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1. Abstract 

The subsurface is considered as an extreme environment characterized by a 

continuous darkness, anaerobiosis and oligotrophy where there is barely space for 

life. Despite the hostile conditions presented by the system, numerous studies have 

shown that life in the subsurface is diverse and is maintained by low energy 

anaerobic processes that, at first, are supported by the mineral geochemistry of the 

system. However, due to the difficulty of both sampling and analysis, our 

understanding of the functioning of these ecosystems is very limited. 

The Iberian Pyrite Belt Subsurface Life (IPBSL) project and its predecessor, the 

Mars Astrobiology Research and Technology Experiment (MARTE) project, are 

drilling projects carried out for the characterization of the underground ecosystem 

of the Iberian Pyrite Belt (IPB), responsible for the peculiarities that the Río Tinto 

presents. Both projects have been developed by interdisciplinary teams and 

multiple complementary techniques have been applied to study the 

geomicrobiology of the IPB. Within the methodologies used for the study of the IPB 

subsurface microbiology, stands out Fluorescent in situ Hybridization (FISH), 

which allows not only to identify microorganisms but to analyze their distribution 

in the solid rock matrix. 

Throughout this thesis, within the framework of the IPBSL project, the biodiversity 

of samples from drilling cores along borehole BH10 (613 meters below surface) 

has been characterized by means of several fluorescence microscopy techniques. 

To this end, new species specific probes have been designed, which have been used 
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together with probes already described for the study of the biodiversity 

distribution in the IPB subsurface through CAtalized Reporter Deposition 

fluorescence in situ hybridization (CARD-FISH). In addition, the presence of 

biofilms in native samples of the subsurface has been analyzed thanks to the use of 

fluorescent lectins and specific stains of DNA, lipids and proteins, as well as the 

optimization of the double labeling of oligonucleotide probes for fluorescence in 

situ hybridization (DOPE-FISH) protocol. On the other hand, the correlation 

between fluorescence microscopy and confocal Raman microscopy (CRM) allowed 

an in situ study of the microorganism-mineral interaction in these samples. Finally, 

the role of nitrate-reducing microorganisms, which are the most abundant in the 

IPB subsurface, has been analyzed. 

Our results indicate that life in the IPB subsurface is diverse and is widely 

distributed along the BH10 column. The microorganisms that inhabit this 

environment live forming part of multi-species biofilms and are able, in principle, 

to survive thanks to metabolic interactions through which they can maximize the 

obtaining of energy and the biogeochemical cycles in the IPB subsurface can be 

maintained. In addition, mineralogy influences the distribution of life in the 

system, highlighting the nitrate-reducing microorganisms, which are candidates 

for the dissolution of metal sulfides in these anaerobic environment and, therefore, 

the high concentration of iron found in the Río Tinto basin. 
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2. Resumen 

El subsuelo es considerado como un ambiente extremo caracterizado por una 

continua oscuridad, anaerobiosis y oligotrofia donde existe muy poco espacio para 

la vida. A pesar de las condiciones hostiles que presenta el sistema, numerosos 

estudios han mostrado que la vida en el subsuelo es diversa y se mantiene 

mediante procesos anaerobios de baja energía que, en un principio, se sustentan 

gracias a la geoquímica mineral del ecosistema. No obstante, debido a la dificultad 

tanto de la toma de muestras como de su análisis, nuestro entendimiento del 

funcionamiento de estos ecosistemas es muy limitado. 

El proyecto Iberian Pyrite Belt Subsurface Life y su antecesor, el proyecto Mars 

Astrobiology Research and Technology Experiment, son proyectos de perforación 

llevados a cabo para la caracterización del ecosistema subterráneo de la Faja 

Pirítica Ibérica (FPI), responsable de las peculiaridades que presenta el Río Tinto. 

Ambos proyectos han sido desarrollados por equipos interdisciplinares y se han 

aplicado múltiples técnicas complementarias para el estudio tanto de las 

características geoquímicas del subsuelo de la FPI como de la vida que habita este 

sistema. Dentro de las metodologías utilizadas para el estudio de la microbiología 

del subsuelo de la FPI, destaca la Hibridación in situ Fluorescente, que permite 

analizar la distribución de la biodiversidad en sustratos sólidos minerales. 

La aplicación de técnicas de fluorescencia en estudios del subsuelo, a pesar de su 

potencial, no ha sido utilizada debido a la dificultad que presentan los sustratos 

minerales, los cuales pueden emitir autofluorescencia. Para discernir las señales 



24 

  

provenientes de los fluoróforos empleados en este estudio, hemos recurrido al 

empleo de tinciones adicionales de DNA así como al uso del modo lambda 

disponible en microscopios de barrido laser confocal, el cual permite la 

caracterización del espectro de emisión de los fluoróforos a utilizar. 

A lo largo de esta tesis, se ha caracterizado la biosfera presente a lo largo de la 

columna BH10, en el marco del proyecto IPBSL, mediante diversas técnicas de 

microscopía de fluorescencia, destacando técnicas de hibridación in situ 

fluorescente. Para ello, se han diseñado nuevas sondas para detectar miembros de 

los géneros Tessaracoccus y Rhizobium, las cuales se han empleado junto con 

sondas ya descritas para el estudio de la distribución de la biodiversidad en el 

subsuelo de la FPI mediante CARD-FISH. Los resultados obtenidos de este análisis 

indican que las bacterias son los microorganismos más distribuidos a lo largo de la 

columna BH10, destacando los phyla Proteobacteria, Actinobacteria y Firmicutes. 

El empleo de múltiples hibridaciones simultáneas ha permitido detectar la 

coexistencia de bacterias y arqueas así como la coexistencia de microorganismos 

relacionados con el ciclo del hierro y el azufre, los cuales podrían interconectar 

ambos ciclos a nivel de micronicho en el subsuelo de la FPI. 

Además, se ha analizado la presencia de biopelículas íntegras en muestras nativas 

del subsuelo gracias al uso de lectinas fluorescentes y tinciones específicas de DNA, 

lípidos y proteínas, así como a la optimización del protocolo de DOPE-FISH. Estos 

análisis indican que la formación de biopelículas es un estilo de vida muy 

generalizado en ambientes subterráneos, a pesar del coste energético que supone 

tanto su producción como su mantenimiento. 
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Por otro lado, se han realizado cultivos, altamente representativos del subsuelo de 

la FPI, en los cuales se ha observado un aumento de la concentración de hierro en 

solución, lo que apoya la hipótesis del origen biológico del Río Tinto a partir del 

biorreactor subterráneo del sistema. Debido a que los microorganismos reductores 

de nitrato son muy abundantes en el pozo BH10, hemos analizado su posible papel 

en la disolución de sulfuros metálicos, minerales muy abundantes en el subsuelo 

de la FPI. Nuestros estudios muestran que microorganismos como Acidovorax o 

Tessaracoccus son capaces de oxidar hierro indirectamente a través de la 

producción de especies reactivas de nitrógeno, lo que apoya la teoría de que todos 

los microorganismos reductores de nitrato tienen la capacidad innata de generar 

hierro férrico. Dado que el Fe3+ es el principal oxidante de sulfuros metálicos como 

la pirita, presumiblemente todos los microrganismos reductores de nitrato tienen 

la capacidad de disolver estos minerales. Los estudios realizados a lo largo de este 

trabajo con Acidovorax, en los cuales se ha observado la disolución de pirita, 

apoyan esta hipótesis y supone la implicación de los microorganismos reductores 

de nitrato en la generación del alto contenido en hierro que presenta el Río Tinto. 

Por otro lado, la correlación entre microscopía de fluorescencia y microscopía 

Raman confocal ha permitido estudiar in situ la interacción microorganismo-

mineral. Estos estudios indican que la distribución de Acidovorax no solo está 

influenciada por la presencia de pirita a lo largo de la columna BH10, si no que 

Acidovorax produce cambios en el espectro Raman de la pirita, presumiblemente 

debido a la biooxidación del sulfuro metálico por parte del microorganismo. 

Nuestros resultados indican que la vida en el subsuelo de la FPI es diversa y se 

encuentra muy distribuida a lo largo de la columna BH10. Los microorganismos 
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que habitan este ambiente viven formando parte de biopelículas multi-especie y 

son capaces, en principio, de sobrevivir gracias a interacciones metabólicas, 

gracias a las cuales los microorganismos podrían maximizar la obtención de 

energía y se mantendrían los ciclos biogeoquímicos en el subsuelo de la FPI. 

Además, la mineralogía influye en la distribución de la vida en el sistema, 

destacando los microorganismos reductores de nitrato, los cuales son candidatos 

para la disolución de sulfuros metálicos en el subsuelo y, por tanto, de la alta 

concentración de hierro que presenta el Río Tinto. 
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3. Introduction 

3.1. The deep continental subsurface 

3.1.1.  The beginning of the deep biosphere study  

Although almost two centuries ago Darwin predicted the possibility of life in the 

subsurface (Darwin, 1839), it was not until 1926, when the presence of sulfate-

reducing bacteria (SRB) associated with an oil field was described (Bastin et al., 

1926), that the first data about life at great depths were obtained. Shortly 

afterwards, in the 1930s, microbiological studies were initiated on marine 

sediments demonstrating the existence of life in the oceanic subsurface (ZoBell 

and Anderson, 1936; Zobell, 1938). However, advances in this field in subsequent 

years were limited due to the little credibility given by the scientific community 

(Lipman, 1931). In addition, after observing that the combined effect of low 

temperatures and high pressure inhibited the growth of microorganisms in the 

ocean depths, the possibility of finding active life in the deep subsurface was 

rejected (Jannasch et al., 1971). 

The concept of life at great depths changed radically in 1979, when Corliss and 

coworkers revealed that, in deep oceanic hydrothermal vents, animal life existed 

sustained by the chemosynthesis produced by sulfur-oxidizing microorganisms, in 

an ecosystem completely independent of photosynthesis (Corliss et al., 1979). 
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Thanks to this discovery, the study of deep biosphere in the oceanic subsurface 

was promoted and included in the successful international programs: Deep Sea 

Drilling Project started in 1968, and its successors, the Ocean Drilling Program 

(ODP) in January 1985 and the Integrated Ocean Drilling Program (IODP) in 2004 

(Oremland et al., 1982; Whelan et al., 1986; D Hondt et al., 2002). 

However, the study of life in the continental subsurface was not seriously 

promoted until years after the discovery of the great biodiversity in the oceanic 

sediments and subsurface. In 1988, Ghiorse and Wilson denounced with their "out 

of sight, out of mind?" the indifference that had existed for the possible life 

existence in terrestrial subsurface environments (Ghiorse and Wilson, 1988). They 

pointed out that several studies had detected microorganisms in continental 

subterranean locations for decades, but they had been ignored and questioned due 

to the high risk of contamination that exists during the sampling (Lipman, 1931). 

For this reason, development and use of tracers were key in providing credibility 

to the study of life in subsurface environments, since they allow to control the 

main sources of microbiological and chemical contamination during sampling 

(Kieft, 2010). 

Nevertheless, one of the first people to speculate about the existence of an 

ecosystem in the continental subsurface independent of photosynthesis was 

Thomas Gold. Gold not only considered the subsurface as a possible habitat for 

microorganisms, but also considered the possibility that this form of life could be 

found beyond our planet (Gold, 1992).   

Finally, numerous studies showed unequivocally that, in fact, it exist a great 

microbial diversity in both oceanic and continental subsurface and, nowadays, we 
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can assure that life in these environments is ubiquitous and that it can represent a 

large percentage of earth’s biomass. 

3.1.2.  Limitations of the continental subsurface study  

Several research groups have carried out studies of the subsurface biosphere in 

different locations of the world and their methods of sampling and analysis of 

samples differ according to the geology of the studied area, the type of samples and 

the available technology (Table 1). 

Nowadays, thanks to advances in drilling methodologies, samples can be extracted 

at great depths of the earth's crust, minimizing and quantifying their 

contamination by using tracers (Kieft, 2010). However, very few projects have 

performed devoted geomicrobiological drills from the surface to collect samples at 

different depths due to the difficulties, both mechanical and economic, that present 

(Zhang et al., 2005; Fernández-Remolar et al., 2008b; Gronstal et al., 2009; Itävaara 

et al., 2011b). Instead, many researchers have taken advantage of subterranean 

"windows", both natural and artificial, for deep sampling (Table 1). These include 

artesian wells (Stevens and McKinley, 1995; Chapelle et al., 2002), springs (Suzuki 

et al., 2013; Magnabosco et al., 2014; Probst et al., 2014a), underground locations 

for radioactive waste disposal (Pedersen, 1999), underground research facilities 

(Murakami et al., 2002; Momper et al., 2017a) or deep mines (Onstott et al., 2003; 

Sahl et al., 2008). In this last case, for example, instead of use a large surface 

drilling machinery, small equipment that can be deployed in limited spaces are 
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used and samples are taken from the walls of the tunnels that constitute the 

galleries of the mine.  

Table 1. Examples of deep continental subsurface microbial studies and summary of 
their sampling and analytics methods. MPN=most probable mumber; PLFA= 
phospholipid fatty acid analysis; qPCR= quantitative PCR; DGGE= denaturing gradient 
gel electrophoresis; T-RFLP= terminal restriction fragment length polymorphism. 
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It must be kept in mind, however, that the study of the subsurface biosphere 

through "artificial windows" is based on systems that have been previously 

modified by man (sometimes years before sampling) and, therefore, they are 

disturbed environments where microbial populations may not be representative of 

those existing in the subsurface. Perhaps a good example, among others (Moser et 

al., 2003), is represented by the work done by Sahl and collaborators (2008), who 

showed the great variation in the microbial composition of the water that flowed 

through wells drilled in the Henderson Mine after only two weeks of wells 

isolation, that is to say, after eliminating the aeration of the water (Figure 1). 

 

 

Figure 1. Subsurface water microbial composition in a deep mine before (A) and after 
two weeks (B) of packing a preexistent borehole in the wall. Figure taken from Sahl et 
al. (2008). 

                   

On the other hand, several studies confirmed that the microbial communities 

inhabiting the rocks show a different composition from those detected in the water 

(Lehman et al., 2004; Momper et al., 2017b). Hence, to obtain a true vision of 
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subsurface environment both types of samples should be analyzed in order to 

characterize the microorganisms associated to them. However, most of research 

groups have focused on the study of groundwater, since both sampling and 

analysis are easier than rocky samples (Table 1). Therefore, the data obtained from 

subsurface studies, up to now, corresponded mainly to planktonic life. If we 

consider that the number of microorganisms living attached to surfaces is up to 

three orders of magnitude higher than those microorganisms living unattached in 

subsurface environments (McMahon and Parnell, 2014), the great majority of 

microorganisms of the subsurface biosphere studied with this methodology is 

being underestimated. 

3.1.3.  Continental subsurface characteristics 

According with Hoehler (2004), habitability of an underground environment on 

earth is defined by the presence of three basic requirements: energy availability, 

liquid water and clement temperature. Deep subsurface is considered an extreme 

environment characterized by darkness and anaerobiosis where the temperature 

and pressure increase with depth (Kieft, 2016). In these environments, 

geochemistry and geohydrology control nutrients and water availability and, 

therefore, the number and activity of microorganisms. Commonly, as buried 

organic matter is scarce or no longer profitable, the principal source of substrates 

is virtually limited to mineral dissolution or abiotic processes that release energy 

from minerals. Thus, the geological composition determinates the available 

electron donors and acceptors (Jones and Bennett, 2017; Rempfert et al., 2017), in 
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addition the main metabolisms operating in the deep subsurface are anaerobic and 

the energy obtained is low (Hoehler, 2004). On the other hand, growth of 

microorganisms is influenced by rock porosity and the presence of fractures or 

faults in the system. Fractured rocks or those with high porosity present an 

increase in water, nutrients flux and physical space, which promote microorganism 

colonization (Fredrickson et al., 1997a; Pedersen, 2000). In addition, geochemistry 

and geohydrology play an important role in the formation of heterogeneous and 

independent microniches, which would allow the coexistence of antagonist 

metabolisms such as sulfate reduction and methanogenesis (Jakobsen, 2007). 

