B are the result of the
unusually cloudy weather at Fairborn for the past two years. This
cloudy weather pattern continues to the present. Column4 of the
table gives the standard deviation of the individual observations
with respect to their corresponding seasonal mean. The standard
deviations range between 0.00224 and 0.00394mag for the four
observing intervals. This is near the limit of our nightly
measurement precision with the C14, as determined from the
constant comparison stars in the field. Periodogram analyses of
the four intervals reveal no significant periodicities. The scatter
in the seasonal means given in column 5 is consistent with the
expected photometric precision considering the small number of
observations in the last three intervals and the marginal
photometric conditions prevalent at Fairborn Observatory over
the past two years. Therefore, HAT-P-41 appears to be constant
on night-to-night and year-to-year timescales to the limit of our
precision.
Additionally, HAT-P-41 was not detected in any of the XMM

Newton’s EPIC detectors. Given the distance of the object, we
can set an upper limit of LX=1×1029 erg s−1 on the stellar
X-ray luminosity. This implies a value of < -L Llog 5.2X bol ,

Table 1
AIT Photometric Observations of HAT-P-41

Hel. Julian Date Delta R Sigma
(HJD–2,400,000) (mag) (mag)
(1) (2) (3)

58175.0255 −0.56702 0.00122
58176.0214 −0.56986 0.00109
58180.0102 −0.56636 0.00052
58181.0158 −0.56444 0.00293
58182.0022 −0.56479 0.00185
58184.9980 −0.56390 0.00182

Note. Table 1 is presented in its entirety in the electronic edition of ApJ. A
portion is shown here for guidance regarding its form and content.

(This table is available in its entirety in machine-readable form.)

Table 2
Results of the Analysis of Photometric Monitoring Observations for HAT-P-41

Observing Date Range Sigma Seasonal Mean
Season Nobs (HJD–2,400,000) (mag) (mag)
(1) (2) (3) (4) (5)

2018 A 110 58175–58295 0 00224 −0.56496±0.00021
2018 B 34 58386–58451 0.00291 −0.56979±0.00051
2019 A 42 58577–58657 0.00264 −0.56966±0.00041
2019 B 21 58756–58802 0.00394 −0.56602±0.00088
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indicating that the star has a moderate activity level at most
(Wright et al. 2011).

The photometric observations of HAT-P-41 describe a
relatively quiet star. Furthermore, the Ca II chromospheric
activity index (S=0.18) and the corresponding estimated
parameter flux ¢Rlog HK (−5.04) for HAT-P-41ʼs spectral type
(B− V=0.29) are not indicative of high activity (Noyes et al.
1984; Hartman et al. 2012) and may indicate instead a basal-
level activity (Isaacson & Fischer 2010). Rackham et al. (2019)
show that, for all but the most active F-dwarfs, variability does
not result in any detectable change to the transit spectrum.
Specifically, the impact of potential complications such as false
TiO/VO detections, false water detections, and optical offsets
are all determined to be less than ∼10 ppm. Therefore, we
conclude that stellar variability is unlikely to contaminate
HAT-P-41b’s transit spectrum.

3.2. Stellar Parameters

Inferred atmospheric planetary parameters are directly
dependent on host star parameters. For our analyses, we
incorporate the stellar parameters from TESS Input Catalog—
version 8 (TIC-8; Stassun 2019; Stassun et al. 2019). TIC-8
provides reliable stellar parameters for planetary host stars based
primarily on Gaia Data Release 2 (GDR2) point sources (Gaia
Collaboration et al. 2016, 2018). The algorithm for HAT-P-41ʼs
parameters is as follows: distance is first derived from Gaia DR2
parallax, using a correct inference procedure (Bailer-Jones et al.
2018). HAT-P-41ʼs galactic longitude (−10.6) puts it in a region
where uncertainty on reddening makes determining effective
temperature from Gaia photometry difficult. As a result, a
spectroscopically derived effective temperature (from the
PASTEL catalog; see Soubiran et al. (2016)) is preferred. The
stellar radius and mass are then self-consistently derived from
the distance and effective temperature (Andrae et al. 2018).
Finally, glog s is calculated from the stellar radius and mass.

It is important to recalculate Rp, Mp, and semimajor axis a
based on the Rs value from TIC-8, since those are derived in the
discovery paper assuming a certain value for Rs. As a simple
example, Rp is derived by constraining Rp/Rs in transit and
multiplying by Rs. To rederive the planetary parameters, we
follow the methodology of Stassun et al. (2017). The resulting
values and 1σ ranges are shown in Table 3, along with the
values from the discovery paper (Hartman et al. 2012).

We favor the TIC-8 stellar parameters over the discovery
paper values (derived using isochrones and high-resolution
spectroscopy; see Hartman et al. (2012)) because they are
based on more recent and comprehensive data. We emphasize
that the two sets of parameters are consistent to better than 1σ,
and using the discovery paper values has no impact on the
conclusions of this paper.

A planet’s composition is directly linked to its host star’s
composition. Brewer & Fischer (2018a) determined the stellar
abundance of 15 different elements for HAT-P-41 as part of the
Spectral Properties of Cool Stars (SPOCS) catalog. Table 4 gives
the abundances, relative to solar, for the relevant elements.
Brewer & Fischer (2018a) find an effective temperature,
metallicity, and glog s consistent with both TIC-8 and the
discovery paper. HAT-P-41 is a metal-enriched star, and notably
has an elemental oxygen abundance of 2.3×solar. Carbon is the
only depleted element at ∼0.8×solar, resulting in a subsolar
C/O ratio of 0.19 (0.36×solar).

4. Data Analysis

4.1. STIS

4.1.1. Data Reduction

Our data analysis procedures follow the general methodol-
ogy detailed in Nikolov et al. (2014, 2015). We commenced
analysis from the flt.fits files, which were reduced (bias-, dark-,
and flat-field-corrected) using the latest version of the
CALSTIS pipeline and the latest calibration frames. We used
median combined difference images to identify and correct for
cosmic ray events in the images as described by Nikolov et al.
(2014). We found that ∼4% of the detector pixels were affected
by cosmic ray events. We also corrected pixels identified by
CALSTIS as bad with the same procedure. Together with the
cosmic ray identified pixels, this resulted in a total of ∼14%
interpolated pixels.
We performed spectral extraction with the IRAF procedure

APALL using aperture sizes in the range from 6 to 18 pixels
with a step of 0.5. The best aperture for each grating was
selected based on the resulting lowest light-curve residual
scatter after fitting the white light curves. We found that
aperture sizes of 13.5, 13.5, and 10.5 pixels satisfy this criterion
for visits 83, 84, and 85, respectively.
We cross-correlated and interpolated all spectra with respect

to the first spectrum, to prevent subpixel wavelength shifts in
the dispersion direction. The STIS spectra were then used to
extract both white light spectrophotometric time series and

Table 3
System Parameters for HAT-P-41

Parameter TIC-8a Discovery Paperb

Rs [RSun] -
+1.65 0.06

0.08
-
+1.683 0.036

0.058

Ms [MSun] -
+1.32 0.16

0.25 1.42 0.047

glog s [cgs units] -
+4.12 0.06

0.11 4.14±0.02

Ts,eff [K] -
+6480 100

100 6390±100

Rp [RJup] -
+1.65 0.07

0.08
-
+1.685 0.051

0.076

Mp [MJup] -
+0.76 0.12

0.14 0.80±0.10

ρp [g cm−3] 0.21±0.05 0.20±0.03
Tp,eq [K] -

+1960 35
40 1940±38

a [au] -
+0.0418 0.0019

0.0021 0.0426±0.0005

Distance [pc] 348±4.5 -
+344 8

12

Notes.
a Provided by or derived from Tess Input Catalog; see Stassun et al. (2019).
b Hartman et al. (2012).

Table 4
HAT-P-41 Elemental Abundances

Elemental Ratio Abundance (log Solar Unit)

[O/H] 0.37±0.04
[C/H] −0.08±0.03
[Na/H] 0.17±0.01
[Ti/H] 0.22±0.01
[V/H] 0.09±0.03
[Al/H] 0.07±0.03
[M/H] 0.18±0.01
[C/O] −0.45±0.05

Note.All values are from Brewer & Fischer (2018b).
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custom wavelength bands after summing the appropriate flux
from each bandpass.

The raw STIS light curves exhibit instrumental systematics
on the spacecraft orbital timescale, which are attributed to
thermal contraction/expansion (referred to as the “breathing
effect”) as the spacecraft warms up during its orbital day and
cools down during orbital night. We take into account the
systematics associated with the telescope temperature varia-
tions in the transit light-curve fits by fitting a baseline function
depending on various parameters.

4.1.2. Light-curve Analysis

White and spectroscopic light curves were created from the
time series of each visit by summing the flux of each stellar
spectrum along the dispersion axis. We fit each transit light
curve using a two-component function that simultaneously
models the transit and systematic effects. The transit model was
computed using the analytical formulae given in Mandel &
Agol (2002), which are parameterized with the mid-transit
times (Tmid), orbital period (P) and inclination (i), normalized
planet semimajor axis (a/Rs), and planet-to-star radius ratio
(Rp/R*).

Stellar limb-darkening was accounted for by adopting the
four-parameter nonlinear limb-darkening law with coefficients
c1, c2, c3, and c4, computed using a three-dimensional stellar
atmosphere model grid (Magic et al. 2015). We adopted the
closest match to the effective temperature, surface gravity,
and metallicity values for HAT-P-41 determined by Hartman
et al. (2012).

As in our past STIS studies, we applied orbit-to-orbit flux
corrections by fitting for a fourth-order polynomial to the
spectrophotometric time series phased on the HST orbital
period and a linear time term. We also used a low-order
polynomial (up to a third degree with no cross terms) of the
spectral displacement in the dispersion and cross dispersion
directions. The first exposures of each HST orbit exhibit lower
fluxes and have been discarded in the analysis. Similar to our
past HST STIS analyses (Nikolov et al. 2014; Sing et al. 2016),
we intended to discard the entire first orbit to minimize the
space craft thermal breathing trend, but found that, for two of
the three HST visits, a few of the exposures taken toward the
end of the first orbit can be used in the analysis.

We then generated systematics models that spanned all
possible combinations of detrending variables and performed
separate fits using each systematics model included in the two-
component function. The Akaike information criterion (AIC;
Akaike 1974) was calculated for each attempted function and
used to marginalize over the entire set of functions following
Gibson (2014). Our choice to rely on the AIC instead of the
Bayesian information criterion (BIC; Schwarz 1978) was
determined by the fact that the BIC is more biased toward
simple models than the AIC. The AIC therefore provides a
more conservative model for the systematics and typically
results in larger or more conservative error estimates, as
demonstrated by Gibson (2014). Marginalization over multiple
systematics models assumes equal prior weights for each model
tested.

For the white light curves, we fixed the orbital period,
inclination, and a/Rs to the values reported in Table 5 and fit
for the transit mid-time and planet-to-star radius ratio. We
find central transit times Tc[MJD]=58000.6958±0.0029
(visit 83), Tc[MJD]=58245.85414±0.00039 (visit 84), and

Tc[MJD]=58280.87484±0.00036 (visit 85). We derive the
white light transit depths to be 10200±104 ppm and
10320±85 ppm for G430L and G750L, respectively.
For the spectroscopic light curves, a common-mode

systematics model was established by simply dividing the
white light curve by a transit model (Berta et al. 2012; Deming
et al. 2013). We computed the transit model using the orbital
period, inclination, and a/Rs from Table 5, and the central
times for each orbit from the white light analysis. The
common-mode factors from each night were then removed
from the corresponding spectroscopic light curves before
model fitting.
We then performed fits to the spectroscopic light curves

using the same set of systematics models as in the white light
curve analysis and marginalized over them as described above.
For these fits, Rp/Rs was allowed to vary for each spectro-
scopic channel, while the central transit time and system
parameters were fixed. We assumed the nonlinear limb-
darkening law with coefficients fixed to their theoretical values,
determined in the same way as for the white light curve. The
detrended spectrophotometric light curves are shown in
Figures 19–21. The derived STIS transit spectrum is shown
along with the entire transit spectrum in Table 6.

4.2. WFC3

4.2.1. Data Reduction

The WFC3 data reduction generally follows the methodol-
ogy of Sheppard et al. (2017), using programs adapted from
IDL for Python. We download the “ima” data files from the
HST archive, and remove background contamination following
the “difference reads” methods of Deming et al. (2013), which
allows us to easily resolve and remove potential contamination
from the nearby companion (Evans et al. 2016). We determine
a wavelength solution by taking the zero point from the F140W
photometric observation and fitting for the wavelength
coefficients that allow an out-of-transit spectrum to match the
appropriate ATLAS stellar spectrum (Castelli & Kurucz 2003).
We then divide the background-subtracted “ima” science

frame by the WFC3 flat-field calibration file, and return the
dark-, bias-, and flat-field-corrected flux array, in units of
electrons. The uncertainty of the flux at each pixel is taken from
the “ima” file’s error frame, which accounts for gain-adjusted
Poisson noise, read noise, and noise from dark current
subtraction. This is further adjusted via error propagation for
the added uncertainty from background removal and flat-field
correction. We use the “ima” file’s data quality frame to mask
(i.e., give zero weight to) pixels that are flagged as bad in every
exposure in the time series. We then correct for cosmic rays

Table 5
Transit Parameters for HAT-P-41b

Parameter Value

Rp/Rs 0.1028±0.0016
a/Rs -

+5.44 0.15
0.09

i [Degrees] 87.7±1.0
Tc [BJD] 2454983.86167±0.00107

glog p [cgs units] 2.84±0.06

P [days] 2.694047±4×10−6

Note. All values are from the discovery paper by Hartman et al. (2012).
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using a conservative time series sigma cut of 8σ, while
accounting for changes in flux that occur due to uneven scan
rates and the transit itself, and set the affected pixels to the
median value of that pixel in the time series. The average
amount of pixels either impacted by cosmic ray events or
flagged as bad pixels is 1.8% of all pixels in an exposure. The
reduced exposures are summed over the spatial scan direction
to give a 1D spectrum at each observation time.

