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Entropic analysis of bistability and the general
evolution criterion†

David Hochberg *a and Josep M. Ribó b

We present a detailed study of the entropy production, the entropy exchange and the entropy balance

for the Schlögl model of chemical bi-stability for both the clamped and volumetric open-flow versions.

The general evolution criterion (GEC) is validated for the transitions from the unstable to the stable non-

equilibrium stationary states. The GEC is the sole theorem governing the temporal behavior of the

entropy production in non-equilibrium thermodynamics, and we find no evidence for supporting a

‘‘principle’’ of maximum entropy production. We use stoichiometric network analysis (SNA) to calculate

the distribution of the entropy production and the exchange entropy over the elementary flux modes of

the clamped and open-flow models, and aim to reveal the underlying mechanisms of dissipation and

entropy exchange.

1 Introduction

A reaction network has the ability for bistability when there
exist combinations of parameter values, as for example, rate
constants and substrate supply rates, such that the corres-
ponding reaction rate equations admit at least two different
stable stationary states. Bistability and switch-like behavior
have attracted considerable attention recently. Both theoretical
and experimental evidence exists pointing to the capacity of
metabolic pathways for bistability.1–9 Bistability, multistability,
and the associated patterns of bifurcation have been found in a
number of biochemical networks, including cellular, genetic,
metabolic, and catalytic networks.10,11 Such dynamical properties
are believed to be at the core of the proper functioning of
biochemical reaction networks and of living systems. Bistable
behavior has been demonstrated and explored in depth in
biochemical and in chemical networks.11–18 The great interest
in bistability and switching is due, in large part, to the conviction
that systems exhibiting multistability, and bifurcations play a key
role in the function of living systems.19

Chemical networks in far-from-equilibrium scenarios are
conditioned by boundary conditions, and are paradigms of
how systems function and evolve following the dictates as set

down by non-equilibrium thermodynamics. In particular, the
entropy production, that is, the rate of dissipation, the entropy
exchanged between a system and its environment, and the
overall balance of entropy are fundamental concepts in the
thermodynamic characterization of far-from-equilibrium open
systems, because they take into account the irreversibility of
natural phenomena, as exemplified by (bio)chemical reactions,
and by the functioning of biological cells. Moreover, a general
inequality for the evolution of the entropy production, valid for
the entire range of macroscopic physics and for fixed boundary
conditions, was established by Glansdorff and Prigogine.20 This
general evolution criterion (GEC), actually a theorem, has been
extended recently to encompass well-mixed open-flow reaction
systems.21 The new result is an inequality constraining the time
rate of change of the entropy balance: the sum of the entropy
production and the exchange entropy, or entropy flux, eqn (1), in
open-flow chemical reacting systems. The fundamental importance
of this extended inequality is that it governs the joint evolution of
the reactions occurring within the system volume in conjunction
with the input/output matter fluxes that couple the system with
its environment (the boundary conditions). The GEC imposes a
constraint on the way the chemical forces, or the affinities, can
change in time. Its range of validity encompasses systems for
which the assumption of local equilibrium holds (see Chapter
II.2 of ref. 20 and Section 5 for further details).

The chemical Schlögl model has multiple steady states and
represents a simple model for a first-order non-equilibrium phase
transition.22,23 It has been widely used as a simple minimal model
of bistability and bifurcation and for which thermodynamic
analysis has been developed, for both deterministic and stochastic
settings,24 see the review in ref. 25. The model was originally
defined and analyzed under the assumption of a single time
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dependent species and two clamped or chemostated species. This
clamped species approximation model continues to be used as a
simple model of bistability to the present day. The approximation
was most likely motivated for the purposes of mathematical
convenience, but it is unrealistic from the entropic point of
view. Indeed, it is known that non-equilibrium thermodynamics
is founded on the balance equation for entropy:20

dS = diS + deS, (1)

diS Z 0, (2)

where S is the total entropy, diS Z 0 is the entropy production,
and deS is the entropy exchange (entropy flow) with the
environment outside the system. For the original clamped Schlögl
model, there is no entropy flow deS = 0, hence eqn (1) and (2) imply
that the system’s entropy increases asymptotically without limit,
dS/dt 4 0, and even for stationary states in the composition
(concentration). When an entropy flux is established, say by a
hydrodynamic flow of matter, then deS =�diS o 0 holds for all the
possible stationary states;26 the entropy flux cancels and compen-
sates, or balances, the internal positive entropy production, and
hence dS/dt = 0 on these states, so the system entropy S remains
constant. Nowadays, there are no valid arguments for continuing
to use approximations which exclude the matter and energy
exchange with the surroundings.27–29

In this paper, our aim is to provide an entropic analysis of the
Schlögl model, subject to open-flow and with a critical comparison
to the clamped version. We place an important emphasis on the
entropic exchanges and explore the specific non-equilibrium
thermodynamic conditions under which bifurcation and bistabil-
ity take place. We begin with a survey of the clamped model,
bifurcation, and evaluate the entropy production on the non-
equilibrium stationary states (NESS). We calculate the entropy
production, showing how fluctuations about the unstable branch
of NESS will lead either to the stable NESS of higher, or else
lower, entropy productions, depending only on the sign of the
concentration fluctuation about the unstable NESS. The general
evolution criterion is validated in both cases, and we indicate
how the GEC distinguishes qualitatively between the alternative
transitions between unstable and stable states. We evaluate the
kinetic potential associated with the change of the entropy
balance with respect to the temporal derivative of the chemical
forces (the affinities) which provides information regarding the
relative stability of the stable NESS in the clamped version.

We next define and analyze a volumetric open-flow version of the
Schlögl model, for which all three species evolve in concert dyna-
mically, and calculate the entropy production and the exchange
entropy thus confirming the compensation deS = �diS o 0 of the
positive entropy production by the (negative) entropy flux for all
NESS. The open-flow system possesses NESS that are absent in the
clamped model, indicating that the dynamics of all three species is
sensitive to how the system is maintained out of equilibrium. The
open flow models considered here are bistable. Small concen-
tration perturbations about the unstable NESS will lead either to
the stable NESS of either higher, or else of lower, entropy produc-
tions, depending only on the sign of the compositional fluctuation

about the unstable NESS, and we validate the generalization of
the GEC for these fluctuations. The GEC distinguishes between
these alternative transitions to stable states. In contrast to the
one-dimensional clamped model, a global kinetic potential for
these three-dimensional open flow models does not exist, since
the corresponding differentials that would define the putative
potential, are not exact.