3.1.4.  The deep biosphere 

The number of "intraterrestrial" microorganisms reported varies markedly 

depending on the studied site. The values fluctuate between 102 and 107 cells/ml 

or gr (Pedersen, 2000; Zhang et al., 2005; Basso et al., 2009; Itävaara et al., 2011b) 

depending on the geology of the area, its physicochemical characteristics and the 

depth analyzed. Different studies have tried to calculate the percentage of biomass 

inhabiting subsurface environments, but their results differ greatly from each 

other (Whitman et al., 1998; Kallmeyer et al., 2012; McMahon and Parnell, 2014). 

However, if we consider the Earth’s radius (c. 6300 km), the theoretical depth to 

which microorganisms could develop (5 - 10 km in most areas of the crust due to 

the temperature as limiting factor (Gold, 1992)) and the number of 

microorganisms detected in diverse studies, the percentage of prokaryotic life in 

subsurface has to be substantial. 
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It has been questioned that a large amount of prokaryotic biomass can live in the 

subsurface on the basis of the insufficient energy supply in several underground 

locations. To survive when energy is scarce or nonexistent many microorganisms 

are able to adopt a latent metabolic state, so it is believed that most 

microorganisms in the subsurface are in anabiosis (D'Hondt et al., 2002). Recent 

papers have shown that the number of active microorganisms increases when 

subsurface samples are incubated in enrichment media in the range of a few hours 

(Rajala et al., 2015; Rajala and Bomberg, 2017), which supports the hypothesis that 

microorganisms may not be metabolically active in this environments and that 

they are activated after an energy source is facilitated. However, according to 

Morita (1999), survival of DNA in a latent state is limited to 105 years at cold 

temperatures, but geological formations up to 250 million years old have been 

studied in which viable microorganisms have been recovered (Vreeland et al., 

1998). Morita also offers a possible solution to this discrepancy by proposing that 

microorganisms could survive for long periods of time in starvation state if they 

are able to achieve a minimum of energy, called survival energy, to compensate the 

racemization of amino acids and the depurinization of DNA. This theory imply that 

subsurface microorganisms are metabolically active even though their growth rate 

is extremely low (Phelps et al., 1994), in such a way that we could even talk about 

geological times of duplication. In addition, several studies support the hypothesis 

of an active underground life, such as the discovery of biogeochemical signatures 

(Fernández-Remolar et al., 2008b), the measurements of microbial activity in 

different points of the subsurface (Pedersen, 2012; Wouters et al., 2013; Suzuki et 

al., 2014) or metatranscriptomic studies (Lau et al., 2016; Zinke et al., 2017). 
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The microbial populations that have been described in different subsurface 

locations vary widely, even at different depths of the same area, which may be due 

to the geological and physicochemical differences of the system studied as well as 

the origin of the water. This variability, together with the scarcity of samples 

studied and the different methodologies used, makes it difficult to correlate 

microbiological data and obtain general characteristics that are significant for this 

kind of environments. However, the presence of discrepancies between the 

different studied subsurface locations is an indicative of the heterogeneity of the 

system.   

Recurrent data in all the studies carried out in continental subsurface indicate that 

when the depth increases, the number of microorganisms decreases (Moser et al., 

2005; Itävaara et al., 2011a; Cockell et al., 2012; McMahon and Parnell, 2014) and 

there are less sequence similarity with the databases (Itävaara et al., 2011a), that 

is, it increases the number of unknown microorganisms, which is quite high. Even 

it has been found groups of sequences different of all known microbial groups, that 

could correspond to new divisions of both Bacteria (Gihring et al., 2006; Sahl et al., 

2008) and Archaea (Takai et al., 2001; Probst and Moissl-Eichinger, 2015). 

Although there are exceptions (Itävaara et al., 2011a), in most cases microbial 

diversity tends to decrease with increasing depth (Zhang et al., 2005; Lin et al., 

2006b; Chivian et al., 2008). However, what kind of microorganisms is more 

numerous or diverse is not yet clear, since this variable depends directly on the 

geological characteristics of the area. Generally, diversity and abundance of 

bacteria is superior to archaea (Takai et al., 2001; Cockell et al., 2012; Ino et al., 

2016; Lau et al., 2016; Rempfert et al., 2017). Within Bacteria, the most common 
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phyla reported in continental subsurface are Proteobacteria, Actinobacteria, 

Bacteroidetes and, above all, Firmicutes (Onstott et al., 2003; Moser et al., 2005; 

Zhang et al., 2005; Lin et al., 2006a; Dong et al., 2014a), which comprise, in some 

cases, up to 40% of the total population in the deepest layers (Basso et al., 2009). 

Nevertheless, it has been also detected others phyla less represented as 

Deinococcus-Thermus, Nitrospirae, Acidobacteria, Chloroflexi or the newly 

proposed phyla, which do not have cultivated members, as Candidate phylum 

Omnitrophica (OP3) or Candidate phylum Saccharibacteria (TM7) among others 

(Appendix 1).  

One of the great surprises of the deep biosphere study has been the frequent 

appearance of sequences that belong to microorganisms that have the potential to 

carry out a photosynthetic metabolism. Members of the Cyanobacteria phylum 

have been found repeatedly in subsurface environments (Onstott et al., 2003; 

Zhang et al., 2005; Bomberg et al., 2014; Purkamo et al., 2015; Ino et al., 2017; 

Rempfert et al., 2017). These studies, however, do not offer a possible explanation 

about why this type of microorganisms has been detected hundreds of meters 

below the surface (mbs). Members of this phylum have the ability to carry out non-

photosynthetic metabolism that allows them to grow in the absence of light 

(Mannan and Pakrasi, 1993; dos Santos et al., 2017) and, therefore, they may 

develop in the subsurface and be an active part of the system.  

Finally, it should be noted that members of cultivated archaea found in the 

subsurface is very low (Takai et al., 2001). In general, members of the phylum 

Crenarchaeota are usually more abundant in the surficial layers of the subsurface, 

while members of the phylum Euryarchaeota are more common and diverse in 
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deeper layers (Takai et al., 2001; Zhang et al., 2006; Nyyssönen et al., 2014). 

Special attention should be given to the orders Methanobacteriales, 

Methanomicrobiales and Methanosarcinales, which are the cultivated archaea 

detected more often in the continental subsurface (Moser et al., 2005; Probst et al., 

2014a; Purkamo et al., 2015; Rempfert et al., 2017). 

In addition, not only microbial species have been detected in the subsurface. 

Several studies have shown the presence of viruses in subterranean environments 

(Kyle et al., 2008; Eydal et al., 2009; Lau et al., 2014; Nyyssönen et al., 2014), which 

could be involved in the horizontal transfer of genes between microbial 

populations of the subsurface (Labonté et al., 2015). However, perhaps one of the 

most surprising findings, due to the anaerobiosis of the system, has been the 

occasional detection of eukaryotic organisms in subsurface environments. Some 

studies have revealed the presence of fungal communities (Pedersen, 1997; 

Purkamo et al., 2013; Sohlberg et al., 2015) and even new species of nematodes 

(Borgonie et al., 2011). While in the latter case the survival of the nematodes could 

be explained by the presence of a minimum of oxygen in the water, there are 

authors who consider the possibility that the subterranean fungal communities 

can thrive in anaerobic conditions through collaboration between species 

(Sohlberg et al., 2015) or the existence of facultative anaerobic metabolism in 

these organisms (Kurakov et al., 2008). Even so, still few studies have paid 

attention to the non-prokaryotic communities and their role in the subsurface. 
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3.1.5.  Energy sources and metabolism  

Microorganisms are the only living beings capable of using almost any type of 

available energy. As previously mentioned, initially the mineralogy should control 

the availability of nutrients and the source of energy and, therefore, the operating 

metabolism at a given location and depth. In the subsurface, oxygen is rapidly 

consumed and anaerobic metabolisms, both autotrophic and heterotrophic, 

dominate in underground environments.  

3.1.5.1.  Primary production  

One of the most controversial topics in the study of subsurface environments is 

whether the available metabolic energy sources are endogenous or, on the 

contrary, are partly dependent on products photosynthetically generated in the 

surface. The most purist authors affirm that only those microbial communities 

capable of developing independently of sunlight can be considered part of the 

subsurface biosphere (Orcutt et al., 2011; Momper et al., 2017b), that is, if they are 

part of lithoautotrophic microbial ecosystems. These ecosystems that operate in 

the absence of any influence of photosynthesis are called SLiMEs (Subsurface 

Lithoautrophic Microbial Ecosystem), name created by Stevens and Mckinley in 

1995. As described by Nealson et al. (2005), a true SLIME system must be powered 

by the geosphere and both electron donors and acceptors should be renewed by 

geological processes continuously and, therefore, the microorganisms that form 

the basis of the ecosystem must be quimiolitoautotrophs. However, according to 

Hoehler (2004), to sustain life in underground environments, the mineral matrix 
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must not only store enough energy, but also have the potential to transfer it in a 

biologically accessible form.  

Different studies have shown the capacity of microorganisms to use minerals as 

external electron donors or acceptors (Shock, 2009; El-Naggar et al., 2010) or to 

dissolve minerals such as biotite (Shelobolina et al., 2012), pyrite (Vera et al., 

2013), chalcopyrite (Edwards et al., 2003) or feldspar (Rogers et al., 1998) among 

others (Dong et al., 2014a), releasing compounds that can be used as substrate and 

contribute to the production of biomass. However, in general, microorganisms 

need to produce extracellular agents to dissolve minerals, which imply an increase 

in the necessary energy to survive in an environment that is considered 

oligotrophic. Therefore, candidate environments to be considered SLiME are those 

in which energy is released and biologically accessible in an abiotic way.  

One of the most abundant gases in the subsurface is hydrogen, which can be 

generated abiotically in many different ways (Apps and van de Kamp, 1993). H2 is 

one of the most used molecules by chemolithoautotrophic microorganisms and is 

currently considered the main source of primary energy in environments 

considered SLIME. Both Stevens and McKinley (1995) and Pedersen (1997) 

suggested a similar model in which H2 was the main driver of the underground 

biosphere in the Columbia River Basalt Group and the Äspö area respectively 

(Figure 2). According to this model, autotrophic methanogens and homoacetogenic 

microorganisms would conform the basis of the trophic chain through the 

consumption of H2 and CO2. Their metabolic products, as well as the biomass 

obtained by these communities, could serve as energy source for anaerobic 

heterotrophs and fermenters, closing the carbon cycle.  
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Figure 2. Proposed model in which hydrogen is the principal energy source for 
primary production in SLiMe environments. Figure taken from Pedersen (1997) 

 

Several research groups defend the possibility that H2 is the main source of energy 

for primary producers and, until now, it is the most accepted model that explains 

the survival of a subsurface biosphere independent to the surface (Chapelle et al., 

2002; Nealson et al., 2005; Brazelton et al., 2012; Lau et al., 2016). Data obtained 

from several underground ecosystems reported the presence of H2, CO2 and CH4, at 

least in micromolar concentrations, together with the presence, and sometimes 

dominance, of microorganisms whose metabolism is based on the oxidation of H2 

(Pedersen, 2000; Moser et al., 2005; Basso et al., 2009; Itävaara et al., 2011a), 

which support this hypothesis.  

However, not all authors share the view that H2 can be a significant source of 

abiotic energy and argue that underground life may be, at least in part, dependent 

on the flow of organic carbon and energy from the surface, that is to say on 

photosynthetic processes, for various reasons. One of them is that not all the 
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sources of energy available in the subsurface are inorganic compounds. The best 

examples are petroleum deposits or sedimentary rocks, where the presence of 

organic matter is indisputable (Fredrickson and Balkwill, 2006). On the other 

hand, subsurface is not a completely isolated system since the percolation of water 

through pores and fractures from the surface may contain small amounts of 

organic matter that can contribute in feeding the system. In addition, heterotrophy 

is a metabolism very represented in the subsurface and heterotrophic microbial 

populations are more diverse and, on occasions, more numerous than 

lithoautotrophic ones in these environments (Breuker et al., 2011; Purkamo et al., 

2015). In this hypothetical case, the fermenting and heterotrophic microorganisms 

would be the primary producers of the system.  

The reality is that, up to day, the existence of a truly SLiME community has not yet 

been unequivocally demonstrated in the continental subsurface.  

3.1.5.2.  Alternative sources of reducing power 

In subsurface environments, other lithotrophic metabolisms have been detected 

that does not require H2 or reduced organic compounds as an energy source. 

Among these are the oxidation of reduced sulfur compounds (Amend and Teske, 

2005; Gihring et al., 2006; Lau et al., 2016), iron (Sahl et al., 2008; Swanner et al., 

2011; Shelobolina et al., 2012) and nitrogen (Swanner and Templeton, 2011; 

Nyyssönen et al., 2014; Lau et al., 2016). In addition, other less common 

metabolisms have also been detected such as the oxidation of arsenic (Zhang et al., 

2005; Sahl et al., 2008), manganese (Moser et al., 2005) or methane (Nyyssönen et 

al., 2012; Lau et al., 2016; Ino et al., 2017).  
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It is unknown if these alternative sources of reducing power could be sufficient to 

sustain an underground chemolithotropic ecosystem where H2 levels are 

insufficient, but according to thermodynamic models these reactions could provide 

enough energy to maintain it  (Amend et al., 2003; Osburn et al., 2014).  

3.2. Iberian Pyrite Belt subsurface 

3.2.1.  Río Tinto  

Río Tinto (Huelva, Southwestern of Spain), almost 100 km long, is one of the most 

extreme environments of the Iberian Peninsula in terms of its very low pH and 

high concentration of heavy metals in solution (López-Archilla et al., 2001; 

González-Toril et al., 2003). The characteristic red color of the river is given by 

ferric iron, which concentration is at least one or two orders of magnitude higher 

than the acidic rivers of the area, Odiel and Agrio (Amils et al., 2002), and which 

strong buffer capacity maintain an acidic constant pH of 2.3 along the river and the 

year (Figure 3, red arrows). Thus, at high pH values, dissolved Fe3+ precipitates as 

ferric hydroxide (Fe(OH)3) and release protons while, at low pH, Fe3+ from ferric 

hydroxide precipitates dissolves, consuming protons and compensating the acidity 

(Amils et al., 2002).  
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Figure 3. Geomicrobiological model coupling iron (blue arrows) and sulfur (green 
arrows) cycles that operate in Río Tinto water column. Ferric iron buffering system is 
indicated (red arrows). The type size of the microorganisms designation is 
proportional to their respective cell number in the river. Figure modified from Amils 
et al. (2011).  

 

Fe3+ is produced essentially by the iron-oxidizing microorganisms Acidithiobacillus 

ferrooxidans and Leptospirillum ferrooxidans, that are very active and numerous in 

the aerobic part of the river (Figure 3). The resulting Fe3+ of their metabolism come 

in contact with the abundant metallic sulfides (MS) of the Iberian Pyrite Belt 

oxidizing the sulfide moiety of the mineral. Depending on the solubility of the 

mineral in acidic conditions, acid insoluble metal sulfides as pyrite (FeS2) will be 

oxidized by the thiosulfate pathway (Rohwerder et al., 2003; Vera et al., 2013): 

 

0 
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Equation 1 

FeS2  + 6Fe3+ + 3H2O →  S2O3
2−  + 7Fe2+ +  6H+       (1) 

 

Equation 2  

S2O3
2− +  8Fe3+ +  5H2O → 2SO4

2− + 8 Fe2+  + 10H+    (2) 
 

or the polysulfide pathway if the massive sulfides are acid soluble (Rohwerder et al., 2003; 

Vera et al., 2013):  

Equation 3 

MS +  Fe3+ +  H+ →  M2+  +  0.5 HsSn + Fe2+  (n ≥ 2)      (3) 

Equation 4 

0.5 HsSn +  Fe3+  →  0.125 S8 +  Fe2+ +  H+               (4) 

Equation 5 

0.125 S8  + 1.5O2 + H2O →  SO4
2− +  2H+                    (5) 

 

As a result, protons, sulfur compounds and ferrous iron, which are re-oxidized 

again by microorganisms, are released (Equation 1 and Equation 3). Protons can 

contribute to the oxidation of acid soluble metals sulfides (Equation 3) and sulfur 

compound can be oxidized chemically (Equation 2 and Equation 4) or biologically 

(Equation 5) by sulfur-oxidizing microorganisms to sulfuric acid, acidifying the 

system.  