4.2.2. Light-curve Analysis

We use a marginalization light-curve analysis similar to that
of Sheppard et al. (2017), applied to transit curves. This is a
Bayesian model averaging method, first described by Gibson
(2014) and applied by Wakeford et al. (2016), with further
detrending by use of band-integrated (white light) residuals in

spectral light-curve fitting (Mandell et al. 2013; Haynes et al.
2015). We first analyzed the band-integrated light curve to
simplify the spectral light-curve analysis, then we fit the
spectral light curves to derive the WFC3 transit spectrum.
We model the observed light curve as a BATMAN15 transit

model (Kreidberg 2015) combined with an instrumental
systematic model. For the transit model, we assume nonlinear
limb darkening and derive the coefficients by interpolating the
3D values from Magic et al. (2015) to the central wavelength of
WFC3 (1.4 μm). The limb-darkening derivation is consistent
with that used in the STIS analysis. We only fit for transit depth
and central transit time, since the incomplete coverage of HST
makes it difficult to improve constraints on other transit
parameters, such as a/Rs or inclination. We fix these values in

Table 6
Transit Spectrum

Instrument Wavelength (μm) Depth (ppm)a Instrument Wavelength (μm) Depth (ppm)

STIS G430Lb 0.290–0.350 10091±230 STIS G750L 0.711–0.731 10499±364
0.350–0.370 10006±249 0.731–0.750 10038±302
0.370–0.387 10397±198 0.750–0.770 10142±224
0.387–0.404 10273±163 0.770–0.799 10124±281
0.404–0.415 9999±137 0.799–0.819 10618±317
0.415–0.426 9980±185 0.819–0.838 9910±239
0.426–0.437 10324±145 0.838–0.884 10252±238
0.437–0.443 10428±287 0.884–0.930 10217±298
0.443–0.448 10245±168 WFC3c 1.122–1.141 10297±107
0.448–0.454 10411±165 1.141–1.159 10620±115
0.454–0.459 10367±192 1.159–1.178 10347±130
0.459–0.465 10227±145 1.178–1.196 10479±113
0.465–0.470 10640±164 1.196–1.215 10497±111
0.470–0.476 10429±165 1.215–1.233 10644±111
0.476–0.481 10453±144 1.233–1.252 10289±100
0.481–0.492 10584±125 1.252–1.271 10360±107
0.492–0.498 10224±192 1.271–1.289 10488±122
0.498–0.503 10289±166 1.289–1.308 10405±97
0.503–0.509 10459±149 1.308–1.326 10396±94
0.509–0.514 10519±183 1.326–1.345 10581±92
0.514–0.520 10506±168 1.345–1.364 10684±105
0.520–0.525 10429±186 1.364–1.382 10622±113
0.525–0.531 10558±128 1.382–1.401 10477±112
0.531–0.536 10247±174 1.401–1.419 10689±98
0.536–0.542 10451±180 1.419–1.438 10535±108
0.542–0.547 10476±177 1.438–1.456 10626±113
0.547–0.552 10422±206 1.456–1.475 10564±121
0.552–0.558 10794±153 1.475–1.494 10686±113
0.558–0.563d 9221±279 1.494–1.512 10799±129
0.563–0.569 10444±188 1.512–1.531 10551±124

STIS G750Le 0.526–0.555 10356±220 1.531–1.549 10566±111
0.555–0.575 10497±278 1.549–1.568 10515±134
0.575–0.594 10317±202 1.568–1.587 10436±110
0.594–0.614 10061±236 1.587–1.605 10492±145
0.614–0.633 10386±142 1.605–1.624 10340±122
0.633–0.653 10542±219 1.624–1.642 10338±142
0.653–0.672 10418±276 1.642–1.661 10331±138
0.672–0.692 10182±225 Spitzer IRAC1 3.2–4.0 10191±102
0.692–0.711 10168±192 Spitzer IRAC2 4.0–5.0 10679±145

Notes.
a Transit depth = R Rplanet

2
star
2 .

b Typical STIS G430L bin size = 0.0055 μm (median resolution ∼350).
c WFC3 bin size = 0.0186 μm (median resolution ∼75).
d Outlier bin strongly affected by systematics and ignored in retrieval analyses.
e Typical STIS G750L bin size = 0.0196 μm (median resolution ∼130).

15 https://github.com/lkreidberg/batman
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the light curve analyses of each instrument (STIS, WFC3, and
Spitzer), which ensures consistent orbital parameters are used
when analyzing different data sets. The transit and system
parameters are shown in Table 5.

The systematic model grid comprises a set of 50 polynomial
models, which account for a visit-long linear slope, HST orbital
phase-dependent systematics (i.e., “breathing,” ramp), and
subpixel wavelength shifts (for full model grid, see Wakeford
et al. (2016)). It is computationally difficult to fully sample the
parameter space of all 50 models using Markov Chain Monte
Carlo (MCMC) samplers, so we instead fit each model using
KMPFIT16 (Terlouw & Vogelaar 2015), a Python implementa-
tion of the Levenberg–Markwardt least squares minimization
algorithm, to more quickly determine parameter values and
uncertainties. Wakeford et al. (2016) found that uncertainties
derived from these two methods typically agree within 10%.
We then weight each model by its Bayesian evidence—
approximated from AIC—and marginalize over the model grid
(assuming a prior that each model is equally likely) to derive
the light-curve parameters and uncertainties while inherently
accounting for uncertainty in model choice.

As is common practice, we ignore the systematic-dominated
first orbit in the white light analysis; however, the use of
common-mode detrending allows us to include that orbit in the
spectral light-curve analysis. The raw light curve, the light curve
with instrumental systematics removed, and the residuals from
the highest-weight systematic model are shown in Figure 1. We
derive the white light depth to be 10490±51 ppm.

To derive the transit spectrum, we bin the 1D spectra from
each exposure between the steep edges of the grism response
curve (1.12–1.66 μm), deriving a flux time series for each
spectral bin. We use bins of width 0.0186 μm (4 pixels) to
maximize resolution without drowning the signal in noise. We
note that the atmospheric retrieval is not sensitive to the choice
of bin size. We fit each spectral light curve using a model
similar to that used for the band-integrated light curve, to derive
the transit depth at each wavelength.

The spectral light-curve analysis mimics white light analysis
with a few exceptions: all system parameters except transit
depth are fixed to the white light values, limb-darkening
coefficients are interpolated to the bin’s central wavelength,
and residuals from the band-integrated light curve are
incorporated as a scalable parameter. The band-integrated
residuals encode possible instrumental systematics that were
not captured by the model grid, and so they can be used to
further detrend the binned spectral light curves. The shapes of
the residuals are assumed to be constant with wavelength,
though the amplitude is allowed to vary. This allows for
removal of any wavelength-independent red noise from
spectral bin curves, at the penalty of slightly increasing the
white noise. Note that the band-integrated uncertainty is
sufficiently small, relative to spectral light-curve uncertainty,
that the added noise has only a minor effect. The wavelength
range, transit depth, and depth uncertainty for each WFC3 bin
are shown in Table 6.

The shape of our derived spectrum is in excellent agreement
with the literature spectrum (Tsiaras et al. 2018), though it is
shifted to higher depths by ∼90 ppm, indicating that we derive
a larger white light depth. This difference persists even if we
derive the spectrum without using white light residuals. This

could plausibly be due to different limb-darkening treatments
or different systematic modeling choices. This difference
emphasizes the importance of considering offsets between
instruments in retrieval analyses (Section 5.1.2). Further, the
white light depth is subject to the choice of orbital parameters,
which are typically fixed in spectroscopic light-curve fits. We
run sensitivity tests to determine that accounting for orbital
parameter uncertainties increases the scatter between HST
STIS and HST WFC3 by roughly 60 ppm for HAT-P-41b. We
capture this scatter by including it in WFC3ʼs depth
uncertainty, increasing it from 50 to 80 ppm.
As a check, we performed retrievals using the published

spectrum from Tsiaras et al. (2018) in combination with the
derived STIS and Spitzer depths, and found differences well
within the 1σ uncertainties for the retrieved parameters. The
major results and conclusions in this paper are not sensitive to
the WFC3 spectrum choice.

4.2.3. WFC3 Transit Spectrum Verification

Marginalization is only reliable if at least one model is a
good representation of the data (Gibson 2014; Wakeford
et al. 2016). We therefore checked the goodness-of-fit of the

Figure 1. Top panel: pre-processed band-integrated light curve for WFC3
observations. This is the band-integrated flux vs. planet phase derived from the
reduced data. The first orbit is excluded, as it is dominated by instrumental
systematics. Middle panel: band-integrated light curve divided by the highest-
weighted systematic model (i.e., the detrended light curve). Bottom panel:
residuals between light-curve data and highest-weighted joint transit and
systematic model. Reduced χ2 for the highest-weighted model is 1.17, which is
consistent with the model being a good fit for 67 degrees of freedom.

16 https://github.com/kapteyn-astro/kapteyn/blob/master/doc/source/
kmpfittutorial.rst

7

The Astronomical Journal, 161:51 (39pp), 2021 February Sheppard et al.

https://github.com/kapteyn-astro/kapteyn/blob/master/doc/source/kmpfittutorial.rst
https://github.com/kapteyn-astro/kapteyn/blob/master/doc/source/kmpfittutorial.rst


highest-weighted systematic model for each light curve using
both reduced χ2 and residual normality tests. Further, we
explored whether red noise is present in the light-curve
residuals, as that can bias inferred depth accuracy and precision
(Cubillos et al. 2017).

Though χ2 cannot prove that a model is correct, it can
demonstrate that the fit of a particular model is consistent with
that of the “true” model with “true” parameter values (Andrae
et al. 2010). Therefore, it is an informative goodness-of-fit
diagnostic, and it is particularly useful due to its familiarity and
simplicity. The “true” model with “true” parameters will have a
reduced χ2 of one, with uncertainty defined by the χ2

distribution. For both the band-integrated and spectral light
curves (66 and ∼88 degrees of freedom, respectively), this
results in an acceptable reduced χ2 range of roughly 0.7–1.3.

The band-integrated analysis (c =n 1.172 ) and all but one of
the spectral bins (median c =n 0.92 ) fall within this range. The
exception is the 1.299 μm light curve, for which the highest-
weighted model fit has a reduced χ2 of 0.56. This low value
indicates that the uncertainties in this light curve are over-
estimated. This is likely due to incorporating white light
residuals, which both inflate uncertainties and can potentially
interpret random white noise as structure. However, it is not
flagged by the normality or correlated noise analyses (described
below), and fitting the light curve without incorporating white
light residuals finds a consistent depth with a more reasonable
c =n 0.712 . Further, the derived depth and uncertainty exhibit
good agreement with the published (Tsiaras et al. 2018) transit
depth at this wavelength (accounting for the white light offset).
Therefore, we include it in the transit spectrum. For the other
28 spectral bins, the reduced χ2 values provide no evidence
against the validity of the derived transit depths and
uncertainties.

A residual normality test checks whether the residuals for a
model are Gaussian-distributed in order to determine goodness
of fit, as this is expected for the “correct” model. Like reduced
χ2, a normality test cannot prove that a model is correct; rather,
it can only diagnose incorrect models. We use the scipy
implementation of the common Shapiro–Wilk test for normal-
ity (Shapiro & Wilk 1965), and determine for which light
curves the highest-evidence model has normality ruled out at
the 5% significance level. At a sample size of around 90, this is
by no means rigorous, but it is still a useful heuristic for
flagging potentially problematic light-curve models.

Normality is rejected at the 5% significance level only for the
band-integrated residuals and the 1.243 μm spectral bin
residuals. In both cases, normality is ruled out due to a single
outlier in the time-series. Normality is rejected at 3%
significance for the band-integrated residuals, due entirely to
the first exposure in the first orbit. When this exposure is
ignored, we recover a consistent depth and uncertainty, and the
residuals are consistent with normality. We therefore keep this
exposure in the analysis.

A possible cause of the spectral bin’s outlier is a minor
cosmic ray event or bad pixel that was small enough to both
avoid the detection by the sigma cut and not affect the band-
integrated curve, but large enough to impact the much smaller
bin flux. Removing this spectral bin from the retrieval had no
noticeable effect on the results. Further, the derived depth and
uncertainty are consistent with literature values (Tsiaras et al.
2018). We therefore decide to include this bin in the retrieval.

Finally, we test for correlated noise in the residuals following
the methodology of Cubillos et al. (2017) (also see Pont et al.
2006) and using MC3.17 Though this method is not necessarily
rigorous for HST, due to the incomplete phase coverage and
relatively small number of exposures, it is still a practical
diagnostic. We find no evidence of correlated noise up to the
timescale of half an HST orbit (Figure 2). Beyond this
timescale (nine exposures per bin) the standard deviation is
based on a light curve with fewer than eight points, and so the
relationship is less informative and more subject to small
number statistics.
With the caveats noted above, marginalization does an

excellent job in fitting the spectral light curves. We emphasize
that removing any of the flagged bin spectra has no effect on
the retrieval. Together, these tests support the validity of the
derived transit depths and uncertainties in the WFC3 bandpass.

4.3. Spitzer

4.3.1. Data Reduction

The Spitzer data consist of cubes of 64 subarray frames in
each band, each of size 32×32 pixels. We extracted aperture
photometry for each frame, totaling 21,632 frames at both 3.6
and 4.5 μm. To extract photometry, we used 11 numerical
apertures with radii ranging from 1.6 to 3.5 pixels, and we
centered those apertures on the position of the host star
determined using both a 2D Gaussian fit to the stellar point-
spread function and also a center-of-light calculation. Since
HAT-P-41 has a companion star 3 6 distant (Hartman et al.
2012; Evans et al. 2016), we measured the flux of the
companion scattered into each of our numerical apertures,
using the method described by Garhart et al. (2020). We
adopted the magnitude difference in the Spitzer bands as
deduced by Garhart et al. (2020). Accounting for our having
used different aperture radii than Garhart et al. (2020), we
derive dilution correction factors of 1.0171 and 1.0106 at 3.6
and 4.5 μm, respectively. The transit depths are then multiplied
by those factors in order to correct for the presence of the
companion star.

4.3.2. Light-curve Analysis

We fit transit curves to the 22 sets of photometry at each
wavelength (eleven apertures, each with two centering
methods). Our default fitting procedure fixes the orbital
parameters at the values in the discovery paper by Hartman
et al. (2012), fitting only for the central time and depth of the
transit. The shapes of the Spitzer transits are well-matched
when fixing the orbital parameters to those values. However,
we also explored including the orbital inclination and a/Rs in
the fit (see below), those being the orbital parameters that most
strongly affect the shape of the transit. We adopt quadratic
limb-darkening coefficients calculated by least squares for the
Spitzer bands by Claret et al. (2013), using 2 km s−1

microturbulence. We choose the values for Teff=6400 K
and log g=4.0, without interpolation. We fix those coeffi-
cients in the fitting process, and we deem these choices to be
appropriate given that the limb darkening is minimal at these
infrared wavelengths. Our fits to the transit account for the
intrapixel sensitivity variations of the Spitzer photometry using
pixel-level decorrelation (PLD; Deming et al. 2015), including

17 https://github.com/pcubillos/mc3
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a linear baseline (ramp) in time. We use a Bayesian information
criterion to decide between a linear versus quadratic ramp. The
details of the PLD fit are the same as described for secondary
eclipses by Garhart et al. (2020), except that we are fitting
transits, so we include limb darkening. Briefly, the fitting code
bins the photometry and pixel basis vectors to various degrees,
and selects the optimal bin size, aperture radius, and centering
method, based on the smallest difference from an ideal Allan
deviation relation (Allan 1966). The Allan deviation relation
expresses that the standard deviation of the residuals should
decrease as the square root of the bin time. Operating on binned
data allows the PLD algorithm to concentrate on the longer
timescales that characterize the red noise (and also the transit
duration), as opposed to the 0.4 s cadence time of the raw
photometry.

We determine the errors on our transit depths and times using an
MCMC procedure, with a burn-in phase of 10,000 steps, followed
by 800,000 steps to explore parameter space. We calculate
multiple chains for each transit, and verify convergence using a
Gelman–Rubin (GR) statistic (Gelman & Rubin 1992). Our GR
values for our PLD fits are very close to unity, being 1.0027 at
3.6μm and 1.0004 at 4.5μm, indicating good convergence. Our
transit depths and times are listed in Table 7.