Stoichiometric proportions reveal the topological structure
of reaction networks, and their properties may be regarded as
structural invariants. Important conclusions can be derived
from stoichiometry, which complement the kinetic properties
of the reaction network. We use stoichiometric network analysis
(SNA)30 to obtain the so-called extreme flux modes (EFMs)
corresponding to both the clamped and the open-flow models.
These flux modes constitute the irreducible set of reaction
pathways of the system. We evaluate the (hybrid) combinations
of the partial entropy productions and exchange entropies
associated with each uni-directional EFM. These partial reaction
path dissipations indicate how the overall entropy production
and exchange entropy are distributed, or partitioned, over each
irreducible reaction pathway. The sum of the partial dissipations
and entropy exchanges over the full set of EFMs yields the
complete entropy balance, eqn (1).

2 Schlögl: clamped

The original model22,23 is defined by the following reversible
reactions:

AÐ
k1

k�1
X; (3)

3XÐ
k2

k�2
2X þ B; (4)

The concentrations [A] and [B] are held fixed (clamped), thus
describing a scenario of infinite volume and static homogeneous
concentrations in A and B, so that the only kinetic rate equation is
that for the intermediate species [X], and is

d½X�
dt
¼ k1½A� � k�1½X� þ k�2½B�½X�2 � k2½X�3 ¼ �

dUðxÞ
dx

; (5)

where U(x), with x = [X], defines the kinetic potential (see below).
The NESS are plotted in Fig. 1 showing the bifurcation from the
region of unstable NESS, delimited by the pair of red dots, to one
of the two stable (upper or lower) regions of NESS. The external
clamped concentration [B] serves as a measure from equilibrium,
and the family of all stationary states continuously connected to
equilibrium defines the thermodynamic branch.26 The set of all
the stable and unstable NESS, belong to this thermodynamic
branch, which is many-valued, Fig. 1. When the system becomes
unstable, it makes a transition to one of the two stable regions of
this branch (see below).

The local stability of the NESS is indicated by the sign and
value of the eigenvalue l, obtained by expanding the right hand
side of eqn (5) about the stationary solutions [X]*, see Fig. 2:

l = �k�1 + 2k�2[B][X]* � 3k2[X]*2. (6)
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This is evaluated in Fig. 2 for all the individual NESS displayed
in Fig. 1, confirming the instability of the middle segment, that
is, the hysteresis loop for which l 4 0. Positivity implies any
small fluctuation d[X](t) about the stationary state [X]* will grow
exponentially. In contrast, both the lower and upper portions of
the thermodynamic branch, respectively, have lo 0, so here the
fluctuations in concentration decrease with time exponentially
returning the system to the initial stationary state [X]*. Note that
the absolute values of l o 0 do not provide information about
the relative stability of the two stable NESS. For this, the kinetic
potential, when it exists, is required.

The function U appearing in eqn (5) defines an effective
global kinetic potential, where we define a = [A], x = [X], b = [B]:

UðxÞ ¼ �k1axþ
1

2
k�1x

2 � 1

3
k�2bx

3 þ 1

4
k2x

4 þ const:; (7)

(see Fig. 3). The points in U with vanishing derivative
dUðxÞ
dx

¼ 0

� �
correspond to the NESS. The other regions indicate the rate of
change of the concentration [X]. In the region of bistability, for
approximately 3.5 r [B] r 4.8, inspection of Fig. 3 shows that the
NESS corresponding to the absolute minimum are the more stable
of the two. The NESS of the upper portion in Fig. 1 are more stable
than the NESS of the lower portion. Moreover, a relatively small
fluctuation in concentration d[X] 4 0 will take the system out of the
stable NESS corresponding to the shallow relative minimum in U(x)
into the lower absolute minimum. A very large concentration
fluctuation would be required to overcome the now large potential
barrier, in order to knock the system out of this absolute minimum.

The entropy production per unit volume V is (R is the gas
constant):

1

RV

diS

dt

� �
¼ s

R
¼ k1½A� � k�1½X�ð Þ ln k1½A�

k�1½X�

� �

þ k2½X�3 � k�2½B�½X�2
� �

ln
k2½X�
k�2½B�

� �
� 0:

(8)

This is plotted in Fig. 4, for all the NESS calculated in Fig. 1.
This indicates that there is a bifurcation in the region of
bistability 3.5 r [B] r 4.8 in the entropy production: the
production is either less than or greater than that corres-
ponding to the unstable segment of NESS, and which of these
two outcomes depends only on the sign (�) of the composi-
tional fluctuation about the unstable NESS: [X]* � d[X]. From
inspection of U(x), the NESS in the bistable region, having the
greater entropy production are the more stable. Note there is no
exchange entropy in the clamped model: deS = 0 (see Section 3).

For macroscopic physics with fixed boundary conditions,
the general evolution criterion (GEC),20 states that the change
of the so-called generalized forces proceeds always in a way as
to lower the value of the entropy production. In the case of

Fig. 1 Thermodynamic branch. The bifurcation of non-equilibrium steady
states [X]* as a function of the external clamped concentration [B]. Parameters:
[A] = 1, k1 = 0.5, k�1 = 3, k2 = k�2 = 1. The lower and upper portions of the
curve correspond to the stable NESS, the middle segment (delimited by red
dots) to the unstable NESS. Compare to the graph of the kinetic potential in

Fig. 3, calculated for [B] = 4. The equilibrium point is at ½B�eq ¼
1

6
, see eqn (26).

Fig. 2 The eigenvalue l, eqn (6), as a function of the external clamped
concentration [B]. The interval of positive values l4 0, delimited by the pair
of red dots, corresponds to the unstable middle segment of the hysteresis
loop in Fig. 1. The eigenvalues corresponding to the upper segment of
stable NESS in Fig. 1 are more negative than those of the lower segment of
stable NESS, implying that the associated potential well in Fig. 3, is locally
more attractive than the other well. Parameters are as for Fig. 1.

Fig. 3 The kinetic potential U(x), eqn (7). For [B] = 4, and the other
parameters as in Fig. 1. The deep absolute minimum corresponds to the
upper segment of stable NESS for large [X]. Inset: The region of small
0 o [X] r 1 showing the relative minimum and the relative maximum,
corresponding to the stable NESS on the lower segment, and the unstable
NESS on the hysteresis loop, respectively. Compare to the two stable NESS
and the one unstable NESS in Fig. 1 located at [B] = 4.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ne
 2

02
1.