At. ferrooxidans and L. ferrooxidans are the principal drivers of metallic sulfides 

dissolution in the aerobic part of the river by the great increase of the oxidizing 

agent, the Fe3+, which generation by microbial activity is up to five orders of 

magnitude higher than the Fe2+ oxidation carried out chemically by oxygen 

(Nordstrom and Alpers, 1999). These microorganisms along with the iron-

reducing microorganism Acidiphillium spp. represent more than 80% of the 

prokaryotic diversity in the water column of Río Tinto (López-Archilla et al., 2001; 

González-Toril et al., 2003), maintaining an operative iron cycle (Figure 3), which 
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together with sulfur-oxidizing microorganisms such as Acidithiobacillus 

thiooxidans and Acidithiobacillus caldus, are essential to preserve Río Tinto’s 

peculiarities (Amils et al., 2002). Other microorganisms involved in iron cycle have 

been detected in the Tinto basin such as members of the Ferroplasma, 

Ferrimicrobium and Acidimicrobium genera, but their low number suggests that 

they play a minor role in this cycle (González-Toril et al., 2003). 

Río Tinto presents another singularity known as the eukaryotic paradox. Although 

the river presents a low prokaryotic diversity, which is consistent with what is 

expected from an extreme environment, it contains an unexpected great 

eukaryotic diversity (López-Archilla et al., 2001; Amaral-Zettler et al., 2002; 

Aguilera et al., 2006). Eukaryotic algae comprised 65% of the river biomass and 

support, together with chemolitotrophic microorganisms, the primary production 

of the system (López-Archilla et al., 2001). In addition to photosynthetic species, 

heterotrophic protists and decomposing fungi are also widely distributed along the 

river, showing the last ones a high abundance and diversity (Amaral-Zettler et al., 

2002; López-Archilla et al., 2004). Most of these microorganisms form complex 

photosynthetic biofilms floating as macroscopic filaments or attached to the 

surface of rocks (Aguilera et al., 2007; García-Moyano et al., 2007; Souza‐Egipsy et 

al., 2011).  
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Figure 4. Geomicrobiological model of Río Tinto’s sediments. Iron (red arrows), 
carbon (blue arrows), nitrogen (yellow arrows) and sulfur (green arrows) cycles are 
indicated. Figure taken from Sánchez-Andrea et al. (2011) 

 

 

Regarding the sediments, of note is the detection of higher cell number and 

diversity, both microbial and metabolic, than the detected in Río Tinto’s water 

column. Diverse studies have shown the presence of members of Proteobacteria, 

Bacteroidetes, Firmicutes, Actinobacteria, and Acidobacteria phyla as well as 

members of the archaeal Thermoplasmatales, Methanosarcinales and 

Methanobacteriales groups (Sánchez-Andrea et al., 2011; Sanz et al., 2011; García-

Moyano et al., 2012). This biodiversity follow a differential pattern of distribution 

in the anoxic sediments of Río Tinto based on the microbial metabolism, and the 

redox potential and acidity parameters (Figure 4), which vary with depth. In the 
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upper layers, where the pH is low and the redox potential is positive, iron 

oxidation and reduction dominates. In the subsequent layers, where the conditions 

are less oxidizing, the predominant metabolism is fermentation, which is replaced 

by sulfate reduction or methanogenesis in the deepest layers, where the conditions 

became strongly reducing (Sánchez-Andrea et al., 2011; Sanz et al., 2011).  Besides, 

nitrate or nitrite reducers have been also detected in the Río Tinto sediments 

(Sánchez-Andrea et al., 2011). Thus, contrary to the water column where the iron 

cycle dominates the whole system, in the sediments the carbon, nitrogen and, 

above all, sulfur cycles play a major role.   

3.2.2.  The origin of Río Tinto 

Río Tinto springs up in Peña de Hierro, in the core of the IPB and flows into the 

Atlantic Ocean (Figure 5). The IPB is a 250 km long and 25– 70 km wide geological 

entity located in the South-Portuguese Zone of the Iberian Peninsula. With more 

than 80 known deposits, it contains over 1600 Mt of sulfide ore and is considered 

as one of the world’s largest reserves of metallic sulfides (Tornos, 2006). The 

geology of the area is mainly composed of pyrite and chalcopyrite (CuFeS2) and, to 

a lesser extent, other sulfides such as sphalerite (ZnS) and galena (PbS) (Tornos, 

2006).  

The geological characteristics of the IPB led to the exploitation of these giant 

sulfide deposits for 5000 years (Davis Jr et al., 2000; Leblanc et al., 2000) so, 

traditionally, it has been considered that the peculiarities of Rio Tinto waters are 

the product of the acid mining drainage (AMD) generated by the intensive mining 
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activity. Consequently, Río Tinto has been considered a polluted ecosystem that 

had to be remediated (Van Geen et al., 1997; Davis Jr et al., 2000; Nieto et al., 

2007). 

 

 

Figure 5. Location of the Iberian Pyrite Belt (A), the major massive sulfide deposits (B, 
gray squares) and Río Tinto’s origin (red square). (C) Location of Peña de Hierro (PH) 
(red polygon) near Nerva town (black star). Figure modified from (Tornos, 2006). 

 

However, studies performed by Fernandez-Remolar and co-workers (2003; 2005) 

showed that sedimentary iron-rich terraces located in the Río Tinto area, with 

different chronological ages, have the same mineralogical composition and 

evolution. In others words, old terraces, dated up to the end of Miocene, were 

originated under similar conditions to those observable today, with high 

concentration of ferric iron and low pH. Consequently, the acidic river system 

originated about seven million years ago (Essalhi et al., 2011), three orders of 

magnitude before than the oldest known mining activity. Today Río Tinto is 

considered one of the largest natural acidic ecosystems in the world (Fernández-

Remolar et al., 2005) and, since December 2004, a Protected Natural Landscape by 

the Junta de Andalucía (BOJA, 2005).  
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Actually, Río Tinto is feeded by artesian springs located along faults at the 

southern end of Peña de Hierro, which waters already contains high ionic loads 

and low pH (Fernández-Remolar et al., 2005). In 2003, it was initiated the Mars 

Astrobiology Research and Technology Experiment project, a subsurface 

exploration of Peña de Hierro area by drilling boreholes that allowed to have 

access to the underground biosphere that interact with the mineral ores of the 

Iberian Pyrite Belt (Stoker et al., 2004). The fact of finding different microbial 

populations, including iron and sulfur cycle related microorganisms operating in 

this environment and their correlation with the geological and chemical features of 

the IPB led to the conclusion that Río Tinto’s peculiarities may be the direct 

consequence of the existence of a subterranean bioreactor (Fernández-Remolar et 

al., 2008a; Fernández-Remolar et al., 2008b; Puente-Sánchez et al., 2014b). 

According with the authors, subsurface microorganisms would dissolve subsurface 

pyrite deposits through the generation of ferric iron by anaerobic iron-oxidizing 

metabolisms. This bioreactor, together with the bioleaching activity of the surface 

microorganisms described above, would originate the Río Tinto’s characteristics.  

3.2.3.  Iberian Pyrite Belt Subsurface Life drilling project 

IPBSL is a devoted interdisciplinary drilling project initiated for a deeper 

characterization of the IPB subsurface bioreactor in which geologist, chemist, 

engineers and microbiologists has been involved. Two boreholes, named BH10 and 

BH11, were drilled after a geophysical study determined the best locations to 

intersect the interaction of groundwater and the metal sulfidic ore bodies in Peña 
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de Hierro area (Gómez-Ortiz et al., 2014). Aseptic rock core samples were obtained 

from different depths (Amils et al., 2013), and different techniques have been 

applied to characterize the physicochemical, geological and microbiological 

features of the IPB subsurface.  

3.2.3.1.  Drilling and geological and physicochemical characterization of 

borehole BH10 

The BH10 borehole (N37o 43' 45.74'', W6o 33' 22.37'') reached 613 mbs depth. It 

was drilled by rotary diamond-bit drilling producing 60 mm diameter cores. Tap 

water was used as drilling fluid to avoid overheating of the machinery and return 

cutting to the surface. Once in the surface, cores were inspected for sing of 

alteration. Selected cores where stored in bags under a nitrogen atmosphere and 

transferred to a nearby laboratory. Cores were placed in a sterile anaerobic 

chamber and subsamples were taken from inside the cores by using a drill with 

sterile bits. Temperature of the bits was controlled by an infra-red thermometer to 

not exceed 45°C.  

Geological and chemical features of BH10 column was characterized by 

petrographic, mineralogical (X Ray Diffraction), elemental (Inductively Coupled 

Plasma Mass Spectrometry, Total reflection X-Ray Fluorescence) analysis of the 

rock samples and the mineral soluble composition by ion and gas chromatography 

(Figure 6).  

As it is shown in Figure 6, BH10 intersects the Volcano-Sedimentary Complex 

(VSC) and the Culm Group (CG) (Gómez-Ortiz et al., 2014), two of the three 

geological sequences that summarize the stratigraphy of the IPB (Tornos, 2006). 
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Detailed information about the mineral composition and petrochemical analysis of 

each depth can be found in the Appendix 2. At the time of drilling, the water table 

was identified at 90mbs. 

 

 

Figure 6. Stratigraphy and chemical composition of BH10 borehole. Taken from the 
IPBSL database. 

 

As discussed above, contamination is one of the principal problems in subsurface 

sampling. In the IPBSL project, bromide added to the drilling fluid was used as 
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contamination tracer. The subsequent measurement of bromide concentration in 

the different samples indicated that drilling fluid was not in contact with them 

except for sample from 487.2mbs (data not shown). At this depth, the borehole 

intersected a fault and, as a result, drilling fluid could have access to the inner part 

of the core. However, most of the samples were considered no contaminated 

(absence or Br concentration much lower than the drilling fluid) and, therefore, 

representative of the native IPB subsurface.  

Regarding the principal anions detected along the column, organic acids as acetate, 

oxalate, propionate and formate were present, being the last one the most 

abundant and distributed. These compounds could act as electron donors in 

heterotrophic metabolisms as fermentation or anaerobic respiration. In fact, 

putative electron acceptors for anaerobic respiration as nitrate and sulfate were 

also found. It is interesting to note the high concentration of nitrate detected at all 

depths analyzed. On the other side, litoautotrophic metabolisms could be 

maintained in the IPB subsurface by using hydrogen as electron donor and carbon 

dioxide as carbon source. In fact, at 400-550mbs there was a significant increase of 

these gasses together with methane, thus methanogenesis should be expected at 

these depths. Finally, sugars and proteins, which may be related with extant 

microbial presence, were irregularly detected along the column.  

3.2.3.2.  Microbial and metabolic diversity of BH10 

Because all methodologies have limitations, to study the microbial diversity 

inhabiting the BH10 column, a multi-methodology approach was applied. 

Cultivation-independent methods such as immuno-detection with LDChip300 (Life 
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Detector Chip) (Blanco et al., 2012), oligonucleotide microarray analysis with the 

Prokaryotic Acidophile Microarray (PAM) (Garrido et al., 2008), cloning and Next 

Generation Sequencing (NGS) techniques were used for this purpose.  

These analyses indicate that bacteria dominate the environment since few archaea 

sequences have been detected (Puente-Sánchez, 2016). Proteobacteria and 

Actinobacteria were the most abundant and diverse phyla identified.  

Regarding to microbial metabolisms operating in the IPB subsurface, shotgun 

metagenomic and enrichment cultures to detect methanogenesis, methanotrophy, 

acetogenesis, nitrate reduction, sulfate reduction and iron oxidation and reduction 

were used.  All metabolisms were detected in the IPB subsurface at different 

depths. In addition, metagenomic analyses were carried out to study the microbial 

diversity enriched in some selected cultures. On the other hand, several IPB 

subsurface microorganisms have been isolated from different enrichment cultures.  

More information and the discussion about the microbial and metabolic diversity 

detected in the BH10 column will be provided along this work. 

3.3. Microscopy techniques  

As described, different sequencing techniques have been applied to determine the 

biodiversity of the IPB. However, the extraction of DNA of rock samples is not easy 

(Barton et al., 2006; Direito et al., 2012) and these techniques require large volume 

of sample to get a minimal DNA concentration for its study (Martino et al., 2012). 

Consequently, in spite of the high amount of bulk information that DNA 

methodologies offer, rock samples with low number of microorganisms cannot be 
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analyzed by these techniques. In the IPBSL project, only 12 of the 39 native rock 

samples available could be studied by NGS (Puente-Sánchez, 2016). In addition, the 

results obtained from sequencing techniques correspond to large areas of the 

subsurface and they don’t provide a complete picture of the system, which is 

characterized by the presence of microniches that could be considered as isolated 

environments if the porosity of the rock is low.  

To locate the microorganisms in the rock samples, microscopy techniques such as 

scanning electron microscopy (SEM) were also used. SEM, not only offer a great 

magnification and resolution of the microorganisms in their natural substrate but 

also the possibility of analyze the elemental composition of the mineral associated 

by energy dispersive X-ray spectrometry (EDX) (Goldstein et al., 2017). Actually, 

the study of the relation between microorganisms and minerals may be the key to 

understand the microbial distribution, mineral dissolution and biomineralization 

in the deep biosphere (Jones and Bennett, 2014). However, despite the presence of 

microorganisms hosted in the IPB rock samples have been detected by SEM, the 

identification of these microorganisms is beyond this technique. 

3.3.1.  Fluorescence in situ Hybridization  

Fluorescence in situ hybridization (FISH) techniques are based on the use of 

oligonucleotide probes that match with rRNA sequences, mainly located in 16S 

rRNA, within the intact cell. The probes are usually labeled with fluorophores at 

the 5’-end, hence those microorganisms that have in their rRNA the sequence 

complementary to the probe will hybridize and emit fluorescence, which can be 
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detected and observed by fluorescence microscopy (Moter and Göbel, 2000) 

(Figure 7A).   

The use of FISH techniques offer great advantages for the study of environmental 

microbiology (Amann et al., 1995; Moter and Göbel, 2000). First, as the samples 

are fixed immediately after the sampling and FISH is not a destructive technique, 

we can study the microorganisms in their natural environment. Second, as 

fluorescence emission intensity is directly proportional to the number of 

ribosomes, the detected microorganisms are alive and active, or at least they must 

have a high number of 16S rRNA (Poulsen et al., 1993). Third, FISH allows the 

study of the biodiversity and its quantification, cultivable or not, by using probes 

with different and complementary specificity, from high taxonomic level such as 

domain, phylum or class to genus and specie level. Actually, authors have named 

FISH “phylogenetic stain” (Kubota, 2013). Fourth, FISH offers the possibility of 

analyze the spatial distribution of the microorganisms in the sample, which is 

especially important in heterogeneous environments such as the subsurface. And, 

finally, it allows studying the interactions between microorganisms by multiple 

hybridizations. In resume, as Moter and Göbel (2000) stated: “FISH combines the 

precision of molecular genetics with the visual information from microscopy to 

permit visualization and identification of individual microbial cells within their 

natural microhabitat”. 
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Figure 7. Principle of fluorescence in situ hybridization technique. In detail, main 
differences between FISH (A) and CARD-FISH (B). Figure modified from (Amann and 
Fuchs, 2008) and (Kubota, 2013). 