Our derived transit times are in excellent agreement with
measurements of the same Spitzer transits by Wakeford et al.
(2020). Specifically, using our uncertainties, our fitted times

differ by 1.1σ and 0.6σ at 3.6 and 4.5 μm, respectively.
Wakeford et al. (2020) use eight HST transits, as well as the
discovery results and the Spitzer transits, to derive a new
ephemeris. Our fitted times (Table 7) differ from that ephemeris
by insignificant amounts (0.2 and 7.8 s).
We explored the effect of uncertainties in the orbital

parameters, since those can affect the derived transit depth
(Alexoudi et al. 2018). Adopting uniform priors for a/Rs and
inclination, we find that they are degenerate when fitting only
the Spitzer transits. That degeneracy is illustrated in Figure 3,
where it is apparent that inclination and a/Rs can trade off to
maintain the observed transit duration and the sharp ingress/
egress that characterizes the Spitzer transits. Changing the
inclination changes the chord length across the stellar disk, and

Figure 2. Correlated noise analysis for each of the 29 WFC3 spectral bins and the band-integrated light curve. For each bin’s light curve, we find the rms of the
residuals for an increasing number of exposures per bin. Pure white noise would scale with the black line, while correlated noise would increase with binning. Though
not exact, given the gaps between WFC3 data, this is a useful heuristic to search for correlated noise. See Cubillos et al. (2017) and Pont et al. (2006) for more details.

Table 7
Transit Times and Depths for HAT-P-41b in the Spitzer Bands

Wavelength BJD(TDB) R Rp s
2 2 (ppm)

3.6 μm 2457772.20440±0.00033 10020±100
4.5 μm 2457788.36860±0.00032 10568±135

Note. These are “as observed” transit depths, not corrected for dilution by the
companion star. To correct for dilution, multiply the values of R Rp s

2 2 by
1.0171 at 3.6 μm, and by 1.0106 at 4.5 μm. The corrected values are shown
with the rest of the transit spectrum in Table 6.
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(when limb-darkening is minimal) that can be compensated by
changing a/Rs to maintain the same transit duration. The
orbital solution from Hartman et al. (2012) is entirely consistent
with our likelihood distribution for those parameters, as shown
in Figure 3 for 3.6 μm (4.5 μm is similar). We therefore freeze
the orbital parameters at the Hartman et al. (2012) values when
fitting our Spitzer transits.

Figure 4 illustrates the transits at 3.6 and 4.5 μm. The
residuals from the best-fit model are included in the figure, and
the right panel shows the residuals binned over increasing
timescales, a so-called Allan deviation relation (Allan 1966).
The slopes of those relations are close to the −0.5 value
expected for photon noise.

5. Atmospheric Retrieval

There are two common frameworks to retrieve physical
parameters from transmission spectra. The first is by assuming
chemical equilibrium, where the abundance of a molecule is
only dependent on local temperature, local pressure, and global
elemental abundances such as O/H and C/H (e.g., Kreidberg
et al. 2015). The second is by instead fitting for molecular
abundances based on observed spectral features, then determin-
ing global elemental abundances from the molecular abundance
values (e.g., Madhusudhan 2012). Since carbon and oxygen-
based molecules are typically the most spectroscopically active
species over the wavelengths covered by HST and Spitzer, the
elemental abundances are commonly parameterized by
metallicity—defined as the enhancement of metal elements
relative to hydrogen compared to solar values (see Section 5.3
for more detail)—and carbon-to-oxygen ratio (C/O). Some
retrievals improve flexibility by allowing other elements—such
as sodium or vanadium—to also vary from their solar ratios

(Amundsen et al. 2014; Tremblin et al. 2015, 2016; Sing
et al. 2016).
The open source code PLATON18 (Zhang et al. 2019) is able

to perform quick retrievals that assume chemical equilibrium,
whereas AURA (Pinhas et al. 2018) is able to capture possible
disequilibrium chemistry by not assuming chemical equili-
brium. We retrieve the atmospheric parameters with both
frameworks, in order to see how interpretations compare as
well as to explore how sensitive the conclusions are to retrieval
assumptions.

5.1. PLATON

PLATON is a fast, open-source retrieval code developed by
Zhang et al. (2019). Like many retrieval codes, it comprises a
forward model and an algorithm for Bayesian inference. Though
there are some differences, it essentially uses the same forward
model as Exo-Transmit (Kempton et al. 2017). Here, we
summarize the forward model: To calculate a spectrum, it first
determines the abundances of 34 potentially relevant chemical
species for a given atmospheric metallicity and C/O. These
include Na and K as well as molecules CH4, CO, CO2, HCN,
H2O, MgH, NH3, TiO, and VO; for a complete list, see Kempton
et al. (2017). The metallicity and C/O provide elemental
abundances, which are combined with a temperature–pressure
grid as input into GGchem (Woitke et al. 2018) to compute
equilibrium molecular and atomic abundances at each pressure
layer in the atmosphere, accounting for the effects of condensation
on equilibrium abundances. PLATON allows for a gray cloud
deck, below which no light can penetrate, and the abundance–
temperature–pressure grid facilitates the determination of total
opacity at each pressure layer in the atmosphere that lies above this
cloud top. PLATON includes the same opacity sources as Exo-
Transmit, and accounts for opacity from gas absorption, CIA, and
scattering (either parametric Rayleigh scattering or Mie scattering).
The forward model converts the opacity–pressure grid to an
opacity–height grid using hydrostatic equilibrium with Pref=
1 bar, which is then used as an input to a radiative transfer code in
order to determine the uncorrected transit depths. After correcting
for possible stellar activity, due to either unocculted spots or
faculae, PLATON’s forward model outputs the corrected transit
spectrum. The largest source of computational uncertainty is
opacity sampling error, which is a source of white noise from using
a relatively low resolution (R=1000) that cannot resolve
individual lines (Zhang et al. 2019). Accounting for opacity
sampling for the transit spectrum of HAT-P-41b typically increases
the depth uncertainty by 1.5% (2.5 ppm), which is sufficiently
small that it does not affect interpretation. For more details on
PLATON, see Zhang et al. (2019). We note that the version of
PLATON we describe and use in this paper is Platon 3.1. A newer
version, PLATON 5.1, has since been released with additional
features as described in Zhang et al. (2020).
Our PLATON analysis does not retrieve individual abun-

dances. Instead, it fits for the isothermal temperature, atmo-
spheric metallicity as a multiple of solar values for atomic
species, and C/O ratio; the retrieved equilibrium abundances
for atomic and molecular absorbers are a natural consequence
of those values. This is in contrast with the AURA analysis
(Section 5.2), which retrieves individual molecular and atomic
abundances.

Figure 3. Likelihood distribution from the fit to the 3.6 μm transit of HAT-P-
41b, based on an MCMC using uniform priors, and shown vs. a/Rs and the
orbital inclination. These two orbital parameters are degenerate when using
only a Spitzer transit, and the values derived by Hartman et al. (2012) are
indicated by the point with error ranges. The Spitzer transits at both 3.6 and
4.5 μm are fully consistent with a/Rs and i from Hartman et al. (2012).

18 https://github.com/ideasrule/platon
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The algorithm PLATON uses for Bayesian inference is
nested sampling (Skilling 2004). Specifically, PLATON uses
multimodal nested sampling from the Python implementation
nestle.19 Like MCMC samplers, nested sampling efficiently
samples posterior distributions with dimensionalities typical of
atmospheric retrievals (n=5–20), and so it is effective at
atmospheric parameter estimation. Unlike MCMC routines, it
automatically calculates the Bayesian evidence for a model,
which is necessary for model comparison. The Bayesian
evidence intrinsically accounts for overfitting by punishing too
much model structure and thus determining whether extra
parameters are warranted. We use this to justify excluding
parameters that add structure but do not significantly improve
the fit. Nested sampling also has a well-defined stopping
criteria, so there is no need to check for convergence. For an
excellent write-up on this algorithm, especially about using
it in practice, see the documentation of Dynesty20 (Higson
et al. 2019).

In addition to the standard set included in PLATON’s forward
model, we added three new fittable parameters: a partial cloud

parameterization and three instrumental transit depth bias
parameters (henceforth referred to as instrumental offsets).

5.1.1. Partial Clouds

The partial cloud parameter is motivated by work by Line &
Parmentier (2016) and MacDonald &Madhusudhan (2017), which
showed that if the gray cloud deck were inhomogeneous, then the
spectrum we observe (D) would be a weighted average of the clear
atmosphere transit spectrum (Dclear) and the cloudy atmosphere
spectrum (Dcloudy), with weights given by the cloud fraction ( fc).
We implement this as D=fc ∗Dcloudy+(1−fc) ∗Dclear. Since
high-altitude gray clouds are seen in spectra as flat lines, averaging
a spectrum with features with this line will shrink the features and
can mimic the effect of an atmosphere with high mean-molecular
mass and small scale height. Thus, including this parameter allows
us to account for this possible degeneracy and prevents us from
overconfidently claiming a high-metallicity atmosphere.

5.1.2. Instrumental Offsets

The instrumental offsets are nuisance parameters that can
capture the extent to which transit depths from STIS G430L,
STIS G750L, or WFC3 are biased relative to the depths from

Figure 4. Left: Spitzer transit light curves of HAT-P-41b at 3.6 and 4.5 μm after correction of the intrapixel effects of the detector and temporal ramps. The data are
binned to 100 points per transit, for clarity of illustration. Residuals (data minus fitted model) are shown below the transit curves, and have error bars added. Right:
Allan deviation relations for the binned residuals, i.e., standard deviation of the residuals when the original data are binned over an increasing number of points, N.
Solid lines project the single-point (N=1) scatter to larger bin sizes with a slope of −0.5, as expected for photon noise.

19 https://github.com/kbarbary/nestle
20 https://dynesty.readthedocs.io/en/latest/
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the other instruments. This is motivated by the use of common-
mode corrections in the light-curve analysis of each instrument,
which can potentially introduce a uniform bias for the depth at
each spectral bin for that instrument. Offsets are also able to
account for inter-instrumental transit depth scatter introduced
by uncertainty in orbital parameters a/Rs and inclination
(Section 4.2.2).

We explore three offset scenarios. The first is physically
motivated. In this scenario, we use Gaussian priors with sigmas
determined by the uncertainties in the band-integrated transit
depths to try to reflect the correlated uncertainty that exists
between spectral bins for each instrument, whether due to
common mode corrections or orbital parameter uncertainties.
This essentially propagates the white light depth uncertainty
into the retrieval. Derived in Section 4, these uncertainties are
105 ppm, 85 ppm, and 80 ppm for STIS G430L, STIS G750L,
and WCF3, respectively. The second scenario investigates the
potential impact of unknown sources of bias by setting a large,
uniform offset prior for each instrument’s offset. The third
scenario extends this by setting two large, uniform priors: a
WFC3 offset and a single offset for both STIS instruments. The
third scenario allows the absolute depths at STIS to vary while
preserving the optical spectral shape.

We caution that offsets—especially penalty-free, uniform
prior offsets—can cloak missing physics in a model. We do not
think they should act as a safety net to achieve a good fit to a
spectrum, and the inferred atmospheric properties should be
understood in context. However, offsets offer a way to both
investigate potential instrumental biases and account for
absolute depth uncertainty for each instrument. It is valuable
to include offsets as model parameters and marginalize over
these possible values in order to understand how the
uncertainty in the absolute transit depth for each instrument
affects the marginalized posterior distributions of the other
model parameters.

5.2. AURA

We complement our analysis of HAT-P-41b by performing
retrievals on the STIS, WFC3, and Spitzer observations without
the assumption of chemical equilibrium. We employ an
adaptation of the retrieval code AURA (Pinhas et al. 2018),
as described in Welbanks & Madhusudhan (2019).

The code computes line by line radiative transfer in a
transmission geometry and assumes hydrostatic equilibrium.
We consider a one-dimensional model atmosphere consisting
of 100 layers uniformly spaced in log10(P) from 10−6

–102 bar.
The pressure–temperature (P–T) profile in the atmosphere is
retrieved using the P–T parameterization of Madhusudhan &
Seager (2009). The measured radius of the planet Rp is assigned
to a reference pressure level in the atmosphere through a free
parameter Pref.

The model atmosphere assumes uniform mixing ratios for the
chemical species and treats them as free parameters. We consider
sources of opacity expected to be present in hot Jupiter
atmospheres (e.g., Madhusudhan 2012) and include H2O
(Rothman et al. 2010), Na (Allard et al. 2019), K (Allard
et al. 2016), CH4 (Yurchenko & Tennyson 2014), NH3

(Yurchenko et al. 2011), HCN (Barber et al. 2014), CO
(Rothman et al. 2010), CO2 (Rothman et al. 2010), TiO
(Schwenke 1998), AlO (Patrascu et al. 2015), VO (McKemmish
et al. 2016), and H2–H2 and H2–He collision-induced absorption
(CIA; Richard et al. 2012). The opacities for the chemical

species are computed following the methods of Gandhi &
Madhusudhan (2017). The CO2 abundance is restricted to
remain below the H2O and CO abundances as expected at these
temperatures for H-rich atmospheres (Madhusudhan 2012).
We allow for the presence of clouds and/or hazes following

the parameterization in Line & Parmentier (2016) and
MacDonald & Madhusudhan (2017). Nonhomogeneous cloud
coverage is considered through the parameter f̄, corresponding
to the fraction of cloud cover at the terminator. Hazes are
incorporated as σ=aσ0(λ/λ0)

γ, where γ is the scattering
slope, a is the Rayleigh-enhancement factor, and σ0 is the H2

Rayleigh scattering cross section (5.31×10−31 m2) at the
reference wavelength λ0=350 nm. Opaque regions of the
atmosphere due to clouds are included through an opaque
(gray) cloud deck with cloud-top pressure Pcloud.
Finally, we allow for the same three instrumental offset

scenarios as described in Section 5.1.2. In these model runs, a
constant offset in transit depth is applied to the data set of
choice. The offset priors for each scenario are given in Table 8.
In summary, our retrievals consist of up to 25 parameters: 11

chemical species, six parameters for the P–T profile, one for the
reference pressure, four for clouds and hazes, and up to three
extra parameters for instrumental shifts. Table 8 shows the
parameters and priors used in our retrievals.

5.3. A Note on Metallicity and C/O

Atmospheric metallicity is a broadly used term that does not
always have the same definition or assumptions built into its
derivation (Kreidberg et al. 2014; Madhusudhan et al. 2014b).
Here, we define C/O and global atmospheric metallicity
explicitly. For AURA, the abundances of different elements are
derived independently from the corresponding gaseous absor-
bers—O/H from oxygen-bearing molecules such as H2O, Na
from gaseous Na, and so on. This retrieval approach allows for
different elements to be enhanced or depleted in different
quantities. As such, there is no single metric for metallicity in
this approach. Nonetheless, as described below, we use the O/
H ratio from the retrieved H2O abundance using AURA as a
proxy for metallicity in order to facilitate comparisons with

Table 8
Prior Distributions for AURA Retrievals

Parameter Prior distribution Prior range

Xi Log-uniform 10−12
–10−1

T0 Uniform 800–2000 K
α1,2 Uniform 0.02–2.00 K−1/2

P1,2 Log-uniform 10−6
–102 bar

P3 Log-uniform 10−2
–102 bar

a Log-uniform 10−4
–1010

γ Uniform −20–2
Pcloud Log-uniform 10−6

–102 bar
f̄ Uniform 0–1
STISshift Uniform −500–500 ppm
STIS G430Lshift Uniform/Gaussian −500–500 ppm/105 ppm
STIS G750Lshift Uniform/Gaussian −500–500 ppm/85 ppm
WFC3shift Uniform/Gaussian −500–500 ppm/80 ppm

Note. Instrument shifts were employed in a subset of the retrievals and had
either uniform or Gaussian priors as explained in Section 8.2. For Gaussian
priors, a mean of 0 ppm was assumed, and the sigma is indicated in
parentheses.
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PLATON retrievals in which all the elements are enhanced by a
single metallicity parameter.