 D
ow

nl
oa

de
d 

on
 2

/2
1/

20
22

 8
:2

8:
36

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1cp01236c


14054 |  Phys. Chem. Chem. Phys., 2021, 23, 14051–14063 This journal is © the Owner Societies 2021

chemical reactions, these forces are the chemical affinities. For
the above reaction model, the GEC is (dA/dt stands for the
change due to temporal derivatives of the affinities A)

dAðs=RÞ
dt

¼ k1½A� � k�1½X�ð Þd
dt

ln
k1½A�
k�1½X�

� �

þ k2½X�3 � k�2½B�½X�2
� � d

dt
ln

k2½X�
k�2½B�

� �
� 0

(9)

¼ �ðd½X�=dtÞ
2

½X� � 0; (10)

and is zero on any NESS. The second line follows by using the
rate equation eqn (5), and so renders the inequality of the GEC
manifest. We evaluate this expression in Fig. 5 using eqn (9) for
the transition from an unstable NESS to first one, and then to

the other, of the two stable NESS’s. As predicted by the GEC, this
quantity vanishes on the NESS, and is strictly negative definite
along the dynamic transition from one NESS to another. Note that
the GEC holds for the transition from an unstable NESS to either
one of the two stable NESS’s. However, the integrated dissipation,
due to the changes in the chemical affinities along each individual
transition (minus the integral over the transition time),

�
ðtf
ti

dAs
dt

dt � 0; (11)

is not the same: see Fig. 5. This follows since the integrated
dissipation increases with the distance (in the concentration
[X]*) from the unstable to the stable NESS. This distance
decreases for transitions from the unstable to the stable NESS
on the lower portion, but increases for transitions to the stable
NESS on the upper portion, respectively, as [B] increases in the
range 3.3 r [B] r 4.9, see Fig. 1.

2.1 Kinetic potential for GEC

For a single variable, a global kinetic potential F exists such
that TdXs = dF r 0, and can be calculated straightforwardly.20

Following that development, we find that

dF ¼ ðw1 � w2Þ
T

@A1

@½X�d½X�

¼ ðk1½A� � k1½X� þ k2½B�½X�2 � k2½X�3Þ
T

�1
½X�

� �
d½X�:

(12)

Then the potential is

F ¼ �1
T

ð
d½X�
dt

� �
d½X�
½X� þ a;

¼ �1
T

ð
k1a� k�1xþ k�2bx

2 � k2x
3

� �dx
x
þ a;

¼ � k1a lnðxÞ � k�1xþ
1

2
k�2bx

2 � 1

3
k2x

3

� ��
T þ a;

(13)

Fig. 4 Thermodynamic branch. The bifurcation in the entropy production

eqn (8), where dis=dt ¼
1

V
diS=dt, for the clamped model. Units are

(J K�1 s�1 L�1). Parameters: [A] = 1, k1 = 0.5, k�1 = 3, k2 = k�2 = 1.
The lower and upper segments correspond to stable NESS, the middle
segment (delimited by the pair of red dots) corresponds to the unstable
NESS. The entropy production goes to zero at [B] = 1/6 corresponding to
the equilibrium state of the system.

Fig. 5 Validation of the GEC eqn (9) at [B] = 4. (A) Starting from the unstable NESS with a small negative compositional fluctuation d[X] o 0 initiates the
evolution of the system toward the lower stable NESS (see Fig. 1). (B) A small positive compositional fluctuation d[X] 4 0 initiates the evolution of the

system toward the higher stable NESS (see Fig. 1). The quantity
dAs
dt
� 0 is zero at both the initial and final NESS, and is manifestly negative during the

transition from the unstable to the stable NESS. The units are (J K�1 s�2 L�1). The integrated dissipations are distinct for each transition, as quantified by
(minus) the integrals over the transition times eqn (11). The behavior depicted here is qualitatively similar if we start the system off from any one of the
unstable NESS in Fig. 1 for increasing [B] 4 3.3: the (absolute value of the) time-integrated dissipation for the transit to the upper segment of stable NESS
is greater (right) than that for the transit to the lower segment of stable NESS (left).
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where a is a constant and we write a = [A], x = [X], b = [B]. Note
that in a steady state, the potential has extremum at

@F
@x
¼ 0; (14)

As it follows immediately from eqn (12) or eqn (13). This
extrema (NESS) can be appreciated in the graph of F plotted
in Fig. 6. The stability conditions for these stationary states
implies20

@2F
@x2

4 0; (15)

which holds for both the relative minimum and the absolute
minimum in Fig. 6. The extrema coincide with those for U(x),
and TF indicates that the more stable of the two stable NESS
corresponds to the stationary states located on the upper region
of Fig. 1. If we imagine the system is initially at the unstable
NESS, located at the relative maximum in Fig. 6, then a small
negative concentration fluctuation will tip the system to the left
and toward the relative minimum. The distance down the
potential well is approximately TDF = 0.10 (in arbitrary units),
whereas a small positive fluctuation tips the system to the right,
toward the absolute minimum, and the distance down the well
is greater: TDF = 1.92. Thus the greater dissipation is along this
latter transition, as reflected in Fig. 5.

3 Schlögl: open flow

In keeping with the specification of the original clamped
model, Section 2, and to facilitate comparisons, we maintain
X within the reactor volume V, and allow input and output
volumetric flow terms for both the A and B species (see Fig. 7),
where + represents the environment external to the reactor:

�+ ��!f ½A�in
A; (16)

�+ ��!f ½B�in
B; (17)

A !f +; (18)

B !f +; (19)

[A]in and [B]in are the input concentrations, and f = q/V, with q in
units of L s�1, is the volumetric flow rate. In this case, there are
now three coupled differential rate equations:

d½A�
dt
¼ �k1½A� þ k�1½X� þ f ð½A�in � ½A�Þ; (20)

d½X�
dt
¼ k1½A� � k�1½X� þ k�2½B�½X�2 � k2½X�3; (21)

d½B�
dt
¼ k2½X�3 � k�2½B�½X�2 þ f ð½B�in � ½B�Þ: (22)

The stationary solutions are plotted in Fig. 8. In marked
contrast to the clamped model in Section 2, all three species A,
X, and B actively participate in the bifurcation. The input
concentration [B]in provides a measure of the distance from
equilibrium; and this is given by [B]in � [B]eq, where [B]eq is
calculated from eqn (26). The input rate of fluid flow is fixed
and equal to the outflow rate. This boundary condition takes
the internal reaction network away from equilibrium as [B]in

increases beyond [B]eq, thus increasing the chemical forces (the

affinities)
A1

RT
¼ ln

k1½A�
k�1½X�

� �
and

A2

RT
¼ ln

k2½X�
k�2½B�

� �
acting on

the internal reaction network. The system is then near (far

from) equilibrium when
Aj

RT

����
����� 1; ð� 1Þ.