 

3.3.1.1.  Amplification of FISH signal 

One of the principal problems that may arise when FISH is applied is the 

insufficient fluorescence signal intensity due to low rRNA content in slow-growing 

microorganisms (Poulsen et al., 1993), which may drive to false negative results. 

However, sensitivity of FISH can be increased by different methods. DOPE-FISH, 

with two fluorophores per molecule (Stoecker et al., 2010), or multilabeled 

oligonucleotides (MIL)-FISH (Schimak et al., 2015), with four fluorophores per 

molecule, have been described. Both amplification systems have been used with an 

increase in the intensity signal proportional to the number of fluorophores in the 
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probe. Another approach is the use of more than one probe to increase the number 

of fluorescent molecules per cell (Pernthaler et al., 2002), with which it can be 

detected even one single copy of the target sequence (Barrero‐Canosa et al., 2017).  

However, the most effective amplification system described so far is the called 

CARD-FISH or tyramide signal amplification (TSA) (Figure 7B), which results in an 

increase of more than 26 fold the signal intensity (Hoshino et al., 2008). In this 

case, the probe is labeled with horseradish peroxidase (HRP). Once the 

hybridization has been carried out, hydrogen peroxide and a high number of 

tyramide-conjugated fluorophore are added. The HRP, in the presence of hydrogen 

peroxide, converts the tyramide into a radical intermediate, which will react with 

aromatics compound as tyrosine and tryptophan located near the enzyme on a 

very short timescale. The result is the deposition of a great number of tyramine, 

and consequently of fluorophores, surrounding the HRP molecule, amplifying the 

fluorescence signal (Kubota, 2013).  

3.3.1.2.  Fluorescence hybridization techniques to study subsurface 

environments 

Several studies have used fluorescence techniques to analyze subsurface 

environments. In fact, one of the most common methods applied in continental 

subsurface studies for enumeration of microorganisms is based on their direct 

count by DNA fluorescent staining and fluorescence microscopy (Table 1). 

However, the enumeration of microorganisms by fluorescence microscopy has 

been limited to subsurface water, which can be filtered and microorganisms 

concentrated in membrane filters (Stevens et al., 1993; Itävaara et al., 2011a; Ino et 
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al., 2017). The analysis of rocky samples by this method, due to the difficulties that 

present, has been avoided. Some minerals reflect the light at the same wavelength 

than the fluorophores and the background makes problematic the identification of 

true fluorescent signal. Instead, to count the microorganisms that inhabit the 

rocks, some research groups have detached the microorganisms of the solid 

substrate by sonication and filtration of the supernatant cell suspension, 

proceeding to the hybridization of the retained cells (Gronstal et al., 2009).  

Regarding to FISH analysis, despite the great advantages that it offers, the number 

of studies that have applied this technique is much lower than those which applied 

general stains (Chapelle et al., 2002; Gronstal et al., 2009). The few research 

groups that used FISH techniques for the subsurface biosphere study only applied 

general probes to detect microorganisms at domain level. The use of general DNA 

stains or general probes as well as the exclusive analysis of fluid samples translates 

into a lack of information about the distribution of microorganisms in their natural 

environment in the subsurface: the solid substrate. 

Nevertheless, the use of FISH techniques applied to subsurface environments 

should provide invaluable information not just about microbial diversity 

distribution, but about interactions and relationships between microorganisms 

using multiple hybridizations. Actually, thanks to FISH, a consortium between 

bacteria and archaea that mediate the anaerobic oxidation of methane (AOM) at 

more than 780m water depth in the sub-sea floor has been recently characterized 

(Jones and Bennett, 2017). In addition, the use of confocal laser scanning 

microscopy (CLSM) (Paddock, 1999) and the digital image analysis by image 

processing software result in a better resolution and interpretation of the 
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hybridized sample. The main advantage of CLSM is the restriction of the collected 

signal to a thin section trough a pinhole, which removes the out-of-focus 

fluorescence and improves the resolution of the image. The capacity of CLSM of 

take stacks of a specific field allows the three dimensional reconstruction of 

images, facilitating the visualization of the spatial distribution of the 

microorganisms. 

3.3.2.  Correlative microscopy 

Microscopy based on fluorescence techniques has advanced in leaps and bounds in 

recent years, as reflected by the Nobel prize awarded to Eric Betzig, Stefan W. Hell 

and William E. Moerner in 2014 (Möckl et al., 2014). These researchers 

transgressed the optical limit of resolution of the traditional optical microscopes, 

allowing fluorescence to enter in the nanoworld. However, although fluorescence 

microscopy is one of the basic tools for the biological systems study, its utility in 

geological sciences is more limited. 

As noted above, several studies have shown that the microbial diversity of a 

subterranean environment depends directly on the geological composition of the 

system (Jones and Bennett, 2014; Jones and Bennett, 2017; Rempfert et al., 2017). 

Therefore, the study of how the deep biosphere interacts with its environment, i.e. 

minerals, can be crucial to understand how the ecosystem works. The use of FISH 

techniques allows the visualization and identification of microorganisms in their 

natural environment, but the geological characterization of the sample is not 

possible through this type of microscopy. There are, however, other microscopy 
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techniques that allow the chemical analysis of the sample, such as the 

aforementioned SEM-EDX or the nanoscale secondary ion mass spectrometry 

(nanoSIMS) (Boxer et al., 2009), which are, on the contrary, limited in the 

identification of microorganisms. Therefore, the combined use of different types of 

microscopy could be of great interest for the in situ study of the subsurface 

microorganism-mineral interaction, since it could complement the information 

obtained by each of them.  

Interest in correlative microscopy has grown in recent years. It stands out, for 

example, the correlation of light with electron microscopy (CLEM), which can 

combine the advantages of fluorescence microscopy and SEM-EDX. However, in 

subsurface studies, since the SEM is an analytical technique of surfaces, it would 

not be possible to access, without destroying the sample, to the area of interest of 

the microorganism-mineral interaction: its interphase.  

3.3.2.1.  Correlative fluorescence- Raman microscopy 

Raman spectroscopy is an analytical technique based on the inelastic scattering, or 

Raman scattering, of monochromatic light when impacting on a molecule (Dieing 

et al., 2011; Smith and Dent, 2013). Briefly, when an electric field impact on a 

molecule disturbs the distribution of the electric charge of the molecule producing 

a dipole moment, after which the energy is quickly re-irradiated. Mostly, the 

scattered energy has the same frequency or wavelength as the incident light, which 

is known as Rayleigh scattering. However, because the different functional groups 

of the molecule absorb or lose energy, a small fraction of the photons is scattered 

at different wavelengths. The change in the frequency of these irradiated photons 
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is known as Raman scattering, which depends directly on the atoms, bonds, and 

structure of the molecule. Therefore, if Raman scattering is collected by 

spectroscopy, a characteristic vibrational spectrum of the molecule is obtained. 

Because the identification and study of the Raman spectrum is quite complicated, 

especially in complex molecules, this analytical technique has been applied mainly 

to material sciences, including mineralogy and petrography since it allows rapid 

and non-destructive identification of the mineral (Dieing et al., 2011). In fact, the 

European Space Agency has designed a miniature Raman instrument for missions 

landed on Mars, which not only identify and characterize the mineral phases of the 

planet but also identify organic compounds and look for biological signatures 

(Escudero-Sanz et al., 2008). The application of Raman spectroscopy to the life 

sciences, however, is quite recent. The complexity of biological systems produces 

complex Raman spectra, which makes their analysis challenging. However, since 

the combination of Raman spectroscopy with confocal laser microscopy began in 

the 90s, allowing the analysis of a micrometric area of the sample and the 

generation of images of its chemical composition, the number of reports on the 

application of confocal Raman microscopy (CRM) to biology has increased 

exponentially (Dieing et al., 2011). 

Since both CRM and fluorescence microscopy are non-destructive techniques and 

both complement the information that can be obtained by each of them, the 

correlation between both techniques offers great advantages. In fact, the 

combination of fluorescence microscopy and Raman microscopy has been 

described previously, emerging the term Raman-FISH (Huang et al., 2007). Thanks 

to the Raman-FISH, combination of the phylogenetic and chemical analysis of 
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individual microorganisms has been possible and allowed the analysis of 

isotopically labeled substrates utilization by specific microorganisms. However, 

until now, Raman-FISH has never been applied to geomicrobiological samples. 

Using Raman-FISH for subsurface studies could be very useful since it would allow 

not only the identification of the microorganism and the associated mineral in its 

natural environment, but also the analysis of the interphase between them, which 

would shed light about their interaction. 
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4. Objectives 

The Iberian Pyrite Belt subsurface biosphere arouses great interest because it can 

be the key to understand the origin of the largest natural acidic river of the world, 

Río Tinto. Despite the abundant work performed to characterize this bioreactor, up 

to now no information about microbial distribution, microorganism-

microorganism or microorganism-mineral interactions has been obtained. This 

data, would offer an invaluable picture of the geomicrobiological processes 

operating in the IPB subsurface. 

The work developed in this thesis aimed to characterize the geomicrobiology of 

the Iberian Pyrite Belt subsurface by means of fluorescent in situ hybridization and 

microscopy techniques.  

 This thesis has been focused on accomplishing the following objectives: 

- Adaptation of fluorescence in situ hybridization protocols to the study of 

microorganisms associated with solid mineral substrates 

- Use of probes of complementary specificity, already designed, to identify 

the microorganisms corresponding to different phyla, classes, orders and 

genera and analyze their distribution 

- Design of new specific probes from data obtained by other techniques 

applied in the IPBSL project 

- Study and characterization of biofilms in the IPB subsurface 

- Study the role of nitrate-reducing microorganisms in the IPB subsurface 
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- Identification of minerals associated with selected species of 

microorganisms 

- Establishment of a geomicrobiological model of the operating IPB 

subsurface ecosystem 
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5. Materials and methods 

5.1. IPB subsurface samples 

Samples consist in splinters and dust from inside the cores obtained during BH10 

drilling within the framework of the IPBSL project described in the introduction 

(Amils et al., 2013). Only samples below 90mbs were included as the first 90 

meters were drilled using destructive techniques, which precluded the retrieval of 

intact cores. Samples were fixed in the laboratory field with 4% formaldehyde in 

Mackintosh minimal media ((NH4)2SO4 132mg/l, KH2PO4 27mg/l, MgCl2*6H2O 

53mg/l, CaCl2*2H2O 147mg/l, pH 1.8) for 2h at 4 °C. After fixation, samples were 

washed with Mackintosh minimal media to remove the fixation agent, PBS (NaCl 

8g/l, KCl2 0.2g/l, Na2HPO4 1.44g/l, KH2PO4 0.24g/l) to neutralize the pH and, 

finally, they were stored in ethanol:PBS (1:1)  at -20 °C until further processing.  

5.1.1.  Sample processing 

5.1.1.1.  Membrane filters 

Samples were sonicated by 3 cycles of 20 seconds with one pulse per second at 

20% intensity. 100μl of supernatant were filtered in black membranes 0.22 µm 

(Millipore, Germany) in aseptic conditions. Filters were washed with PBS and 

absolute ethanol and air dried. Once the filters were dried, they were covered with 
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agarose at 0.2%, dried at 37°C, dehydrated with absolute ethanol and stored at -

20°C.  

5.1.1.2.  Rocks 

Rocks were grounded in sterile conditions with a mortar until sand grains size, 

covered with agarose at 0.2% (Conda, Spain), dried at 37°C, dehydrated with 

absolute ethanol and stored at -20°C. 

As controls, subsurface rocks of the same depths of the samples studied were used. 

Rock controls were previously cleaned and sterilized as described (Harneit et al., 

2006) and processed as indicated above.  

5.2. Fluorescence in situ Hybridization 

5.2.1.  Probe design 

Three probes were designed for fluorescence in situ hybridization. S-G-Tess-681-a-

A-21 (TESS681) was designed to detect members of Tessaracoccus genus, S-S-Tlap-

1449-a-A-18 (Tlap1449) for the detection of the specie Tessaracoccus lapidicaptus 

and S-G-Rhi-124-a-S-22 (RHI124) to detect members of Rhizobium genus, in which 

are included the species R. selenitirreducens and R. naphthalenivorans. All probes 

were designed as described in (Hugenholtz et al., 2002) with the PROBE DESING 

tool of ARB software (Ludwig et al., 2004).  

5.2.1.1.  Determination of Probe Hybridization Conditions 

To determine the optimal formamide concentration for FISH with Tlap1449, 

TESS681 and RHI124 probes, several control microorganisms were used (Table 2). 
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Tessaracoccus profundi T2-5-50, Rhizobium selenitirreducens T2-30D-1.1 and 

Rhizobium naphthalenivorans T2-26MG-112.2, all isolated from enrichment 

cultures carried out in the IPBSL project, were generous provided by Tania 

Leandro (University of Coimbra, Portugal). The rest of microorganisms were 

purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms 

and Cell Cultures (Braunschweig, Germany). All microorganisms were grown in 

liquid media as Table 2 indicates.  

 

Table 2. Summary of control microorganisms used in this work and their culture 
conditions 

Microorganisms Culture media Tª (  ̊C) pH 

Tessaracoccus lapidicaptus IPBSL-7 

Tryptic Soy Broth (TSB) 30g/l 
(Difco) 

37 

7.3 

Tessaracoccus profundi T2-5-50 

Tessaracoccus profundi DSM21240 

30 
Tessaracoccus oleiagri DSM22955 

Tessaracoccus lubricantis DSM19926 

Tessaracoccus flavescens DSM18582 

Deinococcus radiodurans DSM20539 
Casein peptone, tryptic digest 

10g/l, yeast extract 5g/l, glucose 
5g/l, NaCl 5g/l 

30 7.2-7.4 

Aeromicrobium ginsengisoli 
DSM22238 

TSB 30g/l and yeast extract 3g/l 28 7-7.2 

Rhizobium selenitirreducens T2-30D-
1.1 

Yeast extract 0.5g/l, protease 
peptone 0.5g/l, casaminoácids 
0.5g/l, glucose 0.5g/l, soluble 
starch 0.5g/l, sodium piruvate 
0.3g/l, K

2
HPO

4
-2H

2
O 0.36g/l, 

MgSO
4
 0.05 g/l 

Room 
temperature 

7.2 
Rhizobium naphthalenivorans T2-

26MG-112.2 

Rhizobium rosettiformans 
DSM26376 

TSB 30g/l (Difco) 7.3 

 

Microorganisms were fixed with 4% of formaldehyde in PBS for 2h at 4°C and 

filtered, processed and stored as described in 5.1.1.1 section.   
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Designed probes were synthetized and labeled with CY3 fluorophore (Biomers, 

Germany). Specificity and optimal astringency conditions of the probes were 

determined by FISH as described in (Hugenholtz et al., 2002) in triplicate 

experiments using EUB338-I probe (see Table 3) labeled with FITC fluorophore as 

positive control.  

5.2.2.  CARD-FISH 

CARD-FISH experiments were performed in filters and rock samples as previously 

described in detail (Pernthaler et al., 2004) with minor modifications. Endogenous 

peroxidases were inactivated as described (Ishii et al., 2004). For cell wall 

permeabilization, samples were treated with lysozyme and achromopeptidase 

solutions. Hybridization was performed with 5´-HRP-labeled oligonucleotide 

probes (Biomers, Ulm, Germany) for 2h at 46°C and then samples were washed at 

48°C for 10 min. Stringencies were regulated for each probe by adjusting 

formamide (FA) and NaCl concentration in hybridization and washing buffer 

respectively (Table 3). TSA was carried out for 45min at 46°C. In multiple CARD-

FISH experiments, an additional inactivation of peroxidases was done between 

hybridizations. 
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Table 3. Summary of probes used in this study and their specificity. FA and NaCl 
optimal concentration in hybridization and washing buffer respectively are indicated. 