In PLATON, metallicity is a factor that scales the solar
elemental abundances, denoted M/H. The ratios between
metals (e.g., Fe/O, Ti/V) are fixed to solar metal ratios, but the
solar metal-to-hydrogen ratio is allowed to vary. Thus, all
metals are scaled by the same factor. Next, the elemental
carbon abundance is determined by C/O×metallicity. There-
fore, only carbon is allowed to differ from its solar ratio
compared to other metals. While allowing carbon instead of
oxygen to vary is arbitrary, C/O variation is motivated: it is the
only metal-to-metal ratio for which predicted molecular
abundances are typically sensitive to the wavelength range
covered by HST/Spitzer transit spectra. In this paradigm,
metallicity is effectively a heuristic for O/H, since that
dominates the retrieval both because of molecular opacity (e.g.,
H2O, TiO, VO) and because over 99% of the mean molecular
weight is due to C, O, and H. In reality, we retrieve O/H and
C/O, then set all other elements to = *X X O H

O H

. There-

fore, PLATON’s derived metallicity is reasonably comparable
to AURA’s derived O/H.

6. PLATON Retrieval Analysis

The relative importance of each physical process that
affects an observed transit spectrum is not clear ahead of
time. PLATON, though less flexible than free-chemistry
retrievals or retrievals that allow elemental abundances to
vary from solar ratios, is able to quickly perform chemically
constrained retrievals (∼30 minute runtime for fiducial model
retrieval on full data set). This makes it well-suited to testing
an array of models, which is important in order to determine
how different model assumptions impact the conclusions of a
retrieval. To explore this, we choose the fiducial model to be
the set of parameters necessary to fully describe the simplest
physical processes that we know affect the spectrum: opacity
from gas absorption, CIA, and Rayleigh scattering. We then
detail the effect of incorporating more complicated physics.
In Section 6.3, we use both physical and statistical arguments
to determine the “best” model. However, it is important to
show the sensitivity of the results to each model assumption,
in order to not provide overconfident constraints and to
be able to predict how new observations might affect the
conclusions.

6.1. Fiducial Model

The priors for the fiducial model are shown in Table 9. The
metallicity of the atmosphere, the temperature of the limb, and
the C/O ratio are necessary to include in order to calculate
molecular and atomic abundances, which determine the gas
absorption, CIA, and Rayleigh scattering opacities. While we
cannot improve constraints on Mp and Rs, it is best practice to
include them as parameters with Gaussian priors in order to
propagate the uncertainties on those measurements (Zhang
et al. 2019). Otherwise, we would mistakenly assume that Mp

and Rs are precisely known. We also include the cloud-top
pressure of a gray cloud deck in the fiducial model. We fix the
reference pressure to 1 bar and retrieve the planetary radius at
that pressure. Note that Welbanks & Madhusudhan (2019)
demonstrated that it is justified to assume a reference pressure
and retrieve the planetary radius without affecting the ability to
constrain atmospheric composition.
Although Rp and Mp are both allowed to vary independently

in PLATON retrievals, their uncertainties are not independent:
the uncertainties for Mp are derived from glog p( ) (from transit
observations) and Rp (derived from Rp/Rs from transit and Rs

from TIC-8). PLATON does not constrain Mp and Rp
2 to match

glog p( ) a priori, but this is only an issue if regions of high
likelihood extend to combinations of values that should not be
allowed (i.e., more than 3σ from observed glog p( )). We
rederive glog p( ) using values at Rp and Mp at the edge of
significant likelihood, and find good agreement with the prior,
well within 3σ).
We use uninformative priors where appropriate in order to

fully explore the possible parameter space. For quantities that
can range over many orders of magnitude, such as the cloud-
top pressure or the metallicity, this means a log-uniform prior is
necessary to avoid bias toward higher values. Otherwise—for
Tlimb, Rp, and C/O—we use uniform priors with limits either
set by the functionality of the code (e.g., C/O) or conserva-
tively derived from previous observations. Widening the prior
for any parameter in the fiducial model has no significant effect
on the result of the retrieval.
The retrieved median fiducial model with uncertainty

contours is shown with the observed spectrum in Figure 5.
The model is an excellent fit (reduced χ2=1.09; consistent
with the χ2 of the true model for 70 degrees of freedom to 1σ).
We clearly detect water vapor (>5σ significance) via the
1.4 μm water band in the WFC3 data. The bump in the STIS
data is indicative of TiO, and the lack of any optical slope or
flat line indicates that gray clouds and scattering haze do not

Table 9
Prior Distributions for Fiducial PLATON Model

Parameter Symbol Distribution Range/Widtha Default Value

Planet Radius Rp Uniform 0.83–2.48RJup
b 1.65RJupAIC

Limb Temperature T Uniform 850–2550 Kb 1700 K
Carbon–Oxygen Ratio C/O Uniform 0.2–2.0 0.53c

Metallicity Z Log-uniform 0.1–1000 Ze 1 Ze
Planet Mass Mp Gaussian 0.14MJup 0.76 MJup

Stellar Radius Rs Gaussian 0.08Re 1.65Re

Cloud-top Pressure Pcloud Log-uniform 10−3
–108 Pa 1 Pa

Notes.
a Range for uniform or log-uniform; width is sigma of a Gaussian.
b Range is 50%–150% of the default value.
c Solar C/O.

13

The Astronomical Journal, 161:51 (39pp), 2021 February Sheppard et al.



contribute significant opacity in the planet’s spectroscopically
active region. The difference between the two Spitzer points is
attributed to CO2, though because they are photometric
observations, we do not resolve any features.

The posterior probability distribution is represented by the
corner plot (Foreman-Mackey 2016)21 in Figure 6. This figure
provides the marginalized posterior distribution for each
parameter (with median, 16th, and 84th percentile values
indicated by vertical dashed lines), as well as every two-
dimensional projection of the posterior (with 0.5, 1, 1.5, and 2σ
contours) to reveal covariances. Well-constrained parameters
have narrow distributions with clear peaks, and slanted or
diagonal shapes are indicative of correlated sets of parameters
(e.g., the Rp–Rs shape). We find a supersolar metallicity
( ´-

+259 114
174 solar metallicity, henceforth Ze), a likely subsolar

C/O (C/O< 0.6) that is consistent with stellar C/O (0.19), a
clear atmosphere (Pcloud> 0.5 mBar), and = -

+T 1650limb 120
70 K.

The temperature is driven primarily by the STIS data, mostly
because PLATON interprets the bump in the STIS data as a
metallic oxide, which is only the dominant opacity source
above ∼1500 K in chemical equilibrium. Below ∼1500 K, the
optical spectrum would be dominated by an atomic sodium
line, and this is not seen in the data. The upper limit on C/O is
related mainly to the H2O: in equilibrium chemistry for
T∼ 1650 K and P∼ 1 bar, H2O opacity decreases exponen-
tially when C/O> 0.6 (Madhusudhan 2012). Any model with
C/O> 0.6 struggles to capture the water feature and relatively
high infrared baseline opacity (compared to the optical) and is
thus a poor fit to the data.

The high metallicity is constrained by the size of both the
STIS and WFC3 features, as well as the lack of a significant
Rayleigh scattering slope. While the metallicity affects
chemistry, it is primarily constrained via its effect on the mean
molecular mass of the atmosphere. Increasing metallicity, by
definition, increases the ratio of metals to hydrogen, which

increases the atmosphere’s mean molecular mass. This lowers
the atmospheric scale height and consequently decreases the
predicted feature size. The equation for approximate feature
size, δλ (Kreidberg 2018), where μ is the mean molecular mass,
clarifies its dependencies:
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PLATON can decrease the feature size by changing Rp or Rs,
but both are well-constrained by the continuum baseline as well
as priors and thus are relatively fixed. It can also be lowered by
decreasing the temperature, increasing the metallicity (and thus
the mean molecular weight), or by increasing Mp. The
temperature is strongly constrained by chemistry, and Mp is
constrained by previous observations, so only metallicity can
vary enough to explain the observed feature sizes. Note that
this relationship explains the correlations between Mp, Tp, and
metallicity seen in Figure 6: as mass increases or temperature
decreases, metallicity decreases, because a lower value is
necessary to achieve the scale height that predicts the observed
feature sizes. For reference, the median derived mean
molecular weight is 5.8 AMU and the derived scale height is
roughly 322 km.
At solar metallicity, the model predicts features that are

much larger than what the data show. Consequently, solar
metallicity atmospheres in the fiducial model can only explain
the observed feature by invoking a cloud to mask the troughs of
the features. The median retrieved model for metallicity fixed
to solar is shown in Figure 5. Note that this model is
dispreferred by 3.5σ, since the cloud leads to a poor fit to the
bluest transit depths.
The same metallicity value is an excellent fit for both the

water feature in the WFC3 data and the TiO feature in the STIS
data. Retrieving only on the STIS data or only on the WFC3
data recovers supersolar atmospheric metallicities. Addition-
ally, due to predicting a greater abundance of CO2, it is better

Figure 5. Median retrieved model with 1σ and 2σ uncertainty contours for the fiducial model. Also shown is the median retrieved model when metallicity is fixed to
solar. Median model and uncertainties are derived by generating 100 samples from the correctly weighted posterior and calculating the depth at each bin for each
sample. Contours are given by the 2nd, 16th, 50th, 84th, and 98th percentile depths at each bin. Continuous model is smoothed with a Gaussian filter with σ=15,
which approximates the resolution of HST WFC3 (Zhang et al. 2019).

(The data used to create this figure are available.)

21 https://github.com/dfm/corner.py
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than low-metallicity solutions at explaining the large change in
depth between the Spitzer points. Observations from all three
instruments support the high-metallicity solution.

6.2. More Complex Models

In this section, we incorporate additional model parameters
to explore whether having more complex physics impacts the
inferred atmospheric parameters. We demonstrate the insensi-
tivity of our results to model assumptions.

6.2.1. Partial Cloud Coverage

Line & Parmentier (2016) showed that partial cloud
coverage (i.e., clouds at the same height but not uniformly
covering the limb azimuthally) could mimic the effect of a high

mean molecular mass atmosphere for WFC3 spectra. When
partial clouds are present, the observed spectrum would be the
weighted average of the cloudy and clear spectra. The transit
depth of an atmosphere dominated by gray clouds does not
vary with wavelength, and so the cloudy spectrum is a straight
line. Averaging a clear spectrum with molecular features and a
cloudy, flat spectrum reduces the size of the features by an
amount proportional to the cloud fraction. Given that we find a
significantly supersolar metallicity, we investigate whether this
possible mean molecular mass–cloud fraction degeneracy
affects the results from the fiducial case.
When fit independently and allowing the cloud fraction to

vary, both WFC3 and STIS spectra retrievals no longer
constrain the metallicity to be supersolar. However, fitting the
infrared and optical data jointly breaks this degeneracy, as

Figure 6. Corner plot illustrating posterior probability distributions from PLATON for the fiducial model. The 16th, 50th, and 84th percentile values are indicated by
vertical dashed lines and stated in the title of each parameter’s 1D marginalized posterior distribution. Contours indicate the joint 0.5, 1, 1.5, and 2σ levels for each 2D
distribution. The 1σ metallicity range is = -

+Z Zlog 2.4110 0.25
0.23

 (145–437×solar metallicity), the isothermal limb temperature is well-constrained around 1650 K, and
the C/O ratio is likely subsolar. Spectrum is consistent with a cloud-free atmosphere, and the marginalized posterior distributions of Mp and Rs are dominated by their
priors. The slight correlations between T– Zlog and Mp– Zlog are due to their relation in the scale height equation.
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predicted by Line & Parmentier (2016). Effectively, a low
mean molecular mass and nonuniform cloud solution should be
impacted by Rayleigh scattering in the optical data, especially
the bluest six wavelength bins. The dominance of gas
absorption opacity over Rayleigh scattering opacity in the
STIS data disallows this solution, breaking the degeneracy in
favor of the high mean molecular mass solution.

However, it is possible that removing assumptions made in
the fiducial model—such as fixed Rayleigh scattering or no
instrumental offsets—could muddle this decisive degeneracy
break and allow for a low-metallicity solution. We investigate
this below.

6.2.2. Parametric Rayleigh Scattering

The fiducial model assumes Rayleigh scattering. In lieu of
complicated microphysics, PLATON allows parametric scatter-
ing, in which the slope and the magnitude of Rayleigh
scattering vary in order to capture the possible signature of
many hazes. For a more detailed explanation, see Zhang et al.
(2019). Though there is no obvious signature of haze in the
optical data (i.e., no linear slope decreasing with increasing
wavelength), it is worth exploring whether loosening the
assumption of exact Rayleigh scattering affects the results.

Allowing the full scattering parameter space (see Table 10)
has little effect: the clear lack of slope in the STIS data
conclusively leads to a haze-free atmosphere. Further, the
median scattering factor is 0.01, implying that the data is
easiest to fit when opacity from Rayleigh scattering is muted.
This complicates the mean molecular weight–cloud fraction
(μ− fc) degeneracy. Lower values of μ are now possible, since
the model no longer expects scattering opacity to be important
at optical wavelengths. The lower the magnitude of Rayleigh
scattering—and the shallower the scattering slope—the lower μ
can be. This is because decreases in Rayleigh opacity allow for
gas absorption to still be dominant at larger scale heights. As a
result, a patchy cloud and low-metallicity solution is viable.
Though possible, the low μ solution requires a specific
combination of cloud-top pressure, scattering slope, scattering
factor, and cloud fraction, and does not improve the fit.
Therefore, it is much less likely than the high-metallicity
solution. The marginalized posterior probability distribution for

metallicity has the same maximum likelihood value as the
fiducial model. The difference is that the distribution has a tail
extending to lower metallicities (Figure 7). The resulting
median log metallicity and 1σ range (as determined by the 16th
and 84th percentile values) is = -

+Z Zlog 2.3410 0.64
0.27

 .
Though all cloud fractions and cloud pressures are allowed,

the posterior is consistent with a clear atmosphere due to the
likelihood desert in the upper left corner of the cloud fraction–
cloud-top pressure pairs plot: clouds are only seen above the
altitude corresponding to the ∼10Pa pressure level at fractions
below 0.50.