The family of all steady states continuously connected to
equilibrium defines the thermodynamic branch.26 There is a
thermodynamic branch for each species. The thermodynamic
branches are many-valued, so that the system can suffer a

Fig. 6 The global kinetic potential for the GEC eqn (13) evaluated at
[B] = 4 and scaled by the temperature T and for a = 0. Note the positions of
the relative minimum and maximum and the absolute minimum in the
stationary composition x = [X]. Inset: The region 0 o x r 1. The absolute
minimum is that reached by the system in a transition from the unstable
NESS (the relative maximum) leading to the larger integrated dissipation
due to changes in the affinity. Compare and contrast to Fig. 5 and 4.

Fig. 7 Open-flow version of the Schlögl model in a well-stirred isothermal
reaction tank of volume V. Species A and B flow in at fixed concentrations
[A]in and [B]in, respectively, and both flow out (represented by the pseudo-
reactions eqn (16)–(19)) with their instantaneous concentrations as deter-
mined by the rate equations, eqn (20)–(22). X remains in the reactor, as in
the original clamped version, see Section 2. The volumetric flow terms give

rise to the exchange entropy per unit volume,
des

dt
, which is required for

achieving entropy balance at any NESS:
dis

dt
þ des

dt
¼ 0, see eqn (1).
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bifurcation from an unstable region of a branch to a different
stable region, of the same branch. Whereas the branches of the
set of NESS for A and X are qualitatively similar to each other
and to that of X in the clamped model, and that of B is inverted
or ‘‘turned-over’’ with respect to those of A and X, see Fig. 8.
This implies that the concentrations [A], and [X] will both either
increase or decrease in tandem, whereas the concentration of
[B] will evolve always in the opposite sense to A and X during a
transition from an unstable to a stable NESS. Note the overall
net reaction in eqn (3) and (4) is A " B and so ‘‘un-clamping’’
the externally supplied species allows for the alternance,
or switching, in the relative magnitudes of their steady state

concentrations within the bistable regime. This ‘‘see-saw’’
phenomena in [A], and [B] is entirely absent in the clamped
model. See also the entropic analysis of the associated extreme
flux modes in Section 4.

The local stability of the NESS is determined from the
eigenvalues of the 3 	 3 Jacobian associated with the kinetic
equations eqn (20)–(22):

J ¼

�k1� f 0 k�1

0 �k�2½X�
2� f 3k2½X�
2� 2k�2½B�
½X�


k1 k�2½X�
2 �k�1þ 2k�2½B�
½X�
 � 3k2½X�
2

0
BBB@

1
CCCA;

(23)

where [B]*, [X]* denote the concentration values at the NESS
(see Fig. 8). The three eigenvalues l1, l2, and l3 are calculated
for each NESS, for a range of input concentrations [B]in, as
displayed in Fig. 9. The eigenvalue l3 is positive on the hysteresis
loop of the NESS, indicating its instability. All three eigenvalues are
strictly negative on all the other NESS, indicating their local
stability.

The entropy production per unit volume V is given in eqn (8),
and the exchange entropy per unit volume, due to the volumetric
open flow eqn (16)–(19), is27

1

RV

deS

dt

� �
¼ se

R
¼ f ½A� � ½A�in

� �
ln
½A�
½A�eq

 !

þ f ½B� � ½B�in
� �

ln
½B�
½B�eq

 !
;

(24)

where the equilibrium concentrations are given by

½A�eq ¼
½A�in þ ½B�in

1þ k1k2

k�1k�2

� �; (25)

B½ �eq¼
k1k2

k�1k�2

� �
½A�eq; (26)

X½ �eq¼
k1

k�1

� �
½A�eq: (27)

These are the values of the concentrations the system would relax
to (detailed balance) if the reactor were to be isolated, or the fluid
flow suddenly shut off ( f = 0) after the system is allowed to reach a
NESS, see Fig. 7. These equilibrium values correspond to the
total chemical mass of the system, determined by the input
concentrations [A]in, [B]in of the open system, as well as by
the reaction rate constants. Due to entropy balance eqn (1), the
exchange entropy eqn (24) will be negative se o 0 on all the
NESS, see Fig. 10 where entropy production and exchange
entropy are calculated. The exchange entropy, calculated
independently, using eqn (24), mirrors the behavior of s with
respect to the abscissa: see Fig. 10.

Fig. 8 Thermodynamic branches. The bifurcations of non-equilibrium
steady states (a) [X]*, (b) [A]*, and (c) [B]*, as functions of the input
concentration [B]in. Parameters: [A]in = 10�2, k1 = 2, k�1 = 30, k2 = k�2 =
10, f = 10�3. The lower and upper parts of each thermodynamic branch of
steady states for each concentration correspond to stable NESS, while the
middle segments (delimited by the pair of red dots) correspond to the
unstable NESS. The thermodynamic branch for [B]* in (c) is inverted (‘‘turned
over’’) with respect to the branches of [A]* in (b) and [X]* in (a), while the latter
two are qualitatively similar to each other, differing only by overall scale.
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The statement of the general evolution criterion (GEC)21

corresponding to this open-flow model is as follows:

1

R

dAðsþ seÞ
dt

¼ �ðd½A�=dtÞ
2

½A� � ðd½X�=dtÞ
2

½X� � ðd½B�=dtÞ
2

½B� � 0;

(28)

and is strictly zero at any NESS. This result follows from adding the
expressions for the entropy production eqn (8) and exchange
entropy eqn (24) and differentiating the forces (the chemical
affinities) with respect to time. Using the rate equations
eqn (20)–(22) allows us to cast the results of that calculation back
in terms of the rate equations and concentrations, resulting in the
manifestly negative definite quadratic form.