Probe Sequence (5' - 3') Specificity 
FA (%) /         

NaCl (mM) 
Reference 

ACD840 CGACACTGAAGTGCTAAGC Acidiphilium spp. 10/450 (Bond and Banfield, 2001) 

ACI145 TTTCGCTTCGTTATCCCC Acidovorax spp. 35/80 (Schulze et al., 1999) 

ACI208 CGCGCAAGGCCTTGC Acidovorax spp. 20/225 (Amann et al., 1996) 

ALF968 GGTAAGGTTCTGCGCGTT α-Proteobacteria 20/225 (Neef, 1997) 

AMX368 CCTTTCGGGCATTGCGAA all ANAMMOX bacteria 15/318 (Schmid et al., 2003) 

ARC915 GTGCTCCCCCGCCAATTCCT Archaea 20/225 (Stahl and Amann, 1991) 

aBET42a GCCTTCCCACTTCGTTT β-Proteobacteria 35/80 (Manz et al., 1992) 

CF319a TGGTCCGTGTCTCAGTAC Bacteroidetes 35/80 (Manz et al., 1996) 

CFX109 CACGTGTTCCTCAGCCGT Chloroflexi (subdivision 3) 30/112 (Björnsson et al., 2002) 

CFX1223 CCATTGTAGCGTGTGTGTMG Chloroflexi 35/80 (Björnsson et al., 2002) 

CREN537 TGACCACTTGAGGTGCTG Crenarchaea 20/225 (Teira et al., 2004) 

CYA361 CCCATTGCGGAAAATTCC Cyanobacteria 35/80 (Schönhuber et al., 1999) 

DSS658 TCCACTTCCCTCTCCCAT Desulfosarcina-Desulfococcus 60/14 (Manz et al., 1998) 

EUB338-I GCTGCCTCCCGTAGGAGT Bacteria 35/80 (Amann et al., 1990) 

EUB338-II GCAGCCACCCGTAGGTGT Planctomycetales 35/80 (Daims et al., 1999) 

EUB338-III GCTGCCACCCGTAGGTGT Verrucomicrobiales 35/80 (Daims et al., 1999) 

EURY806 CACAGCGTTTACACCTAG Euryarchaea 20/225 (Teira et al., 2004) 

bGAM42a GCCTTCCCACATCGTTT γ-Proteobacteria 35/80 (Manz et al., 1992) 

GNSB-941 AAACCACACGCTCCGCT Chloroflexi 35/80 (Gich et al., 2001) 

HGC69a TATAGTTACCACCGCCGT Gram+  high G+C content (Actinobacteria) 25/159 (Roller et al., 1994) 

LF655 CGCTTCCCTCTCCCAGCCT L. ferrooxidans Groups I, II, III. 35/80 (Bond and Banfield, 2001) 

LGC354a TGGAAGATTCCCTACTGC 
Gram+  low G+C content (Firmicutes) 35/80 (Meier et al., 1999) 

LGC354b CGGAAGATTCCCTACTGC 

MC1109 GCAACATAGGGCACGGGTCT Methanococcaceae 45/40 (Raskin et al., 1994) 

MEB859 GGACTTAACAGCTTCCCT Methanobacteriales but Methanothermaceae 25/159 (Boetius et al., 2000) 

MG1200 CGGATAATTCGGGGCATGCTG most Methanomicrobiales 20/225 (Crocetti et al., 2006) 

MSSH859 TCGCTTCACGGCTTCCCT Methanosarcinales 35/80 (Boetius et al., 2000) 

NON338 ACTCCTACGGGAGGCAGC Negative Control 0/900 (Wallner et al., 1993) 

RHI124 GTAGGGTACGGTAGATTCCCAC Rhizobium spp. 50/28 This study 

SBR385 GTTCCTCCAGATATCTACGG Sulfate-reducing bacteria 35/80 (Amann et al., 1990) 

SS_HOL1400 TTCGTGATGTGACGGGC Acidobacteria 20/225 (Meisinger et al., 2007) 

SUL228 TAATGGGCCGCGAGCTCCC Sulfobacillus spp. 30/112 (Bond and Banfield, 2001) 

THIO1 GCGCTTTCTGGGGTCTGC Acidithiobacillus spp. 35/80 Stoffels (unpublished) 

THIO820 ACCAAACATCTAGTATTCATCG Acidithiobacillus spp. 10/450 (Peccia et al., 2000) 

c TESS681 ACGCATTCCACCGCTTCACCA Tessaracoccus spp. 50/28 This study 

TESS681c ACGCATTCCACCGCTMCACCA Tessaracoccus spp. competitor 50/28 This study 

Tlap1449 AGCTCCCCCCGCAAACGG Tessaracoccus lapidicaptus sp. 10/450 This study 
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5.2.3.  FISH and DOPE-FISH 

CY3 single and double labeled EUB338-I probes (Biomers, Germany) were 

compared using Escherichia coli DH5α pure-cultures. E.coli was grown in tryptone 

10g/l,  yeast extract 5g/l,  NaCl 5g/l (Luria-Bertani medium), for 4h at 37°C, fixed 

at 4% formaldehyde for 2h at 4°C and filtered in 0.2μm membrane filters 

(Millipore, Germany). FISH and DOPE-FISH were carried out with identical 

hybridization and washing buffers (Glöckner et al., 1996) as well as identical 

hybridization (2h, 46°C) and washing (10min, 48°C) conditions. To decrease 

background intensity in DOPE-FISH experiments, FISH and geneFISH hybridization 

buffers were compared. GeneFISH buffer was prepared as described (Moraru et al., 

2010). An additional incubation with geneFISH buffer was carried out without 

probe for 1h at 46°C previous to the hybridization. All experiments were carried 

out in triplicate. 

FISH and DOPE-FISH experiments were then performed in subsurface rock 

samples using fluorophore single or double labeled probes (Biomers, Germany). 

For DOPE-FISH hybridizations, samples were previously permeabilized with 

lysozyme for 1h at 37°C and geneFISH buffer was used for pre-hybridization and 

hybridization step.   

Table 3 (continuation) 
aUnlabeled probe Gam42a was used in equal amounts as a competitor to enhance specificity. 
bUnlabeled probe Bet42a was used in equal amounts as a competitor to enhance specificity. 
c Unlabeled competitor TESS681c was used in equal amounts  to enhance specificity. 
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5.2.4.  Biofilm detection 

5.2.4.1.  Lectin Binding Assay 

Polysaccharides were visualized by Fluorescence Lectin Binding Assay (FLBA), 

using lectins conjugated with fluorescein isothiocyanate (FITC) fluorophore 

(Vector Laboratories, USA, Table 4). Lectins were diluted using the proper buffer 

as suggested by the manufacturer. Samples were washed with lectin specific buffer 

and stained as was described by Zhang et al. (2015).  Lectins were employed alone 

or in combination as described (Neu et al., 2001).  

 

Table 4. Summary of lectins and their specificity used in this study 

Name Abbreviation Source Specificity 

Concanavalin A ConA Jack beam (Canavalla ensiformis) Glucose, Mannose 

Aleuria aurantia lectin AAL Aleuria aurantia Fucose 

Peanut agglutinin PNA Peanut (Arachis hypogea) Galactose 

Ulex europaeus I UEA I Furze gorse (Ulex europaeus) Fucose 

 

5.2.4.2.  Specific proteins and lipids stains 

Proteins were stained with SYPRO ruby (Thermo Fisher, USA) prior to FLBA. 

Sample was incubated with the stain for 30min and washed three times with filter-

sterilized milliQ water. Lipids were stained adding Nile red (Merck, Germany) 

1:1000 in the Vectashield: Citifluor mixture. 
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5.2.5.  Ferric iron detection 

Samples were stained with 2μM Ferrum 430™ (Ursa BioScience, USA) diluted in 

ethanol/H2O 90/10 (%Vol/Vol) for 10min. Samples were washed with 

ethanol/H2O 90/10 (%Vol/Vol) and let air dry in darkness. 

5.2.6.  Counterstaining and mounting 

Filters and rock samples were counterstained with DAPI (4´,6-diadimino-2-

phenylindole) or Syto9 (Thermo Fisher Scientific, USA) as manufacturer 

recommended and covered with a mix of 1:4 Vectashield (Vector Laboratories, 

USA): Citifluor (Citifluor, United Kingdom). Filters were mounted onto glass slides 

and rock samples were mounted onto µ-slides 8-well glass bottom (Ibidi, 

Germany). 

5.3. Fluorescence Microscopy and image processing 

5.3.1.  Confocal laser scanning microscopy 

To compare the fluorescence signal intensities in the determination of optimal 

hybridization conditions of the new designed probes and the fluorescence 

intensity comparison between FISH and DOPE-FISH probes, images were taken 

with the same confocal microscope settings using a confocal laser scanning 

microscope LSM510 coupled with an inverted microscope AxioObserver (Carl 
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Zeiss, Germany) equipped with argon (488/514 nm) and helium and neon (543 

and 633 nm) lasers. Images were collected with a 63x/1.4 oil immersion lens. 

Subsurface samples were imaged using a confocal laser scanning microscope 

LSM710 coupled with an inverted microscope AxioObserver (Carl Zeiss, Germany) 

and equipped with diode (405 nm), argon (458/488/514 nm) and helium and 

neon (543 and 633 nm) lasers. Images were collected with a 63x/1.4 oil immersion 

lens. 

Lambda mode was used to characterize individually the emission spectra of every 

fluorophore and dye used in the experiments and employed to assure the source of 

the fluorescence signal in the rock hybridizations. Because every fluorophore has a 

singular spectrum, only the signals that matched with the spectrum of the 

fluorophore used were accepted as positive signals. 

5.3.2.  Image processing 

All images were processed using Fiji software (Schindelin et al., 2012). To compare 

fluorescence, at least 3000 individual cells were analyzed on each experiment. The 

net fluorescence in FISH VS DOPE-FISH controls was considered as the result of the 

mean fluorescence of the microorganisms less the mean fluorescence of the 

background. 

Biofilms images were further processed using Imaris 7.4 software (Bitplane AG, 

Switzerland). 
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5.4. Log D calculations 

Log D and log P values of each fluorophore and dye were calculated in 

MarvinSketch 16.9.12 (Chem Axon, United Kingdom) using the structure of 

hydrolyzed reactive group as described (Hughes et al., 2014).  

5.5. Natural rock samples incubation 

Rock samples consist in splinters and dust from inside the cores obtained during 

the BH10 drilling of the IPBSL project. Samples from 102.6, 139.4 and 228.6mbs 

were placed in sterile bottles after sampling under a nitrogen atmosphere. As 

control, subsamples from the same depths were sterilized at 120°C overnight and 

stored at the same conditions.  

MilliQ water was boiled, gassed with N2 during cooling and sterilized under N2 

atmosphere at 121°C for 20min. 5ml of sterile milliQ water was added to the rock 

containing bottles with sterile syringes and they were incubated for 10months at 

37°C in darkness.   

Total iron concentration was monitored in duplicates by the α,α-dipyridyl method 

(Malki, 2003) with minimal modifications. Briefly, 10μl of sample were mixed with 

40μl of hydroxylamine hydrochloride (10% in 1M HCl), a reducing agent, and 

100μl of 40mM sulfamic acid (in 1M HCl), which remove the NO2
- of the solution 

(Schaedler et al., 2017). After 30min, it was added 150μl of ammonium acetate 

(28%) to neutralize the pH to 5.5 and, after 5min, 200μl of α,α-dipyridyl (0.5% in 

absolute ethanol). Sterile 0.2 μm-filtered milliQ water was added until a final 
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volume of 2ml. Absorbance was measured at 520nm with a U-2000 

spectrophotometer (Hitachi, Japan). Ferrous iron concentration was determined 

without adding the hydroxylamine hydrochloride solution. Ferric iron 

concentration was determined as the difference between total iron and ferrous 

iron. 

pH was measured by using Test Strips 4.5-10 (Sigma, USA)  

5.6. Anaerobic iron oxidation by nitrate-reducing microorganisms 

5.6.1.  Microorganisms and culture conditions  

Acidovorax BoFeN1 (Kappler et al., 2005), kindly provided by Prof. Andreas 

Kappler (University of Tübingen, Germany), and Tessaracoccus lapidicaptus IPBSL-

7 were grown in free-oxygen liquid media in triplicate. Basal media contained 

0.4g/l KH2PO4, 0.3g/l NH4Cl, 0.5g/l MgSO4·7H2O and 0.2g/l CaCl2·2H2O and was 

autoclaved under N2/CO2 atmosphere (80:20) for 20 min at 121°C.  

The medium was then buffered at pH 6.8 with 22mmol/l NaHCO3. 1ml/l trace 

elements solution (Tschech and Pfennig, 1984), 1ml/l selenate–tungstate solution 

(0.5g/l NaOH, 3mg/l NaSeO3·5H2O and 4mg/l Na2WO4·2H2O) and 1ml/l vitamin 

solution (Widdel and Pfennig, 1981) were added. Basal medium was then 

amended with 10mM NaNO3 and 5mM acetate for Acidovorax and 10mM NaNO3, 

1g/l glucose and 1g/l yeast extract for T. lapidicaptus. The stock solutions of all of 

the compounds added to basal medium were autoclaved separately under a 
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N2/CO2 atmosphere for 20min at 121°C, but vitamin solution, which was sterilized 

by filtration (0.2μm). 

This medium was used to grow microorganisms in presence or absence of Fe2+. As 

ferrous iron source, 4mM FeCl2 was added dissolved in anoxic milliQ water (boiled 

and flushed with N2 during cooling). After 48h, medium was filtered (0.2μm) to 

eliminate vivianite and siderite precipitates, leaving a clear solution with ∼3-3.5 

mM of dissolved Fe2+. In non-inoculated controls, no further vivianite and siderite 

precipitation was observed during the incubations.  

15ml of media were transferred into sterile 33ml serum bottles that were closed 

with butyl rubber stoppers, crimped and flushed with N2/CO2 (80:20). Bottles 

were inoculated with 1ml of Acidovorax BoFeN1 or T. lapidicaptus in an 

exponential phase (~6x106 microorganisms) which were grown in non-iron-

containing medium. Acidovorax cultures were incubated at 28°C and T. lapidicaptus 

cultures at 37°C.  

Number of microorganisms and iron oxidation were measured daily or every few 

days (see below). 

5.6.2.  Growth curve and iron oxidation quantification 

0.5ml of liquid media was fixed, stored and filtered in 0.2 μm membrane filters as 

described before (see section 5.2.1.1). Membrane filters were stained with SYBR® 

Gold (Thermo Fisher, USA) (final concentration 4×) at room temperature for 

15 min in the dark and washed three times with sterile 0.2 μm-filtered milliQ 
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water. Counting of microorganisms was performed in an epifluorescence 

microscope Axioskop (Zeiss, Germany).  

Total iron, Fe2+ and Fe3+ concentration was determined in duplicates as described 

in section 5.5.  

5.7.  In vitro dissolution of pyrite  

5.7.1.  Pyrite preparation and characterization 

A pyrite cube (La Rioja, Spain) was cut parallel to {100} face in 1mm thick slides 

with a miter saw. Pyrite slides were cut in small pieces with a mean size of 

0.5x0.5cm. Pyrite was sonicated until powder attached was removed and cleaned 

and sterilized as described (Schippers et al., 1996).  

Pyrite composition was determined using a JEOL JSM-5600V scanning electron 

microscope coupled to an Oxford INCA X-sight EDAX Energy Dispersive X-ray 

Microanalysis Probe. The pyrite atomic composition was 48.57 at.% of S and 35.3 

at.% of Fe with impurities of Ni (0.31at.%), Ti (0.30 at.%), Al (0.41 at.%), Si (0.24 

at.%) and C (14.87 at.%). 