6.2.3. Instrumental Offsets

We model an instrumental offset as a constant value added to
the forward model’s binned transit depth in the wavelength
range of the instrument of interest.
For the physically motivated scenario (Scenario 1 from

Section 5.1.2), we set the priors for STIS G430L, STIS 750L,
and WFC3to be Gaussians centered on zero ppm, with widths
set to the uncertainty on the transit depth from their white light
curves (105, 85, and 80 ppm, respectively; see Table 10).
The retrieved median WFC3 offset is nontrivial, with a

median of about 1.5×the white light uncertainty (130±50
ppm). The offsets in the STIS G430L and G750L are less
significant, at 58±58 ppm and −65±55 ppm, both well
within their white light uncertainties. However, there is a
significant median offset of ∼120 ppm between the two
instruments. This is driven primarily by the retrieval attempting
to align transit depths in the overlapping wavelength region
between the instruments.
The Spitzer 3.6 μm point drives the WFC3 offset: shifting

the WFC3 depths down necessitates a smaller radius ratio,
which better captures the relatively low transit depth at 3.6 μm.
The ability to better capture the Spitzer 3.6 μm results in a
greater Bayesian evidence, indicating that this model is
strongly preferred over the fiducial model (for a more detailed
discussion, see Section 6.3).
When combined with partial clouds, the instrumental offsets

cause a small decrease in the retrieved median metallicity
( = -

+Z Zlog 2.3310 0.25
0.23

 ). This is for reasons similar to those
explained in the parametric scattering section: whereas

Table 10
Prior Distributions for More Complicated PLATON Models

Parameter Symbol Distribution Range/Widtha Default Value

Cloud Fraction fc Uniform 0–1 1
Scattering Slope γ Uniform −2–20 4
Scattering Factor a0 Log-uniform 10−4

–108 1
WFC3 Offset L Uniform/Gaussian −500–500 ppm/80 ppm 0 ppm
STIS G430L Offset L Uniform/Gaussian −500–500 ppm/105 ppm 0 ppm
STIS G750L Offset L Uniform/Gaussian −500–500 ppm/85 ppm 0 ppm
STIS Offset L Uniform −500–500 ppm 0 ppm
Stellar Effective Temperature Tstar Fixed 0 6480 K
Faculae Temperature Tfac Fixedb 0 6580 K
Faculae Covering Fraction ffac Uniform 0–0.10 0
Mie Particle Size rpart Log-uniform 0.01–1 μm 0.1 μm
Mie Number Density n Log-uniform 10–1015 m−3 105 m−3

Fractional Scale Height Hcloud/Hgas Log-uniform 0.1–10 1.0

Notes.
a Range for uniform distribution; width is sigma of a Gaussian.
b Tfac=Tstar+100 K (Rackham et al. 2019).
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parametric scattering justified the absence of an optical
scattering slope in the low-metallicity solution by effectively
removing Rayleigh scattering opacity, the instrumental offset
model can decrease the WFC3 depths relative to the STIS
depths in order to artificially allow for it.

Note that increasing STIS depths (instead of decreasing
WFC3 depths) has the same effect on Rayleigh opacity and
thus metallicity. However, it is not a viable solution: this is
because, unlike decreasing WFC3 depths, it does not improve
the forward model’s ability to capture the low Spitzer 3.6 μm
point.

Allowing Gaussian-prior instrumental offsets had no sig-
nificant effect on the results. However, it is not impossible that
there is some unknown wavelength-independent systematic
that biases the absolute transit depths of the instruments relative
to one another. Though it is unlikely, we chose to explore this
by allowing offsets in the STIS G430L, STIS G750L, and
WFC3 data to vary by about 5% (500 ppm) in either direction

(Scenario 2 from Section 5.1.2). Due to the model preferring a
lower radius ratio to best explain the Spitzer 3.6 μm point, the
median WFC3 offset is a 250 ppm decrease, about 3×the
white light uncertainty. Surprisingly, this large offset does
not significantly change the 1σ ranges for metallicity
( = -

+Z Zlog 2.2610 0.40
0.24

 ). The size of the molecular features
and the large differential between Spitzer photometric points
drive the supersolar metallicity in this case. Regardless of the
magnitude of the offset, we retrieve a high metallicity. The two
large, uniform offsets case, where both STIS instruments are
offset by the same amount (Scenario 3 from Section 5.1.2),
retrieves posterior distributions effectively identical to those of
Scenario 2.
While it is worthwhile to understand the effect on the

retrieval, there is no reason to expect such large instrumental
offsets for HAT-P-41b. A transit depth offset can be caused by
the necessity of analyzing each instrument differently. For
example, not handling limb darkening consistently and not

Figure 7. Corner plot illustrating the posterior probability distribution from PLATON for the partial cloud and parametric scattering case. For clarity, Rp, Rs, and C/O
are not shown, since their marginalized posterior distributions are the same as in the fiducial case. The 1σ metallicity range is shifted down to = -

+Z Zlog 2.3410 0.64
0.27

 .
Note that, at fc=0 or >Plog 10cloud

2.5, we recover the fiducial marginalized posteriors.
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using consistent orbital parameters (i.e., inclination) for each
analysis might cause an offset, but this is easily fixed and is not
an issue for our data set. Since the instruments’ observations
are from different dates, it is also possible that stellar variability
could cause an offset. However, we have long-term photometry
(Section 2.3) that shows no such variability. Additionally, the
STIS depths are in good agreement with HST UVIS
observations (Wakeford et al. 2020). There is no indication
that this particular observation is biased in any way, and
unresolved companions are confidently ruled out (Evans et al.
2018). The most plausible source is unaccounted-for uncer-
tainties or bias from the spectral analysis, as the WFC3
spectrum derived in this paper is shifted up ∼90 ppm relative to
the literature spectrum (Tsiaras et al. 2018), as noted in
Section 4.2.2. However, this is still well below the 250 ppm
value preferred by the large, uniform offset models. We
determine that offsets beyond the physically motivated values
are unlikely.

6.2.4. Stellar Activity

Section 3.1 demonstrated that HAT-P-41 is consistent with a
quiet star and stellar activity is not expected to impact the
transit spectrum. However, to be conservative, we investigated
whether allowing for greater stellar variability impacted our
conclusions.

The typical signature of unocculted, cool starspots is to
mimic a haze-like slope in the transit spectrum, and such a
signature is clearly absent in the derived transit spectrum of
HAT-P-41b. On the other hand, the signature of hot faculae is a
steep optical drop-off toward shorter wavelengths (Rackham
et al. 2019). Given that we see a drop in transit depths in the
optical, the retrieval could plausibly be affected if faculae
dominate over star spots, and so we focus on a faculae
overabundance.

We assumed that the temperature of the stellar photosphere
equals the stellar effective temperature. We modeled the
faculae following the prescription from Rackham et al.
(2019), and accordingly fixed the faculae temperature to
Tphot+100 K. PLATON weights the contributions from the
different temperature regimes via the fractional coverage
parameter, which represents the overabundance of faculae in
the unocculted regions. Rackham et al. (2019) states that
moderately active F5V-dwarfs will have around 1% faculae
coverage, and up to about 7% on the more active end. This is
the faculae fraction, which is much higher than the faculae
overabundance. However, we set a conservative uniform prior
on the fractional coverage of 0%–10% in order to determine
whether high activity would significant alter our conclusions.

We find that including stellar activity has no effect on the
posterior probability distribution. It may seem that the STIS
data could be explained by a featureless flat line and stellar
activity instead of a TiO feature. However, the overabundance
of faculae necessary to explain the drop in the bluest six points
(0.32–0.42 μm) produces a poor fit to the rest of the STIS data.
Therefore, even when including stellar variability, TiO is
necessary to explain the STIS depths. Allowing a wider range
of faculae temperatures also had no effect.

In summary: there is no evidence of stellar variability from
prior observations, and allowing for activity does not affect the
retrieval.

6.2.5. Mie Scattering

Benneke et al. (2019) recently invoked Mie scattering to
explain anomalously low Spitzer transit depths. Given the
relatively low value of HAT-P-41b’s Spitzer 3.6 μm depth
relative to the rest of the spectrum—the fiducial model’s
predicted depth at 3.6 μm is about 3.3σ away from the
observed depth—we included Mie scattering in our analysis. In
PLATON, Mie scattering can be used in lieu of parametric
Rayleigh scattering.
Each condensate is described by a wavelength-dependent

complex refractive index, n-ik, where n is the real part and k is
the imaginary part of the index. This index explains how that
particular condensate interacts with light with wavelengths
similar to the particle size. PLATON assumes log-normal
distribution in particle size, with geometric standard deviation
0.5, to determine the abundance of different radii condensates
for a given mean particle size (Zhang et al. 2019). The other
relevant factors are cloud height (condensates are only relevant
above that pressure; below it, gray cloud opacity dominates),
particle density at the cloud-top pressure, and condensate scale
height. The condensate scale height is parameterized as a
fraction of the gas scale height, and it describes how the
abundance of Mie scattering particles decreases with height.
The refractive index is fixed for a given condensate, and the
other four parameters are fit for in the retrieval (see Table 10).
PLATON tests one Mie scattering species at a time. Only a

few species expected to form clouds in hot Jupiter atmospheres
have condensation temperatures above HAT-P-41b’s limb
temperature (T∼1600 K; Wakeford & Sing 2015). Those five
(SiO2, Al2O3, CaTiO3, FeO, and Fe2O3) fall into two
phenotypes: “low-n” with real refractive index n≈1.5, and
“high-n” with n≈2.5. Though the k values vary more
significantly, we find that they do not have a significant impact
on the absorption cross section of the condensates. We use n
and k values from Kitzmann & Heng (2018), which we average
over our wavelength range (0.3–5 μm). The n values are flat
over this range, and so the average is an excellent
approximation. We tested retrievals with both the low-n
(corundum; Al2O3) and high-n (hematite; Fe2O3) phenotypes.
The priors for the fittable parameters are shown in Table 10.

The prior for cloud-top pressure is the same as the fiducial
model. Since the condensate radii must be such that they cause
a relative drop in opacity around 4 μm (i.e., they increase
opacity in the optical by more than in the mid-infrared), we can
constrain the mean particle size reasonably well. We set the
prior to be log-uniform with a range that contains all plausible
values. The number density is not known ahead of time, so we
set an uninformative log-uniform prior; widening the prior
further did not affect the retrieval. Finally, it is unclear what
physical constraints there are on condensate scale height.
Fortney (2005) finds that condensate scale heights can be one-
third of the gaseous scale height for hot Jupiters, and Benneke
et al. (2019) found Hpart/Hgas≈3 for a sub-Neptune. Using
these values as guides, we set a conservative uniform prior on
the fractional scale height and constrain it to be in the
range 0.1–10.
Including Mie scattering opacity does not noticeably affect

the results of the retrieval, and the Mie scattering parameters
are not constrained by the retrieval. The inferred small gaseous
scale height—which dampens features and is necessary to
explain STIS and WFC3 feature sizes—makes it difficult to
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explain the large variations in the radius ratio. Combining Mie
scattering with partial clouds—physically, an atmosphere with
patchy clouds and Mie scattering particles distributed only
above those clouds—alleviates the issue of explaining the large
transit depth variation. Since partial clouds allow for higher
scale heights, Mie scattering could then cause a larger drop in
transit depth near Spitzer without needing to invoke an
unreasonably high fractional scale height.

Figure 8 shows the corner plot for this model. Though the
Mie scattering parameters are not constrained, at number
densities above ∼108 m−3, particle radii around 0.15 μm, and
condensate scale heights greater than the gaseous scale height,
lower metallicity and temperature values are possible. This is
because added Mie opacity tends to mute features near its peak
opacity. This provides a physical reason to expect smaller
spectral features, and so a less small scale height is necessary to

Figure 8. Corner plot illustrating posterior probability distribution from PLATON for the fiducial plus Mie scattering and partial clouds model. For clarity, Rs, and
C/O are not shown, since their marginalized posterior distributions are the same as in the fiducial case. The 1σ metallicity range is shifted down a bit to

= -
+Z Zlog 2.2710 0.55

0.30
 . Note that we recover the fiducial marginalized posteriors when any of the mean particle size, the particle number density, or the condensate

scale height are too small.
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fit the features. The net impact is a decreased—but still
supersolar—median metallicity of = -

+Z Zlog 2.27 .10 0.55
0.30



6.3. Model Selection

Section 6.2 stepped through the PLATON retrieval for
increasingly complex models, examining both how each
additional parameter affected the posterior and why it affected
it in that way. While knowing the effect of each model
assumption is useful, it is important to determine a preferred
model in order to effectively convey the results. In this section,
we use Bayesian model comparison to select the best model.

Model selection is as important as parameter estimation in
atmospheric retrievals. We determine the preferred model by
using a combination of physical arguments and Bayesian
statistics. Specifically, we check whether it is necessary to
consider more complicated physics using the odds ratio, which
is the Bayes factor between models (defined as the ratio of their
evidences) multiplied by their prior probability ratio. The prior
probability ratio is typically assumed to be one (i.e., the models
are assumed to be equally likely). The odds ratio determines
whether one model should be preferred over another by
intrinsically rewarding better fits while punishing overcompli-
cated structure (Trotta 2008). This is entirely defined by the
data and model, assuming appropriately uninformative priors
are used. We compare the Bayesian evidences of each model in
order to determine which should be favored.

The Bayesian evidences and 1σ metallicity ranges for every
model discussed in Section 6 are shown in Table 11. The 1σ
range is represented by the median metallicity with quantiles
(i.e., the central 68% of metallicity values). The 1σ metallicity
ranges are included to illustrate the uncertainty caused by
model choice. The retrieved atmospheric metallicities are
remarkably consistent across the models, and a supersolar
metallicity is ubiquitous. This demonstrates that, under
PLATON’s assumptions, supersolar metallicity is a robust
conclusion.

Figure 9 emphasizes the insensitivity of the atmospheric
parameters to model assumptions. This shows the one-
dimensional marginalized posterior distributions for metalli-
city, temperature, and C/O for five of the models we examined.

These specific models are shown because they are “interesting”
in that they differ from the fiducial model’s posteriors the most.
We emphasize that these are these are the models that most
differ from the fiducial case. While including instrumental
offsets tends to flatten the distributions, the peaks of all of the
models are astoundingly consistent.
We define the columns relevant to model selection here:

1. ln is the natural log of the Bayesian evidence. A higher
value indicates the model is better able to describe the
data without overfitting.

2. Weight. Weight assigned to each model for Bayesian
model averaging based on Bayesian evidence and prior
probability (Section 6.3.1). This can be roughly inter-
preted as the probability of each model.

3.  is the odds ratio in favor of a model over the fiducial
model. It is the product of their Bayes factor and their
prior probability ratio. The prior probability ratio is often
assumed to be one, as is the case here. This can be

Table 11
Evidence and Metallicity Ranges for Each Plausible PLATON Model

Model Zlog10
a Zb ln c Weight d Interpretatione

Fiducial (F) -
+2.41 0.25

0.23 145–437 551.6 0.0 Ref Default model

F + Partial Clouds (PC) -
+2.38 0.37

0.22 102–398 551.7 0.0 1.1 Inconclusive

F + PC + Parametric Scattering -
+2.34 0.64

0.27 50–407 550.7 0.0 0.4 Inconclusive

F + PC + Stellar Activity -
+2.41 0.41

0.27 100–479 551.8 0.0 1.3 Inconclusive

F + Mie Scattering -
+2.41 0.29

0.24 132–447 551.0 0.0 0.6 Inconclusive

F + PC + Mie -
+2.27 0.55

0.3 52–372 551.8 0.0 1.3 Inconclusive

F + PC + 3 Gaussian Offsets -
+2.33 0.25

0.23 120–363 556.4 0.33 122 Strongly preferred

F + PC + 3 Uniform Offsets -
+2.26 0.4

0.24 72–316 556.9 0.58 213 Strongly preferred

F + PC + 2 Uniform Offsets -
+2.30 0.39

0.26 81–363 554.9 0.08 29 Moderately preferred

Notes. Only the models including instrumental offsets are preferred over the fiducial model. No model assumption changes the conclusion of a supersolar atmospheric
metallicity.
a Median log metallicity with 16% and 84% quantiles, in units of log solar metallicity.
b 68% credible interval for metallicity, in units of solar metallicity.
c Natural log of Bayesian Evidence.
d Odds ratio between model and the fiducial model.
e According to Jeffreys’ scale (Trotta 2008).