We validate the GEC in Fig. 11, which shows the calculation

of
dAðsþ seÞ

dt
for the transition, at [B]in = 0.4, from the unstable

NESS to the stable NESS on the upper portion of the bifurca-
tion curves for A and X (and lower portion of the B-
bifurcation curve) (see also Fig. 8). Fig. 12 shows the
dynamics and the GEC for the transition to the other
stable NESS located on the lower portion of the bifurcation
curves for A and X (and on the higher portion of the
B-bifurcation curve). The behavior of the transitions from
the segment of the unstable NESS to either one of the two
alternative stable NESS’s, is qualitatively similar to the
results displayed here. A positive fluctuation in concen-
tration added to either A or to X, or a negative fluctuation
in concentration added to B leads to results qualitatively
similar to those in Fig. 11. On the other hand, a negative
fluctuation added to either A or to X, or a positive fluctuation
added to B leads to results qualitatively similar to those in
Fig. 12. We have validated the GEC for all these cases. The
GEC is obeyed for all the transitions between unstable and
stable NESS.

Finally, an attempt to define and calculate a kinetic potential
for the coupled reaction rate equations (eqn (20)–(22)) fails
because we can prove that the differential form,

dF = Fa(a, x, b)da + Fx(a, x, b)dx + Fb(a, x, b)db,
(29)

where F stands for the putative potential and the functions
Fa, Fx, and Fb are given by the right-hand sides of the rate
equations eqn (20)–(22), respectively, is not exact (see the ESI†).
By the same token, there is no global kinetic potential for the

GEC, i.e., for
dAðsþ seÞ

dt
. Conditions for the existence of a local

potential however are given in Chapter IX of ref. 20, but even
the existence of a local potential beyond the linear regime is not
guaranteed.

Fig. 9 The three eigenvalues of the Jacobian eqn (23) calculated as
functions of the input value [B]in, the other parameters are the same as
for Fig. 8. Since (a) l1 o 0 and (b) l2 o 0 are negative, the region of
instability is tracked solely by (c) l3 4 0, and its domain of positivity
corresponds to the NESS on the middle segments (bounded by the red
dots) of the thermodynamic branches in Fig. 8.

Fig. 10 The upper curve: the entropy production per unit volume:
dis

dt
� 0,

eqn (8). The lower curve: the exchange entropy per unit volume:
des

dt
� 0 eqn (24), evaluated at the NESS as functions of the input con-

centration [B]in. System entropy is balanced on all the NESS:
des

dt
þ dis

dt
¼ 0,

see eqn (1). Units are (J K�1 s�1 L�1). Compare to Fig. 4, for the clamped
model, for which there is no exchange entropy.
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4 Dissipation and entropy exchange
along elementary flux modes

Additional insight for describing reaction networks is provided
by stoichiometric network analysis (SNA).30–34 The description
in terms of the so-called elementary flux modes (EFM), or
extreme currents (the irreducible set of linear combinations of
the one-way rate velocities) is built up from both the chemical
reactions and the volumetric matter flows. The EFMs reveal the
explicit mechanisms of dissipation and of entropy exchange in a
given network. SNA is based on stoichiometry, involves the
system as a whole, and treats both the one-way reactions and
flow terms on an equal footing.

The differential kinetic rate equations corresponding to the
set of reactions and flows in eqn (20)–(22) can be written in
compact matrix form, where x denotes the vector of concentra-
tions, n is the stoichiometric matrix and v is the vector of
reaction rates (including the pseudoreactions corresponding to
input output matter flows):

dx

dt
¼ nv: (30)

The chemical pathway structure is an invariant property of the
reaction network.30 This pathway structure follows from the
steady state condition 0 = nv, which defines the right null space
of n, and corresponds to the set of all stationary solutions v of
eqn (30). Since the reaction rates are positive-definite vj Z 0, 8j,
these stationary solutions must belong to the intersection of this

null space with the positive orthant Rr
+. This intersection defines a

convex polyhedral cone Cv spanned by a set of M minimal
generating vectors or elementary flux modes (EFM) Ei’s:

Cv ¼ v ¼
XM
i¼1

jiEi:ji 4 0

( )
: (31)

These vectors {Ei}
M
i=1 have r-components, equal to the number of

unidirectional reactions (including the flow terms)30 and point
along the M edges of the cone Cv. The Ei correspond to subsets, or
combinations, of several of the unidirectional reactions in
eqn (3), (4) and (16)–(19). Some of these EFMs may involve the
coupling of the pseudoreaction fluxes with the chemical trans-
formations, and may not necessarily include simultaneously both
the forward and reverse steps of a specific chemical reaction.

The partitioning, or distribution, of the entropy production
and entropy exchange over these EFMs gives a unique way to
see how the coupling between reactions and matter currents
determines the physical and chemical behavior of the complete
network. Below we deduce the EFMs corresponding to the
clamped and the open-flow versions of the Schlögl model,
calculate the partial (and generally hybrid) entropy productions
and exchanges along each EFM on the NESS. We analyze
and contrast the results between these models. For further
details regarding the methodology and applications of SNA,
see ref. 21, 27 and 34.

Fig. 11 (a) Dynamic transition from the unstable NESS to the stable NESS located at [B]in = 0.4, when a small positive fluctuation d[A] 4 0 is added to [A]*
(see Fig. 8(a)). Concentrations [A] and [X] both increase in tandem to reach their respective higher stable values, while [B] decreases to its lower stable
value; compare to Fig. 8. (b) Validation of the GEC for this transition; the units are (J K�1 s�2 L�1).

Fig. 12 (a) Dynamic transition from the unstable NESS to the stable NESS located at [B]in = 0.4, when a small negative fluctuation d[A] o 0 is added to
[A]* (see Fig. 8(a)). Concentrations [A] and [X] both decrease in tandem to reach their respective lower stable values, while [B] increases to its higher stable
value; compare to Fig. 8. (b) Validation of the GEC for this transition; the units are (J K�1 s�2 L�1).
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4.1 Clamped model

According to SNA, the clamped model has the two extreme flux
modes (EFMs):

E1 = 3X - 2X + B, B + 2X - 3X (32)

E2 = A - X, X - A (33)

In this case, the forward and reverse transformations of each of
the two reversible reactions, eqn (3) and (4), defines an EFM.
Then from Table 1, we can calculate the amount of entropy
production along each individual EFM:

s(E1) = s(3X - 2X + B) + s(B + 2X - 3X) Z 0, (34)

s(E2) = s(A - X) + s(X - A) Z 0, (35)

and give the sought-after decomposition of the overall entropy
production (per unit volume) s = s(E1) + s(E2), see eqn (8). The
overall net entropy production is distributed over each EFM as
indicated in Fig. 13. For NESS up the first turning point, the
greater relative dissipation is along E1 with respect to E2. It
continues to increase along each EFM for the hysteresis loop

of unstable NESS. Beyond the second turning point, it
subsequently decreases for E1 while increasing monotonically
for E2. The sum of the entropy production along both EFMs
yields Fig. 4. There is no exchange entropy se = 0.