5.7.2.  Culture conditions and growth curve  

Acidovorax BoFeN1 was grown in triplicate in different media conditions to 

determine its ability to dissolve pyrite (Table 5).  Basal medium and acetate, NO3
- 
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and FeCl2 stock solutions were prepared as described in section 5.6.1. Non-

inoculated controls and controls in which NO3
- was replaced by 10mM NO2

- were 

carried out.  

~0.5gr of pyrite coupons were placed in 120ml serum bottles and 50ml of media 

was added. Bottles were flushed with N2/CO2 (80:20), inoculated with 1ml of 

Acidovorax BoFeN1 in an exponential phase (~6x106 microorganisms) which was 

grown in non-iron-containing medium, and incubated at 28°C. 

 

Table 5. Growth conditions in which were tested pyrite dissolution by Acidovorax 
BoFeN1. Non-inoculated controls are included. 

 
Carbon source Electron acceptor FeCl2 Inoculum 

Pyrite 

Acetate NO
3

-
 - Acidovorax BoFeN1 

Acetate NO
3

-
 + Acidovorax BoFeN1 

Acetate NO
3

-
 - - 

Acetate NO
3

-
 + - 

Acetate NO
2

-
 - - 

Acetate NO
2

-
 + - 

 

5.7.3.  Analytical methods  

pH was measured as described in section 5.5. 

Ferrous and ferric iron in solution was determined as described before in section 

5.5 with an exception. In those culture media that were not amended with iron, 

iron measurement was performed with 50μl of sample and milliQ water was added 

until a final volume of 1ml. To determine the final iron amount, in two of the three 

replicas of the experiment, media was removed and the remained pyrite in the 
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flask was washed with sterile milliQ water. Then, pyrite and flask were washed 

with 5ml of 40mM sulfamic acid (in 1M HCl) in a shaker overnight to recover the 

precipitated iron attached to them. Attached iron, dissolved in sulfamic acid/HCl, 

was measured as described before. Final iron quantification was calculated as the 

sum of the iron amount in solution and the precipitated iron amount recovered 

from the acidic washing realized with sulfamic acid.   

Iron released from pyrite was calculated by the difference between initial total 

iron and final total iron amount. 

Nitrite and nitrite concentrations were determined by ion chromatography in the 

Servicio Interdepartamental de Investigación (SIdI) of the Universidad Autónoma 

de Madrid (Spain) with a Dionex DX-600 ion chromatograph.  

The pyrite of the third replica of the experiment was used to characterize it by 

means of CRM and CLSM. Pyrite was fixed at 4% formaldehyde in PBS for 2h, 

washed with PBS and stored in PBS:Ethanol (50:50 (vol:vol)) under anaerobic 

conditions until analysis. Pyrite coupons were characterized before and after 

Acidovorax incubation by CRM (see below in section 5.8.2) mapping several areas 

of 25μm2 and 2μm2 in individual cells.  



80 

  

5.8. Correlative fluorescence- Raman microscopy  

5.8.1.  CARD-FISH and confocal microscopy  

Rock samples were processed as described in section 5.1.1.2 and CARD-FISH was 

performed as described in section 5.2.2. However, samples were not immobilized 

in agarose or covered with antifade mounting medium to avoid the interference of 

both agarose and Vectashield:citifluor mixture with Raman spectroscopy. Samples 

were mounted onto a glass Micro-Slide Field Finder, in which a rectangular-

coordinate grid pattern was drawn (EMS, United Kingdom).  

Samples were imaged using a confocal laser scanning microscope LSM710 coupled 

with an vertical microscope AxioObserver (Carl Zeiss, Jena, Germany) and 

equipped with diode (405 nm), argon (458/488/514 nm) and helium and neon 

(543 and 633 nm) lasers. Images were collected with a 50x/1.4 air lens. 

5.8.2.  Confocal Raman Microscopy 

Raman analyses were performed by using a confocal Raman microscope Witec 

alpha-300RA (Witec, Germany). Raman spectra were obtained using a 532 nm 

excitation laser and a 100X/0.95 air objective lens. The incident laser power was 2 

mW and the acquisition time for a single Raman spectrum was 1 s. 

Collected spectra were analyzed by using Witec Control Plus software (Witec, 

Germany). Features such as Raman peak intensity or Raman shifts to compare 
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spectra and represent the derived Raman image were analyzed using Lorenzian 

peak curves to fit the Raman peaks (Equation 6):  

 

Equation 6 

𝑦 =  𝑦𝑜 +
2

𝜋
∑

𝐴𝑖 𝑊𝑖

(4 (𝑥−𝑥𝑖)2+ 𝑊𝑖
2)

𝑛−1
𝑖=0     (6) 

Where Y0 is the offset, A is the peak area, W is the full width at half maximum of the 

peak and X the peak center. 

 

Reference organic materials and several fluorophores labeled tyramide were 

analyzed on glass slides.  Glucose, starch, cellulose, trypsin and lysozyme were 

analyzed in powder form. E. coli and Staphylocuccos aureus Raman spectra were 

provided by Dr. Adolfo del Campo (Instituto de Cerámica y Vidrio, CSIC, Spain).   

In correlation experiments, once the cells were located in the coordinate system by 

CLSM, samples were analyzed by confocal Raman microscope after bleaching the 

fluorophore as described (Huang et al., 2007). Raman images consist of the 

resulting analysis of several planar sections in the cells location. The acquisition 

time for a single Raman spectrum was 1 s (1 pixel, 1μm2). 
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6. Results and discussion 

6.1. CARD-FISH to study the biodiversity distribution of the IPB 

subsurface 

Fluorescence techniques are a useful tool to analyze environmental samples. 

Specifically, FISH offers the possibility of studying the distribution of 

microorganisms by means of specific probes, which is of special importance in 

heterogeneous environments such as the subsurface (Moter and Göbel, 2000). 

Today, FISH is widely used in research and a countless number of probes to detect 

different groups of microorganisms are available. Otherwise, it is possible to 

design new probes for the identification and study of microorganisms based on 

data of the 16S rRNA obtained by sequencing techniques, whether the 

microorganisms are cultured or not. In the IPBSL project, thanks to the use of 

several complementary techniques such as NGS, cloning or isolation of new 

microorganisms, new probes have been designed to detect groups of 

microorganisms that inhabit the IPB subsurface and have been applied, together 

with already designed probes, to characterize the distribution of the deep 

biosphere of this environment. 
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6.1.1.  Fluorescence in situ hybridization on mineral substrates 

The principal problem when applying fluorescence techniques in rock substrates is 

the presence of minerals. On the one hand, because their intrinsic fluorescence can 

hinder the detection of true signals and, on the other hand, because, as in any other 

substrate, probes and dyes can bind unspecifically. Thus, the correct choice of 

fluorophores and dyes is essential for each rock sample.   

Because not all the minerals reflect light or present fluorescence at the same 

wavelength, each rock sample was checked by fluorescence microscope to select 

suitable fluorophores to be used in further experiments, avoiding mineral 

fluorescence interference. To make sure that the observed fluorescence signal in 

hybridization experiment was biological, additional criteria were taken into 

account: the use of DNA-binding dyes DAPI or Syto-9 as counterstaining as well as 

the form, size and emission spectrum of the signal. In this last case, spectrum 

fingerprint of each fluorophore used in this study (Table 6) was measured by 

lambda mode of the CLSM and only signals that matched exactly with the spectrum 

of the used fluorophore were accepted as positive signals.  

The use of lambda mode was especially useful in those samples in which DAPI 

general stain was applied due to the weak staining and yellowish fluorescence that 

this dye showed in some samples. Actually, it has been already reported difficulties 

in the detection of cells stained with DAPI in natural samples, as those from sea 

sediments (Llobet-Brossa et al., 1998). Among the reasons that can explain the 

weak signal of the DAPI at 461nm, its maximum emission, are the absorption of its 

emission by other fluorophore (Llobet-Brossa et al., 1998) or its spectrum 
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emission shifts to higher wavelength due to the formation of DAPI-RNA or DAPI-

polyphosphate complexes (Kapuscinski, 1995; Omelon et al., 2009). In this last 

case, DAPI maximum emissions are at 500nm and 520nm respectively and its 

quantum yield is about 1/5 of the DAPI-DNA complex, which can explain the low 

yellowish fluorescence observed in the IPB subsurface samples. For this reason, 

DAPI staining was avoided as much as possible in this work and it was exclusively 

used in those experiments in which the use of additional fluorophores with green 

emission didn’t allow the DNA staining with Syto9.  

 

Table 6. Summary of dyes and fluorophores used in this study. Net charge and LogD 
were calculated using the molecular structure of the fluorophore with hydrolyzed 
reactive group. The molecular structure of Syto9 and Sypro ruby is not public 
available. 

 

 

An additional potential problem when applying FISH techniques to rocks 

substrates is the unspecific binding of the probe or dye to the inorganic surface 

resulting in high background or false positive signal. The principal sorption-driving 

forces described are hydrophobicity, electron donor-acceptor interactions or 

complementary charges between inorganic surface and organic molecule 
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(Schwarzenbach et al., 2005). In BH10 borehole, each depth present a different 

mineralogy (see Appendix 2) in which each mineral may show a dissimilar surface 

charge. Additional controls were carried out with NON338 probe with different 

fluorophores and with each dye in clean and sterilized rocks in which no organic 

matter was detected by Raman spectroscopy (data not show). In this case, any 

detected signal must be due to unspecific binding of the probe to the mineral 

substrate. Each selected dye and fluorophore showed some degree of nonspecific 

binding in some of the samples. This heterogeneous unspecificity of the probes 

may be due to the different charge or hydrophobicity that each probe presents, 

resulting in a differential sorption to the varied minerals of the samples.  

To check this hypothesis, net charge and distribution-coefficient (logD) values of 

each fluorescent molecule were calculated at neutral pH, in which FISH is carried 

out (Table 6). On one hand, net charge is defined as the sum of all atom charges in a 

molecule, in such a way that those molecules with negative values will be attracted 

by positive charged mineral surfaces and vice versa. On the other hand, the logD 

value is the calculation of the equilibrium partition coefficient of the molecule 

between octanol and water, i.e. the logarithm of the ratio of the concentrations of 

the compound in hydrophilic and hydrophobic phases. LogD calculation is a 

common method to predict hydrophobicity (Hughes et al., 2014): logD values ˃ 0 

indicate hydrophobicity, while logD values 0˂indicate hydrophilic properties. Most 

of the fluorophores analyzed are hydrophilic and showed negative net charge 

except DAPI, which presents a positive net charge that explains the preference of 

this dye for negative electrostatic A-T regions in DNA (Kapuscinski, 1995). Only 

CY3 fluorophore and Nile red dye, a lipid stain, showed net charge cero and 
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hydrophobicity. Thus, the chemical properties of the fluorescent molecules could 

explain their dissimilar non-specific binding with the array of minerals in the 

native samples due to diverse Van der Waals or hydrophobic interactions 

(Schwarzenbach et al., 2005). 

All dyes or fluorophores used on each rock sample in this study was chosen to 

avoid both the non-specific binding with the mineral substrate and the mineral 

fluorescence interference.  

6.1.2.  Design and evaluation of new Oligonucleotide Probes 

By sequencing methods it was detected at different depths, among others, two 

interesting genera of microorganisms in IPB subsurface samples, Tessaracoccus 

and Rhizobium. Tessaracoccus spp. was one of the most abundant microorganisms 

detected in the IPB subsurface by the different techniques applied in the IPBSL 

project and it was possible to isolate two species of this genus through enrichment 

cultures, the newly described Tessaracoccus lapidicaptus (Puente-Sánchez et al., 

2014a) and Tessaracoccus profundi T2-5-50. Concerning the genus Rhizobium, two 

species were isolated from strict anaerobic enrichment cultures: Rhizobium 

selenitirreducens T2-30D-1.1 and Rhizobium naphthalenivorans T2-26MG-112.2, 

which interest lies in the fact that, as far as we know, only the ecology of the genus 

Rhizobium in soils has been studied, mainly associated with plants (Carareto Alves 

et al., 2014). 

While no probes for Tessaracoccus lapidicaptus or Tessaracoccus profundi T2-5-50 

have been designed up to now, there are some probes already designed for the 
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genus Rhizobium. Of these, only one, RHIRA7 (Kyselkova et al., 2009), could detect 

the isolated species R. selenitirreducens or R. naphthalenivorans. However, this 

oligonucleotide was designed for its use in an oligonucleotide microarray and, as 

FISH probe, its accessibility to the 16S rRNA target region was not suitable for in 

situ hybridization (Behrens et al., 2003). Thus, to study the distribution of 

Tessaracoccus and Rhizobium species along the BH10 column, three new probes 

were designed: TESS681, to detect microorganisms that belong to the genus 

Tessaracoccus; Tlap1449, designed to detect specifically the specie Tessaracoccus 

lapidicaptus; and RHI124, complementary to some species of the genus Rhizobium 

among which R. selenitireducens T2-30D-1.1 and R. naphthalenivorans T2-26MG-

112.2 are found. Selected parameters of the new probes are detailed in Table 7. 

 

Table 7. New FISH probes designed in this work and their optimized conditions. 

 

a Oligonucleotide Probe Database (Alm et al., 1996) 
b Determined by nearest-neighbour method and calculated using 50mM NaCl and 50nM 
oligonucleotide. 
C Probes competitors 
d M= C+A nucleotides 

 

The designed oligonucleotide probes showed a perfect match with the sequences 

of the desired microorganisms (Figure 8). TESS681 probe covers 79.1% of all 

available 16S rRNA gene sequences of the genus Tessaracoccus within the SILVA 
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database (Quast et al., 2012) and it was also complementary with two sequences of 

uncultured microorganisms, a member of Planctomycetales and a 

Propionibacteraceae bacterium. Deinococcus radiodurans was chosen as negative 

control for this probe since it has the most abundant mismatch detected in the 

target region (Figure 8A). Tlap1449 was only complementary to Tessaracoccus 

lapidicaptus. As negative control was chosen Aeromicrobium ginsengisoli, with two 

mismatches, as the three sequences detected with one mismatch belong to 

uncultured microorganisms (Figure 8B).  RHI124 covers 9.3 % of the Rhizobium 

group, among which we can find some Agrobacterium species that had been 

reordered in the Rhizobium genus (Young et al., 2001). All the complementary 

sequences to this probe belong to the Agrobacterium/Rhizobium cluster as well as 

those sequences with a weakly destabilizing T-G misparing. As representative of 

the last ones it was chosen Rhizobium rosettiformans to be used as negative control 

for the RHI124 probe (Figure 8C). 

Using the FISH protocol, the hybridization conditions for stringency were 

determined for each probe with positive and negative control microorganisms 

(Figure 9). The difference in the FISH signal intensity between the positive and 

negative control cells was obvious for Tlap1449, which optimal percentage of 

formamide was 10% and no hybridization was detected with A. ginsengisoli 

(Figure 9A). However, that was not the case for TESS681 and RHI124 probes. With 

the aim of improve the difference of fluorescence between positive and negative 

controls, competitors were designed to block nontarget probe binding sites for 

both probes (Table 7). The competitor of TESS681 improved considerably the 

discrimination of single mismatches (Figure 9B) and an optimal percentage of 
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formamide of 50% was determined. Conversely, RHI124c didn’t enhance the probe 

specificity since it was not observed a greater difference between the signal 

intensity of the negative and positive controls used (data not shown). Moreover, it 

influenced negatively the probe sensitivity, which showed lower signal intensity in 

the target microorganisms. 

 

Figure 8. rRNA sequence alignments showing target regions of probes for a selection 
of reference strains. Nucleotides are only identified for mispairings; pairings are 
indicated by double lines. A. TESS681 probe, B. Tlap1449 probe and C. RHI124 probe. 
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Figure 9. Optimal formamide concentration for (A) Tlap1449 probe, (B) TESS681 
probe (with competitor) and (C) RHI124 probe. For TESS681 and RHI124 is 
represented the mean value of the normalized fluorescence intensity of all positive 
controls used.  