Figure 9. Marginalized posterior distributions for metallicity, temperature, and
C/O from select models compared to solar values. Note that stellar C/O=
0.19 (Table 4). Though some models have low-metallicity tails, the 68%
credible interval for metallicity is robust (Table 11). Offsets allow for higher
temperatures and C/O ratios, while both parametric and Mie scattering allow
for lower temperatures.
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directly interpreted: an odds ratio of 100 indicates 100:1
odds in favor of the more complex model. Values less
than one indicate evidence against the corresponding
model.

4. Interpretation. This is the empirically derived inter-
pretation of the odds ratio based on the Jeffreys’ scale
(Trotta 2008).

Table 11 contains every notable model we considered. We
did not do an iterative combination of every model scenario, for
two primary reasons. Most importantly, we are wary of
overfitting the data. The fiducial model is already an excellent
fit to the data (c =n 1.092 ), so we must be careful about adding
complications. Layering multiple parameter physical processes,
such as Mie scattering and stellar activity, involves an extra
five parameters and significantly overcomplicates the fit.
Instead, we only combine complications when there is a
physically motivated reason to do so, e.g., partial clouds. The
second reason is computational difficulty. Some model
combinations have enough free parameters to describe the data
with many different combinations, and so the retrieval does not
converge on the timescale of weeks. Mie scattering combined
with offsets falls in this category. However, given the
overfitting concerns and the lack of evidence for just Mie
scattering, we do not think this is a worrying omission.

It is generally best practice to assume the simplest model
unless there is evidence in favor of extra parameters. That is
why we list the fiducial model as the reference, and determine
the evidence of the more complicated models. If the evidence
of the model with extra parameters is not significantly greater,
it means that the ability to explain to data was not improved
enough to justify the added complexity. This essentially
quantifies Occamʼs razor.

Following this logic, we determine the “fiducial + partial
clouds + 3 Gaussian offsets” model to be the best model. Only
the Gaussian offset and uniform offset models are preferred
over the fiducial model. While the three uniform offsets model
has the highest evidence/weight, the odds ratio between that
and the Gaussian offsets model is 1.75. This is inconclusive on
the Jeffrey’s scale, meaning we are unable to distinguish
between the models by evidence alone. Instead, we favor the
Gaussian offsets model as more plausible, since its Gaussian
priors are physically motivated by common-mode corrections.

The evidence for partial clouds is inconclusive; however,
partial clouds are more plausible than assuming 100% cloud
coverage, as argued by MacDonald & Madhusudhan (2017) as
well as Welbanks & Madhusudhan (2019). Therefore, to be
conservative, we choose the model that accounts for partial
clouds as the “best” model.

The odds ratio only works in a direct comparison of two
models and is not a statement on the absolute goodness-of-fit.
The reduced chi-squared test statistic is a useful sanity check to
ensure that the model is able to explain the variance in the data.
The value for the best model is an ideal c =n 1.02 . The results
section (Section 7)—and the abstract values—are based on
parameter estimation from the “fiducial + partial cloud +
Gaussian offsets” model.

6.3.1. Bayesian Model Averaging

Instead of model selection, it is possible to take a weighted
average of the results from each model and therefore

automatically take their respective evidences into account
(Gibson 2014; Wakeford et al. 2016, 2018). The benefit of
Bayesian model averaging is the ability to quantify uncertainty
in model selection, as well as avoiding having to arbitrarily
choose between models with slightly different evidences.
However, it requires a few assumptions: it is only valid if the
set of models comprises the full model space, i.e., at least one
model is a good description of the data. The weight-averaged
uncertainties assume Gaussian-distributed posteriors, which is
not strictly correct. However, it is useful in combining
information from every model.
Here, we show the assumptions we make to use Bayesian

model averaging. The cn
2 values for the models we tested are

clustered around one, so it is fair to assume that a “correct”
model is contained in the set. Figure 9 shows that, although the
posteriors are not perfectly Gaussian, they have sharp,
unimodal peaks, and so the uncertainty derived from margin-
alization is informative.
The model weights are defined by Equation 2 (adapted from

Gibson (2014)). Here, Wq is the weight assigned to model q,
P M Dq( ∣ ) is the the likelihood of model q given the data, and
P D Mq( ∣ ) is the likelihood of the data given model q, which is
equivalent to the Bayesian evidence of model q, Eq. The
denominator is a normalization term, summed over N models.
We assume a conservative prior that each model is equally
likely (P(Mi)=1 for all i).
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The marginalized log metallicity with 1σ uncertainties is
calculated from Equations (15) and (16) from Wakeford et al.
(2016). The result is = -

+Z Zlog 2.2910 0.36
0.24

 ( -
+194 109

144×Ze).
As expected, the highest-weighted models are the offset
models. Bayesian model averaging demonstrates that, in
PLATON’s chemical equilibrium framework, a supersolar
metallicity is the most likely result even after accounting for
uncertainty in model selection.
The marginalized metallicity is useful as a reference, but it is

valuable to give the metallicity distribution for each specific
model assumption. Marginalization is most appropriate when
the specific model parameters are unimportant; however, we
are interested in the impact that modeling assumptions have on
the atmospheric parameters. We emphasize that, even for
apparently “data-defined” methods, many assumptions have to
be made, and those should be explicitly stated for an
appropriate interpretation.

7. Results for the Favored PLATON Model

In Section 6.3, we argued that the best PLATON model
scenario is the fiducial model with partial clouds and physically
motivated, Gaussian prior instrumental offsets added. The
retrieved median spectrum with uncertainty contours is shown
in Figure 10. It is an excellent fit to the data, with c =n 1.02 . In
this section, we discuss the details of the retrieved atmospheric
parameter values.
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7.1. Summary of Retrieved Parameters

The posterior distribution corner plot is shown in Figure 11.
Both atmospheric metallicity and temperature are well-constrained,
and the C/O ratio, though relatively flat, has a strict upper limit.
The median retrieved metallicity is supersolar ( =Z Zlog10 

-
+2.33 0.25

0.23), and solar metallicity is inconsistent to 3σ (lower limit
4.8×Ze). As noted in Section 5.3, PLATON’s derived metallicity
is a proxy for [O/H], enabling comparison with its host star’s
oxygen abundance ([O/H]=0.37; Table 4). PLATON determines
HAT-P-41b to be metal-enriched relative to its host star
(( = -

+Z Zlog 1.9710 star 0.25
0.23), and it is inconsistent with the stellar

metallicity to to 3σ (lower limit 2.1×Zstar). The planetary C/O
( -

+0.44 0.15
0.18) has a 3σ upper limit of 0.83. Though the planetary C/

O is technically inconsistent with the stellar C/O to 1σ (0.19;
Table 4), the comparison is not valid, as the planetary C/O prior
had a computational lower limit of 0.20 and the posterior has
significant likelihood at that limit. This “piling” at the prior
boundary implies that the planetary C/O is consistent with the
stellar C/O. The median isothermal limb temperature
( = -

+T 1710limb 80
100 K) is close to the equilibrium temperature of

the planet (Teq=1960K), which implies an efficient heat
recirculation. These parameters lead to a high mean molecular
weight (μ∼5.5 AMU) atmosphere with a scale height of about
320 km.

The retrieved results are consistent with a clear atmosphere.
Though cloud-top pressure and cloud fraction are uncon-
strained, their joint marginalized posterior is constrained. A
uniform gray cloud is only allowed deeper than ∼10Pa
(0.1 mBar), and clouds above that pressure are only possible if
they cover less than about 40% of the limb. Hazes are
dispreferred by model selection, and the median scattering
opacity was 50×weaker than Rayleigh scattering in the model
that allowed parametric scattering.

The retrieved relative shift between the STIS G430L and
G750L instruments is 120 ppm, due in part to the model
attempting to align their overlapping regions. A downshift for
the WFC3 data is preferred (WFC3 offset=−132±50 ppm).
The stellar radius, the planetary mass, and the planetary radius

are consistent with the prior values. The planetary mass and
stellar radius are, as expected, dominated by their priors. The
planetary radius (Rp=1.59±0.06) is at the reference
pressure of 1Bar, and when calculated at the planet’s
photosphere, it is consistent with the planetary radius derived
based on stellar parameters from TIC-8.

7.2. Evidence of Water and Optical-wavelength Absorbers

While the spectral features in STIS, WFC3, and Spitzer are
attributed by PLATON to TiO, H2O, and CO2, respectively, the
retrieval only robustly detects H2O—the H2O abundance is
constrained by observations, while the abundances of other
species are primarily constrained by the assumption of
chemical equilibrium. We note that, while CO is more
abundant than CO2, CO2 has a much larger cross section at
4.5 μm, such that even with a smaller abundance, its opacity
dominates over that of CO at the temperatures and C/O ratios
inferred by the retrieval.
We determine whether a species is detected by finding the

odds ratio between the best model with and without opacity
from a particular species. This breaks the assumption of
chemical equilibrium, so it is not strictly correct, but it is a
useful heuristic nonetheless. A species is considered detected
only when the odds ratio significantly favors the model with the
species’ opacity. Table 12shows the odds ratios—and their
more familiar frequentist analog, the detection significances
(Benneke & Seager 2013)—for several relevant spectro-
scopically active species.
The odds ratio in favor of H2O is ∼46630, indicating that the

model with water is 46630×more likely than the model
without water opacity. This is equivalent to a 5.0σ detection in
frequentist terms. The odds ratio in favor of CO2 is 3.3, which
is barely enough evidence to claim a weak detection. PLATON
finds no evidence of Na, and CO is dispreferred. The odds
ratios for TiO and VO are 2.1 and 2.3, respectively, and these
are not favored enough to claim detections (less than 2σ).
However, TiO and VO are only seen as nondetections because
they have similar cross sections. When TiO opacity is ignored,

Figure 10. Median retrieved model with 1σ and 2σ uncertainty contours for the favored PLATON model (fiducial model with partial clouds and instrumental shifts
with physically motivated Gaussian priors).

(The data used to create this figure are available.)

22

The Astronomical Journal, 161:51 (39pp), 2021 February Sheppard et al.



the retrieval can compensate because VO opacity is able to
describe the STIS feature just as well as TiO. If we ignore both
VO and TiO, then the model cannot describe the STIS data as
well, and so the odds ratio in favor of TiO/VO is 9.4 (2.7σ).
Therefore, we find suggestive evidence of metallic oxide
opacity, but we are unable to discern whether it is due to TiO or
VO. Based on the assumption of chemical equilibrium at the
retrieved temperatures, PLATON attributes the STIS feature to
TiO because it is more abundant and opaque in the spectro-
scopically active region for a solar Ti/V ratio.

8. AURA Retrieval Analysis and Results

We perform a second, complementary atmospheric retrieval
analysis: a series of free-chemistry retrievals on HAT-P-41b using
AURA (5.2) to constrain the atmospheric properties at the day–
night terminator of the planet while allowing for deviations from
chemical equilibrium. First, we consider the presence of different
chemical species in the atmosphere of HAT-P-41b using its full
broadband spectrum. Next, we consider the presence of possible
transit depth offsets between data sets and their possible impact in
the derived chemical abundances and associated metallicities.

Figure 11. Corner plot for the best PLATON model (fiducial with partial clouds and Gaussian offsets). Here, Rs and Mp are prior-dominated and are excluded for
clarity. Offsets are given in parts per million; for example, the median WFC3 offset indicates the retrieval favors shifting the WFC3 depths down by ∼132 ppm.
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8.1. Evidence of Water and Optical-wavelength Absorbers

We perform a full retrieval on the broadband spectrum of
HAT-P-41b and present the observations and retrieved median
spectrum in Figure 12. The full retrieval provides constraints
on the presence of H2O, and provides indications for the
presence of Na and/or AlO in the optical. The full retrieval
finds log10(X = - -

+1.65H O 0.55
0.39

2 ) , log10(X = - -
+3.09Na 1.83

1.03) , and
log10(X = - -

+6.44AlO 0.91
0.66) . While the retrieval with PLATON

prefers TiO/VO to explain the STIS observations, the retrieval
with AURA does not. Instead, the latter prefers a combination
of Na and AlO. The retrieved TiO abundance is low and
unconstrained (log10(X = - -

+9.58TiO 1.50
1.37) ). Neither the CO nor

CO2 abundances are constrained by the retrieval. While the
cloud/haze parameters are not tightly constrained, our retrieval
indicates a coverage fraction of f = -

+0.25 0.16
0.26¯ consistent with a

mostly clear atmosphere. The temperature profile of the
atmosphere is mostly unconstrained. We infer the temperature
near the photosphere, at 100 mbar, to be = -

+T 1345 206
349 K. The

posterior distributions for the relevant parameters are shown in
Figure 13.

We utilize this full retrieval as a reference model to perform
a Bayesian analysis and assess the impact of not considering
some of these parameters in the models. This change in model
evidence is then converted to its more familiar frequentist
counterpart, a detection significance (DS), following Benneke
& Seager (2013). Table 13 shows the different models
considered, their model evidence, DS, and c2¯ . We find a
robust detection of H2O at a 4.89σ confidence. There is
suggestive evidence of Na and/or AlO with confidence levels
of 2.09σ and 2.58σ, respectively. The removal of TiO from the
models results in an increase in the model evidence, indicating
that this molecule is disfavored to be present in our models. VO
is similarly undetected. However, removing opacity from the
three primary metal oxides (TiO, VO, and AlO), finds a
moderate-to-strong “detection,” with 3.59σ confidence. This is
similar to PLATON, which did not find evidence of TiO or VO
individually, but found weak-to-moderate evidence of their
combined presence (Section 7.2). This can be interpreted as
follows: AURA is confident (to 3.6σ) that the sharp dip in the
blue STIS data (0.4–0.5 μm) is a real molecular feature due to a
metallic oxide. The retrieval finds that the most likely candidate
for the metallic oxide is AlO, as shown by its 2.6σ preference,
whereas TiO and VO are individually dispreferred.
We assess the retrieved H2O abundance relative to

expectations from thermochemical equilibrium for solar
elemental compositions (Asplund et al. 2009). Assuming a
solar composition and 50% of the available oxygen in H2O, the
retrieved H2O abundance corresponds to a log metallicity ([O/
H]) of = -

+Z Zlog 1.7210 0.55
0.39

 (metallicity of -
+53 38

82×Ze). We
also compare the retrieved H2O abundance to the stellar
metallicity of the host star ([O/H]=0.37, Table 4) and obtain
a value of = -

+Z Zlog 1.3510 star 0.55
0.39 (metallicity -

+23 17
33×Zstar).

We consider the possibility of fitting the data using a simpler
model consisting mainly of the parameters that are reasonably
constrained by the full model. The simpler model considers the
chemical abundances of H2O, Na, CO, AlO, an isothermal P–T
profile, and a clear atmosphere. The retrieved median fit and
confidence contours are shown in Figure 14. The simplified
model retrieves values consistent with the full model. The

Figure 12. Retrieved spectrum of HAT-P-41b using STIS, WFC3, and Spitzer data. Observations are shown using blue markers. Retrieved median spectrum is shown
in red, while the 1σ and 2σ regions are shown using shaded purple areas.

(The data used to create this figure are available.)

Table 12
PLATON Species Detection Evidences

Detection
Species a Significanceb

H2O 46630 5.0σ
TiO 2.1 1.9σ
VO 2.3 1.9σ
TiO/VO 9.4 2.7σ
Na 1.1 1.2σ
CO2 3.3 2.1σ
CO 0.4 N/A

Notes.
a Odds ratio between model and the preferred PLATON model (fiducial model
with partial clouds and Gaussian-prior instrumental shifts included).
b Benneke & Seager (2013).