4.2 Open flow

From SNA, the open flow version, Fig. 7, has the following six
extreme flux modes (EFMs), each one made up from a particular
subset of one-way reactions and flow terms as follows:

E1 = 3X - 2X + B, B + 2X - 3X (36)

E2 = A - X, X - A (37)

E3 = -B, B- (38)

E4 = -A, A- (39)

E5 = -B, B + 2X - 3X, X - A, A- (40)

E6 = -A, A - X, 3X - 2X + B, B- (41)

E1 and E2 correspond to the two reversible reactions, eqn (4)
and (3), whereas E3 and E4 represent the unreactive flow-
through from the input to the output of B and A, respectively;
see eqn (16)–(19). The EFM E5 represents the sequence of the
two reverse reactions driven by the input of B and the output of A.
The EFM E6 represents the sequence of the two forward reactions
in eqn (3) and (4) driven by the input of A and the output of B.
The overall pathways E5 and E6 are traversed in opposite flow
directions: either from B to A, or else from A to B, and both these
open pathways are productive. The opening of the Schlögl model
to such volumetric matter flows creates the four additional EFMs
that are absent from the clamped version.

The partial entropy productions and exchanges associated
with each EFM, or pathway, are defined as follows:

sðE1Þ ¼
1

2
sð3X ! 2X þ BÞ þ 1

2
sðBþ 2X ! 3XÞ; (42)

sðE2Þ ¼
1

2
sðA! XÞ þ 1

2
sðX ! AÞ; (43)

sðE3Þ ¼
1

2
sð! BÞ þ 1

2
sðB!Þ; (44)

Table 1 The one-way transformations involved in the Schlögl model,
eqn (3) and (4), and the corresponding one-way partial entropy ‘‘produc-
tions’’ and the entropy exchanges (per unit volume); R is the gas constant.
Y may stand for A, X or B, respectively, depending on the input/output flow
configuration, eqn (16)–(19), of the model. [Y]eq is the equilibrium concen-
tration that [Y] would relax to if the flow were shut-off: f = 0, after the
system reaches a NESS, see eqn (25)–(27)

Transformation Partial entropy production or exchange

3X �!k2 2X þ B sð3X ! 2X þ BÞ ¼ Rk2½X�3 ln
k2½X�
k�2½B�

� �
2X þ B ��!k�2 3X sð2X ! 3X þ BÞ ¼ Rk�2½X�2½B� ln

k�2½B�
k2½X�

� �
A �!k1 X sðA! XÞ ¼ Rk1½A� ln

k1½A�
k�1½X�

� �
X ��!k�1 A sðX ! AÞ ¼ Rk�1½X� ln

k�1½X�
k1½A�

� �
��!f ½Y�in

Y sð! YÞ ¼ Rf ½Y�in ln
½Y�eq
½Y�

� �
Y !f sðY !Þ ¼ Rf ½Y� ln ½Y�

½Y�eq

 !

Fig. 13 Partitioning of the entropy production along the two elementary flux modes of the clamped Schlögl model, Section 2. (a) s(E1), eqn (34) and (b)
s(E2), eqn (35). The sum of these two contributions yields the total entropy production, see eqn (8) and Fig. 4. The region of unstable NESS and bistability
is bounded by the pair of red dots. Units are (J K�1 s�1 L�1).
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sðE4Þ ¼
1

2
sð! AÞ þ 1

2
sðA!Þ; (45)

sðE5Þ ¼
1

2
sð! BÞ þ 1

2
sðBþ 2X ! 3XÞ

þ 1

2
sðX ! AÞ þ 1

2
sðA!Þ;

(46)

sðE6Þ ¼
1

2
sð! AÞ þ 1

2
sðA! XÞ

þ 1

2
sð3X ! 2X þ BÞ þ 1

2
sðB!Þ:

(47)

The coefficient factors of one-half are due to the fact that
each one-way chemical transformation and flow term in
eqn (36)–(41) appears in two distinct EFMs. The expressions on
the right hand side are evaluated explicitly with the help of Table 1.

We note that the entropy production
1

2
s ¼ sðE1Þ þ sðE2Þ � 0 and

exchange entropy
1

2
se ¼ sðE3Þ þ sðE4Þ. In contrast to the clamped

model, exactly half of the entropy production is distributed over
the first two EFMs. And half of the exchange entropy, void in the
clamped model, is distributed over the second pair of EFMs;

see Fig. 14. The other halves
1

2
s � 0;

1

2
se are distributed over

the final two EFMs, and in a hybrid, or composite, way; as
concatenations of one way entropy ‘‘productions’’ and one-way
exchange entropies, see Fig. 15.

The entropy balance equation eqn (1), where s = S/V is the
entropy per unit volume, can be written in terms of the EFMs as
follows:

1

2

ds

dt
¼
X4
i¼1

sðEiÞ ¼ sðE5Þ þ sðE6Þ: (48)

Hence for all NESS we have
P4
i¼1

sðEiÞ ¼ 0 and s(E5) = �s(E6). The

latter two EFMs can undergo a mutual switching in their
relative � signs when the system is in an unstable NESS.
A compositional fluctuation about the unstable region in
s(E6) (or about the mirror image point in s(E5)) can provoke a
transition to either a greater positive or to a lesser negative
value in s(E6) and correspondingly, to a more negative value or
a greater positive value in s(E5). The latter case gives rise to the

Fig. 14 Open-flow model. The partial entropy productions (a) s(E1) Z 0 and (b) s(E2) Z 0 and the partial exchange entropies (c) s(E3) r 0 and (d): s(E4) r 0
evaluated on the NESS, versus the input concentration [B]in. For each curve, the region of unstable NESS and bistability is enclosed by the pair of red dots. These

four contributions, two entropy productions plus two exchange entropies, sum to zero on the NESS: see eqn (48) when
ds

dt
¼ 0. Units are (J K�1 s�1 L�1).