A 

B 

C 
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This fact may be explained by the very weak mismatch (0.2 mismatch weight 

calculated with SILVA TestProbe tool) between the probe and R. rossetiformans as 

well as between the competitor and R. selenitireducens and R. naphthalenivorans, 

which binding affinity and position in the probe could not allow to enhance the 

discrimination of these microorganisms even at high formamide concentrations.  

Nevertheless, as RHI124 only present one or two mismatches with 

Agrobacterium/Rhizobium cluster members, we applied this probe without 

competitor using the maximum percentage of formamide in which it showed 

positive hybridization with R. selenitireducens T2-30D-1.1 and Rhizobium 

naphthalenivorans T2-26MG-112.2, that is to say, 50% (Figure 9C). Further 

experiments need to be carried out to test the competitor as a probe and its use 

together RHI124 in a mix to detect a higher group of members of the Rhizobium 

genus using a new negative control. 

The probes were then applied to BH10 subsurface samples to detect and analyze 

the distribution of Tessaracoccus and Rhizobium communities in the IPB 

subsurface (see 6.1.3 section). 

6.1.3.  Biodiversity distribution in the IPB subsurface 

With the aim to detect and identify the maximum amount of microorganisms and 

study its distribution, CARD-FISH was chosen as fluorescence hybridization 

technique to apply in deep subsurface samples. The amplification of the probe 

signal by CARD-FISH allows the detection of living microorganisms even though 

their number of ribosomes is rather low (Pernthaler et al., 2004), which may be 
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expected in deep subsurface environments due to the limited energy supply and 

low microbial metabolic rates (Hoehler and Jorgensen, 2013).  

 

 

Figure 10. Distribution of subsurface microbial diversity along BH10 column analyzed 
by CARD-FISH. Black and grey squares indicate presence or absence of 
microorganisms at a determined depth respectively.  
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CARD-FISH was carried out with several probes with various ranges of specificity 

in the so-called top to bottom approach (Amann et al., 1995), from phyla to species 

level, in sonicated and filtered samples (Figure 10). CARD-FISH analysis showed 

that microorganisms are widely distributed in the IPB subsurface, being at 

fractures and more porous zones, as between 487.2-496.8 mbs, where more 

microorganisms, bigger colonies and different phylogenetic groups were detected, 

as expected due to the bigger space and higher nutrient flow (Fredrickson et al., 

1997a).  

 

6.1.3.1.  Bacteria diversity and distribution 

CARD-FISH results corroborate most of the biodiversity data obtained by others 

techniques carried out in the IPBSL project as immuno-detection, oligonucleotide 

microarrays, NGS (Figure 11), cloning and enrichment cultures (data not shown).  

The bacteria number and biodiversity detected was higher than archaea, as 

reported previously in other subsurface environments (Cockell et al., 2012; 

Purkamo et al., 2015; Ino et al., 2016). Proteobacteria, Firmicutes and 

Actinobacteria were the most distributed phyla along the IPB subsurface (Figure 

10), which agree with the results shown by other subsurface studies (Appendix 1). 

Accordingly, these phyla seem to be well adapted to the conditions of this 

environment. 
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Figure 11. Taxonomic composition at phylum level (with Proteobacteria expanded 
into classes) of BH10 samples by means of NGS. Sample names indicate sampling 
depth, except in DW (drilling water control) and IC (internal laboratory control). 
Image provided by Dr. Fernando Puente Sánchez (Puente-Sánchez, 2016). 

 

 

6.1.3.1.1. Proteobacteria phylum (and Leptospirillum spp.) 

Concerning the Proteobacteria phylum, members of the classes Alfa, Beta, Gamma 

and Delta-Proteobacteria classes were detected (Figure 12).  

Within Alfa-Proteobacteria members of the genera Acidiphillium (Figure 13A and 

B) and Rhizobium (Figure 13C and D) were the most prominent. Acidiphillium is an 

iron-reducing microorganism that is abundant in the anoxic zone of Río Tinto 

water column (González-Toril et al., 2003) and, in fact, it was detected at several 

depths in the BH10 column where iron-reducing metabolisms in enrichment 

cultures were also detected together with the presence of iron, which may support 

its growth using organic matter as electron donor and carbon source (Figure 12).  
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Figure 12. Proteobacteria phylum and Leptospirillum spp. distribution along BH10 
column analyzed by CARD-FISH. Black and grey squares indicate presence or absence 
of microorganisms at a determined depth respectively. Data about identified 
compounds and metabolisms of interest obtained during the development of the IPBSL 
project are shown. D= denitrification; SR=sulfate reduction; Fe ox and Fe red= iron 
oxidation and reduction respectively. 

 

Regarding the genus Rhizobium, most of the studies carried out on this group of 

microorganisms have focused exclusively on its importance to establish symbiotic 

relationships with plants (Zahran, 1999; Carareto Alves et al., 2014) and their 

possible role in alternative environments has been ignored. Nevertheless, in the 
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1980s several studies unequivocally demonstrated that members of the genus 

Rhizobium are able to grow in anaerobiosis using nitrate as electron acceptor 

(Zablotowicz et al., 1978; Daniel et al., 1982; O'hara and Daniel, 1985), which 

would allow them to grow in a wider range of habitats. But the ecology of these 

microorganisms in anaerobic environments, as far as we know, has never been 

analyzed.  

 

 

Figure 13. α-Proteobacteria members detected by CARD-FISH in the IPB subsurface .  
A-B, Acidiphillium sp. at 206.6 mbs; C-D, Rhizobium sp. at 496.8 mbs. In green, Syto9 
stain. In red, CARD-FISH signal. In grey, reflection. Scale bars, 5μm.  
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As mentioned, two species of the genus Rhizobium, Rhizobium selenitireducens T2-

30D-1.1 and Rhizobium naphthalenivorans T2-26MG-112.2, were isolated from 

strictly anaerobic enrichment cultures in the IPBSL project. While R. 

selenitireducens T2-30D-1.1 was isolated from an anaerobic enrichment culture for 

denitrifying microorganisms using a sample from 538.5mbs, R. naphthalenivorans 

T2-26MG-112.2 was isolated from an anaerobic enrichment culture for 

methanogens using a sample from 492.6mbs. Currently a whole genome 

sequencing analysis of Rhizobium selenitireducens T2-30D-1.1 and Rhizobium 

naphthalenivorans T2-26MG-112.2 is being carried out in our laboratory and 

preliminary results show the presence in both Rhizobium species of the ArcA/B 

system. ArcA/B is a two-component signal transduction system that acts as an 

oxygen sensor and mediates adaptive responses to changing respiratory 

conditions (Georgellis et al., 2001). The existence of this system in both Rhizobium 

strains indicates that they could also grow by using an alternative anaerobic 

metabolism as was demonstrated in others Rhizobium species (Daniel et al., 1982). 

To evaluate the distribution of these members of the genus Rhizobium in the IPB 

subsurface, CARD-FISH analysis was carried out by using the probe RHI124 

designed in this work (see section 6.1.2). Results showed the presence of these 

microorganisms at several depths along the BH10 column, mostly concentrated in 

a fault zone (487.2-496.8 mbs) (Figure 12). In addition, as shown in Figure 13 (C 

and D), the DNA stain signals are more abundant than RHI124 probe signals, which 

might indicate the interaction between different microorganisms (see section 6.3). 

As a result, a metabolic association of Rhizobium with other microbial species 
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could promote, somehow, its growth in this anaerobic environment or facilitate the 

development of the unidentified neighbors. 

On the other hand, the presence of members of the genus Rhizobium in 

underground environments is not exclusive to the IPB subsurface. This genus has 

been detected in other studies of anoxic subsurface environments as those carried 

out in the South Africa Gold mines (Lau et al., 2014; Magnabosco et al., 2016) or the 

drilling projects of Mt. Simon Sandstone (Dong et al., 2014a) and Outukumpu 

(Nyyssönen et al., 2014; Purkamo et al., 2015). Hence it cannot be rejected the 

possibility that the subsurface, together with the soil, is a natural habitat in which 

the members of the genus Rhizobium can be found.  

Acidovorax genus is one of the few members of Beta-Proteobacteria identified in 

the BH10 column, but it has been detected by every technique used to determine 

the microbial diversity in the IPBSL project. By metagenomic analysis of native 

rock samples, it was showed that Acidovorax was the most abundant 

microorganism at 487.2 mbs (Amils et al., in preparation) and it has been 

identified in several enrichment cultures and cloning analysis from several depths 

(data not shown). Acidovorax is of special interest in the IPBSL project because, up 

to now, is the only microorganism identified in the BH10 column that has been 

described as an iron oxidizer in anaerobic conditions using nitrate as electron 

acceptor (Kappler et al., 2005), the main metabolism that, in principle, could 

explain the generation of high concentrations of iron in the subsurface bioreactor, 

giving rise to the extreme conditions detected in Río Tinto (see section 3.2.2). 

Therefore, a CARD-FISH study was performed to analyze the distribution of these 

microorganisms in the subsurface of the IPB. Two different probes were used, 
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ACI145 and ACI208, to include the largest number of members of the Acidovorax 

genus, since both probes complement each other (Amann et al., 1996; Schulze et 

al., 1999). Results indicated that Acidovorax is one of the genera with higher 

distribution along the BH10 column (Figure 12 and Figure 14A and B), supporting 

the data obtained by the rest of techniques. Moreover, Acidovorax was detected by 

CARD-FISH at depths were iron, acetate and nitrite showed higher concentrations, 

being the nitrite the metabolic product of nitrate reduction. This data together 

with the observation of a high distribution of Acidovorax in the MARTE project 

(Puente-Sánchez et al., 2014b), performed also in the IPB subsurface, strongly 

suggest that this genus must play an important role in the iron and nitrogen cycles 

of this ecosystem and, therefore, in the solubilization of the subsurface sulfide ores 

of the IPB (see section 6.5.2). 

Gamma and Delta-Proteobacteria, detected by GAM42a and SRB358 probes 

respectively, are the Proteobacteria classes that seem to be less distributed in the 

BH10 column. It stands out the genus Acidithiobacillus, which is one of the main 

microorganisms detected in the water column of Río Tinto (González-Toril et al., 

2003). CARD-FISH analysis showed a higher distribution of At. thiooxidans and At. 

ferrooxidans by using the THIO820 probe (Figure 14C and D), an oligonucleotide 

that detect specifically both species (Peccia et al., 2000). These Acidithiobacillus 

species use inorganic reduced sulfur compounds or hydrogen as electron donors 

and ferric iron as electron acceptor in anaerobic conditions (Vera et al., 2013).  
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Figure 14. β, ɣ and δ- Proteobacteria members detected by CARD-FISH in the IPB 
subsurface. A-B, Acidovorax sp. at 206.6 mbs; C-D, Acidithiobacillus sp. at 414.8 mbs; 
and E-F, Desulfosarcina sp. or Desulfococcus sp. at 520 mbs. In green, Syto9 stain. In 
blue, DAPI stain.  In red, CARD-FISH signal. In grey, reflection. Scale bars, 5μm. 
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Due to the observation that the genera Acidiphillium and Acidithiobacillus, 

abundant in Río Tinto’s water column, are present in the IPB subsurface, we 

proceeded to analyze the presence of Leptospirillum genus, the third most 

abundant genus in the river.  However, this genus was only detected at two depths 

by CARD-FISH, 249.8 and 284mbs (Figure 12). The low distribution of the genus 

Leptospirillum in the BH10 column could be attributed to its strictly aerobic 

metabolism. Nevertheless, this genus has also been detected in the IPB subsurface 

in the MARTE project framework (Puente-Sánchez, 2016) and in other anaerobic 

environments, such as in the Río Tinto’s sediments (García-Moyano et al., 2009; 

García-Moyano et al., 2012), or in microaerobic environments, such as biofilms 

developed at 60cm deep in an abandoned mine in Wales (Hallberg et al., 2006). 

Genomic analysis of Leptospirillum species have shown that these microorganisms 

carry genes related with an anaerobic metabolism as the formate-hydrogen lyase 

clusters or anaerobic cobalamin biosynthesis pathway, which have been found 

only in known anaerobes (Goltsman et al., 2009). However, although the possible 

existence of an anaerobic metabolism is contemplated in some species of this 

genus (García Moyano, 2007; Goltsman et al., 2009), as far as we know, it has not 

yet been possible to demonstrate unequivocally whether Leptospirillum is capable 

of using alternative electron acceptors to oxygen. Therefore, the presence of 

Leptospirillum in the IPB subsurface could be due to its resistance for long periods 

of time in anaerobic conditions, as indicated in studies carried out in our 

laboratory in which members of this genus could be isolated from long-term 

anaerobic enrichment cultures (González Toril, 2002), but their role in the IPB 

subsurface does not seem to be substantial.  
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Sulfate-reducing bacteria belonged to Delta-proteobacteria have been detected 

also in the IPB subsurface, highlighting species as Desulfosarcina and Desulfococcus 

detected by DSS658 probe (Figure 14E and F). Specific enrichment cultures to 

detect SRB showed a significant presence of this metabolism between 250-350mbs 

and 400-500 mbs (Figure 12), which correspond with the location of these 

microorganisms along the BH10 column. The growth of these microorganisms may 

be supported, together with sulfate, by the organic matter or H2 and CO2 (Barton, 

2013) present in the IPB subsurface.   

 

6.1.3.1.2. Firmicutes and Actinobacteria phyla 

Regarding Firmicutes and Actinobacteria phyla, the distribution of the genera 

Sulfobacillus and Tessaracoccus was analyzed (Figure 15). 

Sulfobacillus spp. have been detected in the IPB subsurface by using LD300chip 

and PAM oligonucleotide microarray in both the MARTE (Puente-Sánchez, 2016) 

and the IPBSL projects. To check the distribution of this genus in the BH10 column, 

CARD-FISH with SUL228 probe was carried out (Figure 15 and Figure 16A and B). 

SUL228 probe, used as well in the LD300chip, hybridize mainly with S. 

thermosulfidooxidans and S. benefaciens (Bond and Banfield, 2001; Quast et al., 

2012), which have been described as members of the microbial communities that 

accelerate sulfide mineral dissolution (Watling et al., 2008). These microorganisms 

are metabolically versatile and can utilize a broad range of energy substrates 

including organic matter, diverse species of reduced sulfur and hydrogen by using 

Fe3+ as electron acceptor in anaerobic conditions (Justice et al., 2014). Our results 
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show that Sulfobacillus spp. are widely distributed along the entire column, being 

highly represented from 450 to 607.6 mbs, where the presence of iron, sulfur 

compounds, organic matter or even hydrogen may support the growth of these 

microorganisms (Figure 15).   