24

The Astronomical Journal, 161:51 (39pp), 2021 February Sheppard et al.



retrieved values are log10(X = - -
+1.65H O 0.63

0.40
2 ) , log10(X =Na)

- -
+2.60 1.10

0.94, log10(X = - -
+5.81AlO 0.66

0.51) , and =Z Zlog10 

-
+1.72 0.63

0.40. The retrieved isothermal temperature is
= -

+T 1120 140
170 and consistent with the inferred temperature at

100 mbar from the full retrieval. The posterior distribution for
the retrieved parameters is shown in Figure 15.

We use these retrieved parameters to generate a set of
forward models to assess the spectroscopic contribution from
each chemical species. Figure 14 shows that the WFC3

observations are better explained by the H2O absorption feature
at ∼1.4 μm driving its strong detection in the spectrum of
HAT-P-41b. On the other hand, a series of chemical species in
the optical can provide some degree of fit to the STIS
observations. In the optical, between ∼0.5 and 0.7 μm, the
broadened wings of Na along with its absorption peak provide
a fit to observations. AlO provides some fit to the substructure
present in the STIS observations, particularly the increased
transit depth between 0.4 and 0.5 μm. Finally, the abundance of
CO is not constrained, and its contribution to the spectrum is

Figure 13. Posterior distributions of the relevant parameters for the full retrieval (Model 1 in Table 13) using STIS, WFC3, and Spitzer data. The abundances of H2O,
Na, and AlO are constrained, while the cloud and haze parameters are not constrained. Parameter T0, the temperature at the top of the atmosphere (10−6 bar), is shown
as a subset of the P–T parameters used in the model.
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minimal. CO is responsible for small changes in the optical and
infrared that are well within the error bar of the observations.

Our retrieval analysis of the broadband transmission
spectrum of HAT-P-41b provides excellent fits to the data;
using our fiducial model (Model 1), we obtain a best-fit c2¯ of
0.93 and ln( = 559.1) . We note that we do not require
additional continuum opacity sources (e.g., H−) in our models
in order to explain the data, as recently claimed by Lewis
et al. (2020).

8.2. Possible Offsets in the Data

Last, we consider the presence of offsets in the data and their
effect on the retrieved atmospheric properties. We consider the
three scenarios from Section 5.1.2. We note that these retrieved
offsets are relative to the atmospheric model and that the
Spitzer observations remain unchanged in all scenarios. We
consider both Gaussian and uniform priors, as seen in Table 8.

We present the results of considering the presence of three
offsets with Gaussian priors informed by the analysis of the
white light transit curves (Model 8; Scenario 1 from
Section 5.1.2). These priors are shown in Table 8. The
retrieved shifts are - -

+52 63
61 ppm for G430L, -

+80 56
59 ppm for

G750L, and - -
+91 50

48 ppm for WFC3. Similar to PLATON, the
retrieval generally prefers to increase the G750L depths,
primarily motivated by aligning the transit depths in the
overlapping wavelength region between G430L and G750L.
The retrieval also prefers to decrease WFC3 depths in order to
better capture the Spitzer 3.6 μm depth. The retrieved
abundances are log10(X = - -

+1.91H O 0.68
0.53

2 ) , log10(X =Na)
- -

+2.38 1.33
0.81, and log10(X = - -

+6.64AlO 0.96
0.70) . Although the

retrieved H2O abundance corresponds to a lower metallicity
estimate, the derived range = -

+Z Zlog 1.4610 0.68
0.53

 is
consistent with the fiducial model and describes a
metal-rich atmosphere. The median metallicity is superstellar

Figure 14. Retrieval of HAT-P-41b using a simplified model compared with the fiducial parameter set (see Section 8.1). Observations are shown using blue markers.
Retrieved median spectrum is shown in red, while the 1σ and 2σ regions are shown using shaded purple areas. Forward models using the retrieved median parameters
show the contributions to the spectra due to individual chemical species. Forward models shown exclude absorption due to H2O (blue), Na (orange), CO (cyan), and
AlO (brown).

Table 13
Retrieved Models

# Model log10(XH O2 ) log10(XNa) log10(XAlO) Z Zlog10  STISShift WFC3Shift ln( ) c2¯ DS

1 Full Model - -
+1.65 0.55

0.39 - -
+3.09 1.83

1.03 - -
+6.44 0.91

0.66
-
+1.72 0.55

0.39 N/A N/A 559.1 0.93 Ref.

2 No H2O N/A - -
+2.41 2.99

0.99 - -
+5.71 1.39

0.99 N/A N/A N/A 548.9 1.37 4.89

3 No Na - -
+1.62 0.67

0.42 N/A - -
+6.90 1.05

0.84 N/A N/A N/A 558.0 0.95 2.09

4 No AlO - -
+1.49 0.70

0.35 - -
+4.32 4.31

1.88 N/A N/A N/A N/A 557.0 1.03 2.58

5 No TiO - -
+1.70 0.56

0.41 - -
+2.97 1.25

0.95 - -
+6.39 0.88

0.66 N/A N/A N/A 559.7 0.92 N/A
6 No Metal Oxides - -

+1.52 0.91
0.38 - -

+3.59 1.47
1.28 N/A N/A N/A N/A 554.2 1.21 3.59

7 Simpler Model - -
+1.65 0.63

0.40 - -
+2.60 1.10

0.94 - -
+5.81 0.66

0.51
-
+1.72 0.63

0.40 N/A N/A 560.0 0.89 N/A
8 Gaussian ShiftsG430L,

G750L, and WFC3
- -

+1.91 0.68
0.53 - -

+2.38 1.33
0.81 - -

+6.64 0.96
0.70

-
+1.46 0.68

0.53 G430L
- -

+51 62
60G750L -

+79 56
59

- -
+91 56

59 562.0 0.90 N/A

9 Uniform ShiftsG430L,
G750L, and WFC3

- -
+2.96 0.88

0.98 - -
+2.43 1.34

0.84 - -
+7.05 0.94

0.75
-
+0.40 0.88

0.98 G430L

-
+1 156

144G750L -
+175 160

150
- -

+189 94
90 561.8 0.88 N/A

10 Uniform ShiftsSTIS
and WFC3

- -
+3.34 0.86

1.00 - -
+3.43 2.19

1.35 - -
+6.98 0.78

0.77
-
+0.03 0.86

1.00
-
+89 156

166 - -
+203 97

97 560.7 0.89 N/A

Notes.The metallicity is approximated from water abundance (see Section 8.1 for details). N/A means that the parameter was not considered in the retrieval or that it
is impossible to estimate the detection significance (DS) because the model has a larger amount of evidence than the reference model (model 1). Shifts are given
in ppm.
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( = +
-Z Zlog 1.0910 star

0.53
0.68/ ), though it is consistent with

stellar metallicity to within 2σ.
Second, we present the results for the case with three

uniform shifts between HST-STIS G430L, HST-STIS G750L,
and HST-WFC3 observations (Scenario 2 from Section 5.1.2).
The retrieved G430L shift is consistent with 0 ( -

+1 156
144 ppm), but

the retrieval prefers a large positive G750L offset ( -
+176 160

151

ppm) and a large negative WFC3 offset (- -
+189 94

91 ppm). In
addition to aligning the overlapping G430L-G750L region, it is
possible that this large G750L shift is due to the model forcing
the data to match features it finds easier to explain. This

uncertainty is the danger in using uniform prior offsets,
especially in an already-flexible free-chemistry retrieval. The
retrieved abundances are shown in Table 13 as Model 9, and
are log10(X = - -

+2.96H O 0.88
0.98

2 ) , log10(X = - -
+2.43Na 1.34

0.84) , and
log10(X = - -

+7.05AlO 0.94
0.75) . While the retrieved abundances for

these three species are consistent within 1σ with the full
unshifted model, the retrieved H2O abundance corresponds to a
lower metallicity estimate consistent with solar, subsolar, and
substellar values = -

+Z Zlog 0.4010 0.88
0.98

 .
Last, we present the results accounting for offsets in the

STIS and WFC3 observations using a uniform prior, while

Figure 15. Full posterior distributions for the simpler model, Model 7 in Table 13.
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keeping the Spitzer observations unshifted (Scenario 3 from
Section 5.1.2). The retrieval results in a shift in the STIS
data of -

+90 157
167 ppm and a shift in the WFC3 data of - -

+204 98
97

ppm. While the retrieved value for the STIS observations is
consistent with no shift, the WFC3 observations preferentially
retrieve a negative offset. The derived abundances, shown
as Model 10 in Table 13, are log10(X = - -

+3.34H O 0.86
1.00

2 ) ,

log10(X = - -
+3.43Na 2.19

1.35) , log10(X = - -
+6.98AlO 0.78

0.77) . The H2O
abundance, like Model 9, corresponds to a metallicity
consistent with solar and subsolar values: =Z Zlog10 

-
+0.03 0.86

1.00.
Figure 16 shows the retrieved median models and confidence

contours along with their respectively shifted observations for
the cases described in this section (Models 8, 9, and 10).

Figure 16. Retrieved spectrum of HAT-P-41b allowing for offsets in the STIS and WFC3 data sets. Observations are shown using blue markers and are shifted
according to the models’ retrieved median shifts. Retrieved median spectrum is shown in red, while the 1σ and 2σ regions are shown using shaded purple areas. Top:
three shifts with Gaussian priors (Model 8) and retrieved median offsets of ∼−50 ppm for STIS G430L, ∼80 ppm for G750L, and ∼−90 for WFC3. Middle: three
shifts with uniform priors (Model 9) and retrieved median offsets of ∼0 ppm for STIS G430L, ∼180 ppm for G750L, and ∼−190 for WFC3. Bottom: two shifts with
uniform priors (Model 10) and retrieved median offsets of ∼90 ppm for STIS and ∼−200 ppm for WFC3.
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The models considering instrumental shifts are all preferred
over the fiducial model at above the 2σ level. The model with
Gaussian priors has a preference at the 2.9σ level, followed by
the model with three uniform shifts at a 2.8σ level. The model
with two uniform shifts is preferred over the fiducial model at
2.3σ. We note that, while both models with three offsets are
similarly preferred over our fiducial model, the associated
metallicity ranges are different. The model with three uniform
shifts retrieves an H2O abundance corresponding to a
metallicity estimate consistent with substellar and stellar
values. On the other hand, the model with Gaussian priors
retrieves an associated metallicity range that is mostly super-
stellar and in agreement with the fiducial model. These results
highlight the sensitivity of the inferred metallicity ranges to
possible large offsets between instruments. Model comparisons
suggest a preference for the models considering offsets, though
it is inconclusive between these models. We favor the more
physically plausible Gaussian prior model (i.e., Model 8) as the
reference for our discussion (Section 9).

9. Discussion

9.1. Comparison between Retrieval Methods

9.1.1. Results Comparison

In this section, we compare the results from the preferred
PLATON and AURA models. These include the fiducial model
with partial clouds and Gaussian instrumental offsets for
PLATON (Section 6.2.3) and the Gaussian instrumental offset
model for AURA (Model 8; Section 8.2).

The similarities reveal the most robust conclusions of our
analysis, since they are retrieved despite the many different
assumptions that went into each method. Notably, both
retrievals robustly find a metal-rich atmosphere with metallicity
(defined as O/H) inconsistent with the solar metallicity at >2σ.
Both methods find a decisive (>4.8σ) water vapor detection,
and at least a moderate detection (>2.7σ) of a non-haze gas
absorption feature in the optical. Further, both PLATON and
AURA retrievals are consistent with a mostly clear atmosphere,
with neither finding strong evidence of haze or uniform, high-
altitude gray clouds.

Though the atmospheric properties derived from PLATON
and AURA are similar, there are noteworthy differences.
AURA infers a cooler limb temperature at 100 mbar
( -

+1320 K200
270 compared to -

+1710 K80
100 for PLATON) as well

as a lower metallicity of = -
+Z Zlog 1.4610 0.68

0.53
 compared to

= -
+Z Zlog 2.3310 0.25

0.23
 for PLATON, a difference of 1.3σ.

This translates to -
+29 23

69×Ze for AURA and -
+214 88

149×Ze.
The optical absorber also differs: AURA determines the best
description of the STIS feature to be absorption from sodium
and AlO, whereas PLATON prefers some combination of TiO
and VO absorption. Finally, AURA makes no claim on the C/
O ratio, as it is a free retrieval framework and no C-bearing
species are detected or meaningfully constrained. On the other
hand, the chemical equilibrium assumption allows PLATON to
find a 3σ upper limit on the C/O ratio of C/O<0.83.

To further contextualize the results, we added the function-
ality to retrieve the abundance profiles of relevant molecules in
PLATON. We show abundance profiles for six spectro-
scopically relevant species from AURA, which are also
included in PLATON—H2O, CO, CO2, Na, TiO, and VO—in
Figure 17. We emphasize that enforcing chemical equilibrium

narrows the abundance constraints, and we are not reporting
these abundances. Instead, they should be interpreted as the
expected abundance profiles under the conditions of stable
chemical equilibrium for the reported temperature, metallicity,
and C/O ratio. As an example, we find no observational
constraint on CO, but its abundance is well-defined under
chemical equilibrium for the temperatures and metallicities that
we do observationally constrain via the water feature. Still,
these profiles provide a useful baseline for comparison to free-
chemistry retrieval abundances.
The abundance profiles for the optical-wavelength absorbers

reflect the disagreement on the primary gas absorber: AURA
prefers Na, and so it retrieves ∼10×more Na than PLATON
and significantly less TiO and VO. Note that the decreasing
TiO and VO abundance with increasing pressure for PLATON
is due to those molecules condensing out of the atmosphere.
PLATON’s inferred water abundance is typically a few times
greater than AURA’s, reflecting the difference in inferred
metallicities. CO2 and CO are unconstrained by AURA, while
PLATON finds a high abundance of CO2 is consistent with the
Spitzer observations. This difference is expected, given that
PLATON finds weak evidence of CO2 while AURA found
none. Interestingly, this may relate to AURA’s only chemical
constraint, which is that CO2 must be less abundant than CO
and H2O, due to the inferred temperatures (Section 5.2).
In total, AURA finds a cooler atmosphere with less oxygen

but a large sodium enrichment to explain the optical absorption,
while PLATON finds a hotter atmosphere with more oxygen
and TiO/VO absorption in the optical.

9.1.2. Impact of Retrieval Model Assumptions

The differences between a free-chemistry retrieval (AURA)
and one constrained by chemical equilibrium (PLATON) are
the natural result of the different assumptions made by each
method. We therefore consider the PLATON and AURA
retrievals to be two orthogonal analyses. We examine the
impact of the differences by first explicitly listing the notable
assumptions in each method, and then by providing the
rationale for which assumptions are driving the differences.
The relevant methodological differences for PLATON as

compared to AURA are: (1) the assumption of chemical
equilibrium, (2) fixing the elemental ratios between all metals
other than carbon to their solar values, (3) assuming an
isothermal profile for the atmosphere, (4) not including opacity
from AlO, and (5) not including the Allard et al. (2019)
H2-broadened Na line profile.
We find that the Allard et al. (2019) H2-broadened Na line

profile is the key driver in the differences between the
retrievals, and flexible element abundances and chemical
equilibrium also play roles. AURA is the more flexible
retrieval, so we first describe its solution before addressing
why PLATON differs.
AURA’s lower-temperature solution is preferred for being

able to explain the H2O feature in the WFC3 spectrum, while
also explaining the STIS data with H2-broadened Na absorption
and capturing the Spitzer data. AURA is able to provide a fit to
the STIS data by independently increasing the Na abundance
and by also invoking AlO at relatively low temperatures. At
this lower temperature (T∼1300 K), the amount of oxygen
necessary for the water abundance and scale height to explain
the observed water feature is about 29×Ze, with a mean
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molecular weight of about 2.7AMU and a scale height of
about 440 km.