Fig. 15 Open-flow model. The hybrid one-way entropy ‘‘productions’’
and exchange entropies. Top curve: s(E6) and bottom curve: s(E5). These

satisfy s(E5) = �s(E6) on the NESS: eqn (48) when
ds

dt
¼ 0. The region of

unstable NESS bistability and switching is indicated for s(E6) (s(E5)) by the
pair of red (black) dots. Units are (J K�1 s�1 L�1).
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switching in signs. The entropy balance is maintained, see
Fig. 15. These EFMs E5 and E6 are related by time-reversal. The
time-reversal operation flips the direction of the reaction and
flow arrows, interchanging forward and reverse transformations,
we see that E5 and E6 form a time-reverse pair of pathways. The
first four EFMs are then singlets under time-reversal: they trans-
form into themselves under this operation. Note the contrast
with models of SMSB whose EFMs can be classified as being
either parity (enantiomeric) singlets or doublets.21

Other possibilities for implementing volumetric open-flow,
include, for example, having only A or B flow in to the reactor,
while allowing for all three species A, X, and B to flow out with
their instantaneous concentrations. In the former case, when
only A flows in, there is no regime of bistability, but there is in
the latter case, when only B flows in. For both scenarios, there
are now five EFMs, instead of six, and the difference between
either the A or the B input flow arrangement is readily appreciated
in the structure of these five extreme flux modes, as well as in the
forward or reverse directions the chemical transformations in the
reactor are driven by these flows; see the ESI.†

5 Conclusions

We may summarize our main results in the following points:
(1) Clamped versus open flow. Connecting the reacting

system to volumetric flows leads to important dynamic and
thermodynamic differences with the clamped model. On the
one hand, all three species A, X and B participate fully in the
dynamics of the bistability, as manifested in the overall reaction
A " B, which is suppressed when the external concentrations
are held fixed. Secondly, the flows allow for entropy exchange
with the environment, and these entropy fluxes together with
the entropy production, obey the entropy balance equation
eqn (1). The entropy production is now exactly compensated
by the entropy exchange on all the stationary states, implying
that the system entropy remains constant on all these states.

Further information distinguishing the clamped from the
open-flow versions is provided by the EFMs, as determined by
SNA. We have shown how these flux modes indicate the way in
which both the entropy production and the exchange entropy
are distributed, or partitioned, over the complete reaction net-
work, including the flows. We distinguish three types of EFMs:
(i) closed pathways, which can be described as micro-reversible
transformations, made up from the pair of forward and reverse
one-way reactions, (ii) open un-reactive pathways formed by the
input and output flows, which involve no reactions per se and,
(iii) open pathways which are hybrid concatenations of strictly
one-way chemical reactions plus one-way input and output
flows, which are at the heart of the irreversibility of the system.
The latter two types are absent from the clamped model. The
significance of type (ii) is that they impose the constraint of the
boundary condition on the entropy balance eqn (1). For type
(iii) pathways, there is an overall unidirectional flow of matter
which begins at the input, passes through a specific sequence of
one-way reactions for type (ii), and then exits from the output to

the environment. These describe the thermodynamic irreversi-
bility of the system, and are absent from the clamped model.
For the closed EFMs of type (i), the associated fraction of the
overall entropy production is always positive and there is no
exchange entropy. By contrast, for the open EFMs, the weighted
hybrid sum of the corresponding one-way entropy ‘‘produc-
tions’’ and one-way exchange entropies can be either positive
or negative. For type (ii), the sum over one-way entropy
exchanges yields the overall entropy exchange for that EFM,
which can be either positive or negative. We have seen moreover,
in the open flow model, that this algebraic sign can switch in the
bistable regime between a specific pair of hybrid type (iii) EFMs.
Most importantly, the sum of all the one-way entropy productions
and entropy exchanges over the complete set of EFMs yields the
entropy balance equation, eqn (1), and hence this sum over the
extreme flux modes is strictly zero for all NESS.21,27,28,35

(2) General evolution criterion (GEC). This is a general
inequality valid for the evolution of a macroscopic system under
fixed boundary conditions.20 Recall that the entropy production
per unit volume can be expressed as the sum over products of
the generalized forces Fi times the currents Ji:

26

s ¼
X
i

JiFi: (49)

The GEC states that the generalized forces (the affinities in the
case of chemical reactions) will change in time so as to lower the
entropy production:

dFs
dt
¼
X
i

Ji
dFi

dt
� 0; (50)

with equality to zero holding at a NESS. However, this result by
itself does not imply that the entropy production will actually be
lowered or even minimized, since the GEC does not involve a
total derivative in the time. Indeed, apart from the evolution of
the generalized forces Fi, there is a second contribution to the total
time derivative of the entropy production ds/dt which involves the
change in time of the currents Ji, and this contribution dJs/dt can
be either positive or negative in the non-linear regime of non-
equilibrium thermodynamics. In macroscopic physical and
chemical systems, the GEC is the only established theorem (it is
not a ‘‘principle’’) governing the evolution of the entropy produc-
tion (and the entropy exchange in well-mixed chemical systems)
for non-equilibrium thermodynamics. It is only in the restricted
linear regime of non-equilibrium thermodynamics where the
change with respect to the currents is linearly proportional to
the change with respect to the forces, and then here and only
here does the GEC reduce, as it must, to Prigogine’s theorem of
minimum entropy production.26 But in the much more inter-
esting and complicated non-linear regime, to date there is no
rigorously proven maximum/minimum entropy production
theorem (see below).

Eqn (10) is a special case of the general result derived for
GEC for well-mixed reacting systems.21 The calculation, in
passing from eqn (9) to eqn (10), demonstrates that dAs/dt is
manifestly semi-negative definite, and is strictly zero for stationary
states. See also the expression of the GEC for the open-flow case
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which includes the exchange entropy. The manifestly semi-
negative definite inequality again results automatically and
manifestly, in accord with the general result obtained in ref. 21.