Since PLATON has not yet incorporated the H2-broadened
Na line profile, the low-temperature solution is a relatively poor
fit to the STIS data. Instead, TiO/VO are needed to explain the
STIS absorption feature, and these are only abundant enough in
chemical equilibrium (with fixed metal ratios) at around
1650 K. At this higher temperature, a higher mean molecular
weight is required for the same scale height, which must be
small enough to explain the molecular feature sizes as well as
the dominance of TiO/VO absorption over Rayleigh scattering.
The atmospheric metallicity necessary to achieve the higher
mean molecular weight is the much higher ∼200×Ze.
Therefore, the differences make sense in light of the stricter
assumptions.

To provide more support to this idea, we compare our results
with those of a third retrieval method, ATMO (Amundsen et al.
2014; Tremblin et al. 2015, 2016, 2017; Sing et al. 2016),
which acts as a middle ground between PLATON and AURA.
ATMO’s spectral retrievals can further help us to gain insight
into the effect of retrieval assumptions, as it includes the Allard
et al. (2007) pressure-broadened sodium line but also has the
added flexibility of performing a free-element equilibrium-
chemistry retrieval. With this assumption for the chemistry, the
elemental abundances for each model are freely fit and
calculated in equilibrium on the fly. Four elements were

selected to vary independently, as they are major species that
are also likely to be sensitive to spectral features in the data,
while the rest were varied by a trace metallicity parameter
([Ztrace/Ze]). By separately varying the carbon, oxygen,
sodium, and vanadium elemental abundances ([C/Ce],
[O/Oe], [Na/Nae], [V/Ve]), we allow for nonsolar composi-
tions—but with chemical equilibrium imposed such that each
model fit has a chemically plausible mix of molecules, given
the retrieved temperatures, pressures, and underlying elemental
abundances.
The resulting retrieved atmospheric parameters describe an

atmosphere that is most consistent with the one described by
AURA. ATMO prefers a temperature of -

+1190 K120
170 and a

metallicity (as defined by the oxygen abundance) of
= = -

+Z Zlog O O log 1.5310 10 0.67
0.55  , in excellent agreement

with AURA’s values, and consistent with PLATON’s metallicity
to 1.3σ, though the retrieved temperatures differ significantly.
Like AURA, ATMO finds an enhanced sodium abundance,
though uncertainties are large ( = -

+log Na Na 1.4010 1.80
0.75 ).

This supports the idea that the inclusion of H2-broadened sodium
line profiles and the flexibility of nonsolar metal ratios—and not
necessarily the equilibrium chemistry constraint—allow for the
low-temperature, lower oxygen abundance solution found by
AURA. The metallicities on all three retrievals indicate a metal-
rich atmosphere and agree at the ∼1.3σ level.

Figure 17. Abundance profiles for PLATON (red) and AURA (blue) for four relevant gaseous species. PLATON abundance profile distributions are derived by
sampling the posterior 200 times, calculating the abundance profiles for each species for each sample, and finding the median value (solid black line) with 1σ
uncertainties at each pressure layer. AURA assumes abundances to be constant with pressure. The median retrieved value (dashed black line) and 1σ uncertainty range
are shown.
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Like PLATON (Section 7), ATMO also finds a subsolar C/
O ratio (C/O= -

+0.17 0.16
0.53 consistent with stellar (C/O=0.19),

though carbon is not well-constrained, so the uncertainties are
large. The 3σ upper limit of 0.94 is in good agreement with
PLATON’s 0.83 upper limit. However, unlike PLATON or
AURA, ATMO finds no evidence of optical absorbers beyond
Na; instead, it prefers a haze and Na to explain the STIS
optical data.

Figure 18 elucidates the differences in retrievals by showing
the median retrieved fiducial model for PLATON (red), AURA
(black), and ATMO (green) from 0.3 to 10 μm. The 1 and 2σ
uncertainty contours are shown for PLATON and AURA, both
of which are smoothed with a Gaussian filter with σ=15 for
clarity. The AURA predictions are only shown up to 5 μm—as
a free-chemistry retrieval, AURA retrieving on the 0.3–5 μm
data does not place meaningful constraints on multiple
molecules with significant opacity in the 5–10 μm range.
Therefore, a prediction is not warranted.

While there are subtle differences, such as PLATON and
ATMO’s preference for CO2 at 4.5 μm and sodium’s
prominence at 0.6 μm in the AURA and ATMO retrievals,
the most obvious difference is below0.5 μm, where ATMO
prefers a haze instead of a metallic oxide feature. Though
ATMO does not include AlO as an opacity source, this
difference is likely due to different condensation schemes.
PLATON uses GGchem’s prescription (Woitke et al. 2018)
such that species condense out when it is energetically
favorable. AURA is a free-chemistry retrieval, so there are
no restrictions on oxides being in the gaseous phase. ATMO,
however, includes rainout chemistry (Goyal et al. 2019), such
that if a species condenses at a higher pressure, that then
depletes the element above that layer. It is plausible that,
although PLATON’s condensation scheme allows TiO/VO to
be in the gas phase around 1700 K, ATMO’s scheme does not,
making the metallic oxide feature difficult to capture.

In total, we tentatively favor AURA’s derived atmospheric
parameters over PLATON’s, for two main reasons. First, the
inclusion of the most up-to-date sodium line profiles and AlO

opacity impact the retrieval. Second, constraints from interior
modeling (Section 9.2), though not necessarily decisive, are
consistent with AURA and in tension with PLATON. Overall,
this paints a picture of an atmosphere with a supersolar—but
not necessarily superstellar—metallicity, sodium enrichment,
possible disequilibrium metallic oxides (e.g., circulated from
dayside, dredged up due to vertical mixing), and a planet with a
well-mixed interior and a limb temperature lower than the
equilibrium temperature.

9.2. Comparison to Interior Modeling Metallicity Constraints

Though they both describe metal-rich atmospheres, the 1σ
retrieved atmospheric metallicities ranges from AURA and
PLATON are inconsistent (log10Z/Ze=0.78–1.99 and

=Z Zlog 2.0810  –2.56, respectively). Further, it is question-
able whether such supersolar metallicities—especially those
retrieved by PLATON—are physically reasonable. We check
the viability of these values by comparing them to atmospheric
metallicity constraints from interior structure models.
Thorngren & Fortney (2019) demonstrated how interior

models can constrain atmospheric metallicity. Essentially, this
is a three-step process: (1) determine what range of bulk
metallicities are necessary for structure models to explain the
observed radius, taking into account the planet’s mass, age,
heating efficiency, and parameter uncertainties; (2) set the
maximum bulk metallicity to be the 3σ upper limit of the
derived posterior distribution; and (3) set the maximum
atmospheric metallicity to be equal to the maximum bulk
metallicity.
The third step assumes that the atmospheric metallicity cannot

be greater than the core’s metallicity for significant timescales,
due to convection or Rayleigh–Taylor instability. Thorngren &
Fortney define metallicity as the ratio of all metals to hydrogen
compared to the ratio in the Sun’s photosphere. This is a good
proxy for O/H, and so it is a valid comparison to the retrieved
atmospheric metallicities. For more details on the derivation, see
Thorngren & Fortney (2019).

Figure 18. Comparison of the median retrieved model for each retrieval method’s fiducial model. The 1σ and 2σ uncertainty contours are included for PLATON and
AURA. PLATON and AURA are smoothed with a Gaussian filter with σ=15 for clarity. The chemical equilibrium assumption used by PLATON and ATMO allows
for meaningful predictions at unobserved wavelengths, and so those models are shown out to 10 μm.

(The data used to create this figure are available.)
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Using stellar parameters from Hartman et al. (2012; Table 3),
the interior structure model fit yields a bulk metal abundance
ratio of Z Z/ =33.7±9.1, corresponding to a maximum
atmospheric metallicity of 50×Ze(D. Thorngren 2020, private
communication). There is no significant uncertainty on this
number, as it is the 3σ upper limit of the distribution. This is
consistent with the metallicity from the AURA retrieval, but it is
in tension with PLATON’s retrieved metallicity—50×Ze falls
outside PLATON’s 1σ range (but within 2σ, as the metallicity
distribution is asymmetric and PLATON’s 2σ lower limit is
37×Ze). This could indicate that the “true” atmospheric
metallicity falls in the lower range of PLATON’s retrieved
metallicity, or it could be interpreted as slight evidence in
support of AURA over PLATON. Either way, the atmospheric
metallicity approaching the bulk metallicity indicates a well-
mixed interior. Such vertical mixing could allow for micron-
sized particles to stay afloat in the atmosphere, potentially
facilitating gaseous metal oxide survival and Mie scattering.

9.3. Implications for Planet Formation

The atmospheric metallicity we retrieve for HAT-P-41b
provides important constraints on the formation and migration
history of the planet. At the outset, the supersolar metallicity
(O/H) of ∼30–200×Ze requires substantial accretion of
solids, beyond several Earth masses of H2O ice, during the
planet’s evolutionary history. It is unlikely that such a large
amount of volatile accretion is possible at the planet’s current
orbit. Therefore, the planet is unlikely to have formed in situ
(Batygin et al. 2016). Instead, it probably formed far out
beyond the H2O snow line and migrated inward. The formation
location and migration path of a giant planet can significantly
affect its chemical composition. Beyond the H2O snow line, the
gas in the protoplanetary disk is depleted in oxygen whereas
the solids are enriched in oxygen (Öberg et al. 2011).
Therefore, planets with high enrichment of oxygen require
predominant accretion of H2O-rich planetesimals while form-
ing and migrating through the protoplanetary disk.

The high metallicity (specifically O/H) of HAT-P-41b,
therefore, supports the migration of the planet through the disk
via viscous torques (Madhusudhan et al. 2014a). This is in
contrast to other hot Jupiters with low O/H abundances, which
have been suggested to be caused by insufficient solid
accretion, e.g., via disk-free migration (Madhusudhan et al.
2014a) or formation via pebble accretions whereby the oxygen-
rich solids are locked in the core (Madhusudhan et al. 2017).
The fact that HAT-P-41b’s orbit is moderately misaligned to
the host star’s rotation axis is also in tension with the disk
migration hypothesis, since spin–orbit misalignments are
considered to be evidence of disk-free migration and planet–
planet interactions (Winn et al. 2010). In principle, instead of
disk migration, super-solar elemental abundances could be
caused by accreting gas whose metallicity has been enhanced
due to pebble drift (Öberg & Bergin 2016; Booth et al. 2017).
However, while pebble drift can cause metal enhancements up
to ∼10×Ze, much larger enhancements (as constrained in the
present case) are unlikely to be explained by this process. More
importantly, such enhancements due to pebble drift are also
expected to cause high C/O ratios (∼1), which may be at odds
with the high H2O abundance and the low C/O ratio retrieved
for the planet.

Overall, the most plausible explanation for the potentially
high atmospheric metallicity inferred for HAT-P-41b is

formation outside the H2O snowline and migration inward
while accreting substantial mass in planetesimals. If confirmed,
this would be a departure from other hot Jupiters observed
hitherto, which have generally shown low H2O abundances,
indicative of the low accretion efficiency of H2O-rich ices that
is possible for disk-free migration mechanisms (Madhusudhan
et al. 2014a; Pinhas et al. 2019; Welbanks et al. 2019). Such an
abundance is also a substantial departure from expectations
based on giant planets in our Solar System. The metallicity of
Jupiter in multiple elements is ∼1–5×Ze (Atreya et al. 2016;
Li et al. 2020). With the mass of HAT-P-41b being similar to
that of Jupiter, its higher metallicity would indicate an even
higher amount of solids accreted than that of Jupiter.

10. Summary

We have conducted a comprehensive, multipronged Baye-
sian retrieval analysis of the 0.3–5 μm transit spectrum of
HAT-P-41b derived from HST STIS (previously unpublished;
Section 4.1), HST WFC3 (reanalysis; Section 4.2), and Spitzer
(independent analysis; Section 4.3) transit observations. We
determined the host star has, at most, a low level of stellar
activity ( < -L Llog 5.2X bol ) using both visible and X-ray
photometric monitoring observations (Section 3.1).
We performed two complementary retrieval analyses: a

relatively strict PLATON analysis (Sections 5.1, 7) assuming
chemical equilibrium and solar metal ratios (except carbon),
and a more flexible AURA free-chemistry retrieval
(Sections 5.2, 8.1). Both methods’ fiducial models are excellent
fits to the entire transit spectrum. We further tested an array of
more complicated models (Sections 6 and 8.2), including
instrumental transit depth biases (offsets), parametric Rayleigh
scattering, partial cloud coverage, Mie scattering (PLATON
only), and stellar activity (PLATON only). We find the
conclusions to be insensitive to model choice within a
paradigm.
Despite PLATON and AURA’s differing model assump-

tions, priors, and even opacity sources, we find several shared
conclusions between the two methods (Section 9.1). Both
PLATON and AURA retrieve a high atmospheric metallicity
(O/H) that is inconsistent with Ze to greater than 2σ
( = -

+Z Zlog 1.4610 0.68
0.53

 compared to = -
+Z Zlog 2.3310 0.25

0.23
 ,

respectively). They also both are consistent with a haze-free
and cloud-free atmosphere, and both find a decisive water
vapor detection and at least suggestive evidence of an optical
absorption feature. We further confirm the result by performing
a middle-ground retrieval, ATMO, and find results generally
consistent with AURA’s (Section 9.1.2). We determine the
inclusion of H2-broadened sodium opacity impacts the
retrieved metallicities. While we consider AURA to be more
physically plausible, due to its consistency with interior
modeling constraints and inclusion of H2-broadened sodium
opacity, we present the results from both PLATON and AURA
as assumption-dependent orthogonal analyses. Overall, our
study emphasizes the importance of comparative retrievals with
different forward modeling, prior, and model selection
assumptions in order to best contextualize presented results.

11. Postscript

After our retrieval analysis was complete, we were made
aware of a recently accepted paper that used a model-grid fit to
claim that a combined transit spectrum using HST’s WFC3
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UV/Visible channel (UVIS) and independently derived Spitzer
depths is best fit by a high-metallicity atmosphere (Wakeford
et al. 2020). While we were aware that a manuscript was being
submitted comparing STIS and UVIS data, we were unaware of
the atmospheric metallicity claim. Because we were unaware of
that result during our analysis, our conclusions were not biased
by the results claimed in that paper.
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Appendix
HST Spectrophotometric Light-curve Fits

This section shows the spectrophotometric light curves for
each HST grism observation. For each spectral bin, the
normalized, detrended light curve data is plotted over the
best-fit transit model. The spectral light curves are offset by a
constant and alternate in transparency for clarity. Figures 19
and 20 illustrate the detrended light curves for HST STIS
G430L (visits 83 and 84, respectively). Figure 21 illustrates the
detrended light curves for HST STIS G750L (visit 85). Finally,
Figure 22 shows the spectral light curves for the single HST
WFC3 visit.
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Figure 19. Spectral light curves for STIS G430L, visit 83.

(The data used to create this figure are available.)
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Figure 20. Spectral light curves for STIS G430L, visit 84.

(The data used to create this figure are available.)
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Figure 21. Spectral light curves for STIS G750L, visit 85.

(The data used to create this figure are available.)
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