We have focused our attention on the limit of large volumes
and large number of molecules: the thermodynamic limit, for
which the reaction-rate equations work very well.36 For small
enough systems, and for molecular populations not too many
orders of magnitude larger than one, discreteness and stochasti-
city may play important roles.37 In this discrete and stochastic
domain, an inequality reminiscent of the Glansdorff and Prigogine
GEC, was established by Nicolis and coworkers38 and involves the
probability distribution P(X, t) where X is the state vector:

dAs
dt
¼ �

X
X

½@tPðX ; tÞ�2
PðX ; tÞ � 0; (51)

and A is the chemical affinity. The inequality is manifest, since
P(X, t) Z 0. The equality to zero holds for stationary configura-
tions. Thus, the affinities (now stochastic variables) must evolve
in time so as to lower the entropy production. Yet, just as for the
deterministic case, this result by itself does not imply that the
entropy production will actually be lowered or even reach a
minimum, since there is a second contribution to the total time
derivative of the entropy production due to the temporal change
in the stochastic fluxes.38 Again, it is only in the linear regime
that the entropy production reaches a minimum value, as
demonstrated for stochastic dynamics.38 Note the formal corre-
spondence between the deterministic and stochastic versions of
the GEC, in which the deterministic concentrations are replaced
by the probability distribution of the particle numbers:

[X](t) / P(X, t), (52)

and the sum over species is replaced by the sum over configura-
tions; compare eqn (9) and (28) to eqn (51) and see also ref. 21.

Some comments concerning the domain of validity of the
GEC are warranted. The proof of the GEC appeals to the local
equilibrium hypothesis, or assumption; see Section II.2 in ref. 20.
This assumption is valid for complex systems of chemical reac-
tions with highly nonlinear kinetics provided the rate of elastic
collisions remains larger than the rate of reactive collisions. This
includes the Schlögl model treated here. Convective and transport
effects described by Navier–Stokes equations are also within the
domain of validity of the local description. On the contrary, shock
waves, and plastic deformations of solids lie outside the range of
this local equilibrium approach. Clearly then, in these exceptional
situations, where the local equilibrium hypothesis does not hold,
we would a priori not expect the GEC to be valid.

The GEC in general gives no information concerning the
putative stability of the non-equilibrium stationary states
(NESS) in the non-linear regime of non-equilibrium thermo-
dynamics. This is because the GEC cannot be related in general
to a kinetic potential. On the other hand, it does govern the way
the generalized forces evolve, and this force-evolution connec-
tion is the purpose of this paper. In the original proofs of the
GEC, equilibrium stability conditions are carried over to non-
equilibrium thermodynamics by appealing to the local

equilibrium hypothesis. On the other hand, the stability ques-
tion of the NESS is a major goal of studying the temporal
dependence of the so-called excess entropy production, and its
relation to Lyapunov functionals, a rather different problem
than the topics treated here. In these stability investigations,
the NESS need not arise from local equilibrium, as shown in
ref. 39.

(3) Entropy production. For the model studied here, a
compositional fluctuation about the unstable non-equilibrium
stationary state in the bistable region can initiate the evolution
of the system toward either the upper or lower regions of stable
stationary states on the many-valued thermodynamic branch,
and hence toward final states yielding either greater or lesser
entropy productions with respect to the unstable states. This
conclusion holds for both the clamped and volumetric open flow
versions of the Schlögl model. Previous reports on the bistability
and spontaneous mirror symmetry breaking in enantioselective
catalysis show a qualitatively similar behavior but, when the
thermodynamic branch becomes unstable, moreover, the increase
or decrease in the change in the entropy production does not
correlate with an increase or decrease of the affinities.35 We
emphasize this because the only theorem21 concerning the tem-
poral behavior of the entropy production (and the exchange
entropy in open flow systems) is the general evolution criterion
(GEC) eqn (28). Therefore, we find no evidence for the validity of an
entropy maximization ‘‘principle’’, such for example, as has been
proposed in climate science40 and in physics.41 Careful refutations
have already been made elsewhere arguing against such a
principle,42,43 and we are in agreement with the counter-
examples offered therein. The sole theorem concerning the
temporal behavior of the entropy production in far-from-
equilibrium situations is the general evolution criterion (GEC),
and it holds in both deterministic and stochastic non-equilibrium
thermodynamics. In far-from-equilibrium situations, a flow of
energy may either increase the entropy production, by adding a
new mechanism of dissipation, or it can decrease it, as in
symmetry breaking instabilities.20 In the latter, some of the
existing mechanisms of dissipation that are involved in maintain-
ing the symmetry are suppressed, or greatly diminished in their
productivity and reactivity, after the symmetry is broken. Thus,
for example, mirror symmetry involves two subsets of enantio-
merically related mechanisms of dissipation. After mirror sym-
metry breaking, the subset of reaction pathways involving the
minority enantiomer becomes practically inoperative,21,28,29,35

and this lowers the overall entropy production.
Concerning the relevance of this work for actual chemical

systems presenting bistable behavior, we may mention the replica-
tor and catalytic networks giving rise to an array of emergent
phenomena such as cooperation, chemical computation, bifurca-
tion, and chemical oscillations, as reviewed in ref. 44. As empha-
sized there, the most interesting emergent phenomena leading to
complexification and emergence requires open systems. In these
latter cases, entropy will be continuously produced and exchanged
with the environment. The general evolution criterion then dictates
that the chemical forces will change in time so as to lower
the dissipation during the system’s approach to the (stable)
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non-equilibrium stationary state (NESS). For oscillations, there are
no NESS’s, so the rate of change of the dissipation with respect to
the chemical affinities will be always negative and oscillating. This
has been confirmed numerically for the chiral oscillations that
result from the mirror symmetry breaking in chiral catalytic
networks.45 A recent report on bistability in a thiodepsipeptide
replicator network involves switching between a (high) NESS popu-
lated by coiled-coil peptides and a (low) NESS populated by unfolded
precursors.46 Our work here indicates that the coiled peptide state
will have the larger entropy production in the region of bistability.
Moreover, since the model operates under clamped conditions, it
may be possible to estimate a kinetic potential associated with
the changes of the entropy production with respect to the
affinities. Such a potential could then be used to study the
relative stability of the two stationary states (coiled and
unfolded) with respect to variations in the system parameters:
rate constants, the (clamped) thiol concentration, the tempera-
ture, the denaturation factor, etc., and hence explore the bistability
parameter space based on entropic principles alone, and to check
against the experimental exploration of this parameter space.
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