 

Figure 15. Firmicutes and Actinobacteria phyla distribution along the BH10 column 
analyzed by CARD-FISH. Black and grey squares indicate presence or absence of 
microorganisms at a determined depth respectively. Data about identified compounds 
and metabolisms of interest obtained during the development of the IPBSL project are 
shown. D= denitrification. 
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Within the Actinobacteria phylum, highlights the genus Tessaracoccus, which has 

been detected at several depths by metagenomic analysis of native samples as well 

as in different enrichment cultures for acetogens, methanogens, sulfate-reducing 

and nitrate-reducing microorganisms (Puente-Sánchez, 2016; Leandro, personal 

communication). As discussed, two species belonging to Tessaraccocus genus has 

been isolated in the IPBSL project, T. lapidicaptus, described in the framework of 

this project (Puente-Sánchez et al., 2014a), and Tessaracoccus T2-5_50, specie 

related to T. profundi, which was described for the first time in another deep 

subsurface environment (Finster et al., 2009). While Tessaracoccus T2-5_50 was 

only isolated from an specific enrichment culture for methanogenic 

microorganisms from a 139.4mbs sample, T. lapidicaptus has been isolated 

anaerobically using nitrate as electron acceptor (Puente-Sánchez et al., 2014a) 

from cores sampled at 206.6 and 297m depth as well as through enrichments 

cultures for methanogenic microorganisms from cores sampled at 139.4 and 

284mbs (Leandro, personal communication). Therefore, the distribution of 

members of the Tessaracoccus genus, and specifically Tessaracoccus lapidicaptus, 

was analyzed by the new designed probes TESS681 and Tlap1449 respectively 

(see section 6.1.2). In this case, double hybridizations with both probes were used 

to determine the percentage of members of the T. lapidicaptus species in the IPB 

subsurface in relation to the total number of members of the Tessaracoccus genus 

(Figure 16C-E).  
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Figure 16. Firmicutes and Actinobacteria phyla in the IPB subsurface detected by 
CARD-FISH. A-B, Sulfobacillus (red) at 401.9mbs; and C-E, Tessaracoccus genus probe 
signal (red) and T. lapidicaptus probe signal (blue) at 544 mbs. In green, Syto 9 stain. 
In grey, reflection. Scale bars, 5μm 

 

The CARD-FISH study showed that Tessaracoccus is one of most distributed genus 

along the BH10 column. All members detected along the column belonged to the 

specie T. lapidicaptus except at 409.7mbs, where no Tlap1449 probe signal could 

be visualized (Figure 15). This result implies that T. lapidicaptus is the main specie 

of Tessaracoccus genus inhabiting IPB subsurface. Of note is the preference of IPB 

subsurface Tessaracoccus species to grow in minimal media (Leandro, personal 

communication), an extreme oligotrophic condition, which may explain the 

presence and high distribution of these species in the IPB subsurface. 
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6.1.3.1.3. Planctomycetes and Chloroflexi phyla 

Other Bacteria that were also vastly represented were members of Planctomycetes 

and Chloroflexi phyla (Figure 17). Although by metagenomic it was only detected 

members of the phylum Planctomycetes at 228mbs, mainly members of the family 

Isosphaeraceae (Puente-Sánchez, 2016), CARD-FISH results revealed that this 

phylum is highly distributed along the column, especially in the deepest areas. 

Planctomycetes phylum is widely distributed in marine, terrestrial and even in 

subsurface environments (Fuerst and Sagulenko, 2011). This group of 

microorganisms involves unusual bacteria due to their lack of peptidoglycan and 

their intracellular compartmentalization (Fuerst, 2005), which may be related with 

the origin of the eukaryotic cell (Fuerst and Sagulenko, 2013). Within this group, it 

is of special interest the anaerobic ammonium-oxidizing (ANAMMOX) bacteria, 

microorganisms that can oxidize ammonium in anaerobic conditions using nitrite 

as electron acceptor and generating N2. To do that, they have a special intracellular 

compartment called anammoxosome (Neumann et al., 2011). In the IPB 

subsurface, putative ANAMMOX bacteria were detected at different depths in the 

BH10 column by using AMX368 probe (Figure 17 and Figure 18A and B).  

Despite no others techniques applied in the IPBSL project confirmed the presence 

of ANAMMOX bacteria in the IPB subsurface, their growth may be supported by the 

ammonium and nitrite founded along the column, underlining the deepest 

borehole areas where the amount of ammonium detected was higher. Besides, 

ANAMMOX bacteria species capable to reduce nitrate to overcome the shortage of 

ammonium, as well as ANAMMOX species that are able to use alternative energy 

source as organic matter or ferrous iron as electron donors and oxidized iron or 
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manganese as electron acceptor, have been described (Neumann et al., 2011), 

which could be also present along the BH10 column. This group of microorganisms 

has been previously detected in terrestrial subsurface environments (Lau et al., 

2016; Kumar et al., 2017; Momper et al., 2017a) where they have an important role 

in the nitrogen cycle.  

 

Figure 17. Planctomycetales and Chloroflexi phyla distribution along the BH10 
column analyzed by CARD-FISH. Black and grey squares indicate presence or absence 
of microorganisms at a determined depth respectively. Data about identified 
compounds and metabolisms of interest obtained during the development of the IPBSL 
project are shown. 
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Figure 18. Planctomycetes and Chloroflexi phyla in the IPB subsurface detected by 
CARD-FISH. A-B, ANAMMOX bacteria at 355.7 mbs; C-D, Chloroflexi: CFX1223 and 
GNSB941 probes signal at 568.6  mbs; and E-F, Chloroflexi: CFX109 probe signal at 
228.6 mbs. In green, Syto9 stain. In red, CARD-FISH signal. In grey, reflection. Scale 
bars, 5μm 
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Regarding Chloroflexi, known before as green non-sulfur bacteria, is a large 

phylum that contains diverse metabolic features. Chloroflexi is a widespread group 

of bacteria found in a range of microbial habitats, including sub-seafloor (Fry et al., 

2008) and continental subsurface environments (Chivian et al., 2008; Breuker et 

al., 2011; Purkamo et al., 2015; Ino et al., 2016). In the IPBSL project, sequences 

belonged to the classes Anaerolineae, which englobe filamentous bacteria, and 

Thermomicrobia has been detected in specific enrichment cultures for 

methanogens growth (Amils et al, in preparation). Three complementary probes 

have been used in CARD-FISH experiments to detect members of the Chloroflexi 

phylum along the BH10 column (Figure 17). CFX1223 and GNSB941 probes, used 

as a mix, are complementary to most of the Chloroflexi sequences in the SILVA 

database (Quast et al., 2012), including the Anaerolineae and Thermomicrobia 

classes. On the other hand, CFX109 probe is able to detect members of the 

subdivision 3, mostly the class Chloroflexia (Björnsson et al., 2002). CARD-FISH 

results indicate that members of the Chloroflexi phylum are part of the microbial 

community of the IPB subsurface. Filamentous colonies as those described in the 

Anaerolineales order by CFX1223 and GNSB941 probes (Figure 18 C and D) as well 

as coccoid morphologies with the CFX109 probe have been identified along 

borehole BH10 (Figure 18E and F). 

 

6.1.3.1.4. Bacteroidetes, Acidobacteria and Cyanobacteria phyla 

Using CARD-FISH other phyla less distributed along the column as Bacteroidetes 

and Acidobacteria have been detected (Figure 19A-E). In spite that metagenomic 
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analysis corroborated a low biodiversity and number of Acidobacteria phylum in 

native samples, it was not the case for Bacteroidetes phylum, which was found as 

one the predominant phyla at 228.6mbs, 336mbs and 420mbs (Figure 11). 

However, it must be considered that the probe used, CF319a, only detect around 

44% of the Bacteroidetes sequences of the SILVA database (Quast et al., 2012). 

Thus, several microorganisms that belong to this phylum may escape detection by 

the used CARD-FISH probe as most of the members of the family Cytophagaceae, 

which has been detected by NGS of native samples (Puente-Sánchez, 2016) and in 

enrichment cultures (Leandro, personal communication). For that reason, 

additional probes should be tested, to cover the groups of Bacteroidetes phylum 

detected by others techniques that are not complementary to the CF319a probe 

and analyze the real distribution of this phylum in the IPB subsurface.  

Surprisingly, especially after the possibility that sample contamination was 

discarded, Cyanobacteria were detected at some depths of the BH10 column 

(Figure 19A, F and G). By metagenomic it was shown that this phylum represented 

the most abundant OTUs at 249, 392, 420, 496 and 607 mbs (Figure 11), being 

corroborated the presence of these microorganisms in most of this depths by 

CARD-FISH analysis. As discussed above (see section 3.1.4), far from be an 

exception, Cyanobacteria phylum has been detected in several subsurface 

environments (Suzuki et al., 2013; Lau et al., 2014; Nyyssönen et al., 2014; Osburn 

et al., 2014; Ino et al., 2016). Nonetheless, the role of these organisms in dark 

environments is still unknown. 
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Figure 19. Acidobacteria, Bacteroidetes and Cyanobacteria phylum in the IPB 
subsurface. A, Distribution along the BH10 column analyzed by CARD-FISH, black and 
grey squares indicate presence or absence of microorganisms at a determined depth 
respectively; B-C, Bacteroidetes at 492.6 mbs; D-E, Acidobacteria at 102.6 mbs; and F-
G, Cyanobacteria at 206.6 mbs. In green, Syto9 stain signal. In red, CARD-FISH signal. 
In grey, reflection. Scale bars, 5μm. 

 



113 

  

6.1.3.2.  Archaea diversity and distribution 

Of note is the detection of archaea through CARD-FISH (Figure 20) when 16S rRNA 

metagenomic or cloning techniques have not detected them in the native samples 

(Figure 11). This incongruence may be due to low number of Archaea showed by 

CARD-FISH and its difficult detection by sequencing methods, which are 

techniques that need a large amount of sample for their analysis and in which 

primers designed specifically to amplify archaeal 16S rRNA gene sequences also 

amplify bacterial sequences (Bohorquez et al., 2012). Members of the phylum 

Euryarchaeota were only detected in native rock samples by shotgun metagenomic 

analysis of sample 420mbs, corresponding only to 0.21% of the sequences 

(Puente-Sánchez, 2016). At this depth, members of Methanosarcinales order were 

detected by CARD-FISH. 

Nevertheless, different methodologies imply an active archaeal population in IPB 

subsurface as the detection of CH4, and H2 and CO2 along the column (Figure 20), 

which may support the growth of autotrophic methanogens; and the observed 

methane production in specific enrichment cultures for methanogenic 

microorganisms at different depths, which can be attributed exclusively to the 

members of the Archaea domain. In addition, by sequence analyses of enrichment 

cultures from 450.3 and 492.6mbs the presence of members of the Methanosarcina 

genus were identified, while members of the Methanobacterium genus were 

detected in cultures from 139.4mbs (Leandro personal communication). CARD-

FISH experiments support the methane production in the IPB subsurface by the 

detection of members of the archaeal orders Methanosarcinales (Figure 21A and 

B), Methanobacteriales (Figure 21C and D) and Methanomicrobiales and the family 
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Methanococcaceae, mainly in those depths where methane and methanogenic 

activity were detected. Members of the Crenarchaeaota phylum has been detected 

using CARD-FISH in the IPB subsurface too, although they have not been identified 

by other techniques applied in the IPBSL project.  

 

Figure 20. Archaea distribution along the BH10 column analyzed by CARD-FISH. Black 
squares indicate presence of the microorganisms; white squares indicate absence of 
the microorganisms. Data about identified compounds and metabolisms of interest 
obtained during the development of the IPBSL project are shown. 
MG=methanogenesis; MT= methanotrophy. 
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Figure 21. Methanogenic archaea detected at different depths in the IPB subsurface. 
A-B, Methanosarcinales order at 544mbs (green), in blue DAPI stain; C-D, 
Methanobacteriales order at 355.7mbs (red), in green, Syto9 stain. In grey, reflection. 
Scale bars, 5μm. 

 

6.1.4.  Limitations of CARD-FISH analysis 

Despite the important information that CARD-FISH offered in the analysis of the 

microbial distribution in the subsurface of the IPB, as any technique, it has 

limitations. Maybe the main one is the selection of probes to apply. Unless previous 
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data about microbial diversity are available, CARD-FISH became a “try and failure” 

assay. Besides, the lack of information about microbial composition of the sample 

hinders the selection of appropriates protocols to permeabilize the cells (Kubota, 

2013), which may translates in a lower rate of microbial detection. Fortunately, as 

planned in the IPBSL project, microbial diversity data, conveniently complemented 

with the MARTE project data, was available before hybridizations were started. 

Thus, most of probes were chosen in consequence. This multi-methodological 

approach favored to gain a better knowledge of the IPB subsurface biosphere.  

Other limitation observed in the use of CARD-FISH to analyze the microbial 

distribution in subsurface environments should be mentioned. At some depths, 

there is no correlation between the different complementary probes used. An 

example is the probe EUB338 I-III, which signal should be detected at all depths 

since more specific probes at phylum, order, genus or specie level showed the 

presence of different bacterial members along the entire column (for a complete 

picture, see Figure 10). This discordance could be due to the low number of 

microorganisms that are detached from the rock sample after sonication (see 

below) as well as to the small amount of sample analyzed in each CARD-FISH, 

which translates in an extremely low number of microorganisms per filter section 

examined. Nevertheless, the amount of sample per filter couldn’t be increased due 

to the presence of small mineral particles, which completely cover the surface of 

the filter, not allowing the correct visualization of the sample by fluorescent 

microscopy. 
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6.2. Improving microorganisms detection by microscopy techniques in 

subsurface environments 

To evaluate the number of microorganisms that inhabit subsurface environments, 

some research groups have recurred to fluorescence microscopy techniques. 

However, most of these studies have focused their efforts in subsurface water 

samples, which analysis is far easier than the analysis of rock samples (see section 

3.1.2). The projects that studied the number of microorganisms in rock samples 

tried to detach the microorganisms from the rock and let them in an easily filtered 

suspension (Zhang et al., 2005; Cockell et al., 2009), as we did using sonication for 

the study of the microbial distribution in the IPB subsurface. However, we realized 

that, when we detected microorganisms in our filtered samples, part of the 

fluorescence remained attached to the rock particles. This observation was 

indicating that sonication and the subsequent filtration might not be the best 

protocol for the detection of all microorganisms. In order to check if 

microorganisms persist habitually attached to the rocks after sonication we tried 

CARD-FISH on the rock sample itself. Our results show that an important fraction 

of the microorganisms remain attached to the rock particles even after the 

sonication step (Figure 22). Thus, when analyzing the number of microorganisms 

in a rock sample using this protocol, it should be taken into account that the total 

number of microorganisms could be underestimated, since a high percentage of 

microorganisms remain attached to the substrate. Instead, a direct count of 

microorganisms in the substrate could provide more reliable data regarding the 
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biomass present in these environments, despite the difficulty of working directly 

with rock substrates. 

 

Figure 22. Comparison of microorganisms detected by CARD-FISH by using filters (A-
B) or rocks (C-D) in a sample from 139.4 mbs after sonication. In green, Syto9 stain. In 
red, bacteria detected with EUB338 I-III probe. In grey, reflection. Scale bar 5 μm (A-B) 
and 10 μm (C-D). 

 

Due to this observation, the rest of the reported experiments were performed 

directly on the rock substrates. Nevertheless, no counting of microorganisms was 
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done in the IPB subsurface due to the limited amount of fixed samples and the high 

volume of samples that would be needed to obtain a statistically confident result. 

6.3. Microbial interactions in IPB subsurface 

Several studies have shown that the metabolic cooperation between species seems 

to be critical for the survival of the microorganisms in oligotrophic environments 

maximizing the energy obtaining (Morris et al., 2013). In fact, it has been proposed 

the existence of an interconnected network of activities that supports the 

subsurface biosphere in which the metabolic products from some of these 

microorganisms are utilized by others (Hug et al., 2016). However, the low number 

of cultured syntrophic microorganisms limits our understanding of their 

association (Orphan, 2009).   

One of the greatest advantages of FISH techniques is the possibility of study 

interactions between microorganisms, cultured or uncultured, through multiple 

hybridizations. As mentioned, in some IPB subsurface samples, DNA stain signals 

were more abundant than total probe signals (Figure 23), which can be related 

with the existence of mixed colonies of different types of microorganisms and the 

detection of only one of those microbial groups by the specific probe used. To 

corroborate if different species of microorganisms are interacting in the IPB 

subsurface, double CARD-FISH analysis with different probes were carried out. 
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Figure 23. Detection of bacteria (A-C) and archaea (D-F) in subsurface rock samples at 
420mbs and 496.8mbs respectively. In green, Syto9 stain. In red, CARD-FISH signal. In 
gray, reflection. Scale bars, 5μm (A-C) and 2 μm (D-F) 

 

6.3.1.  Bacteria and Archaea interaction in IPB subsurface 

As it is shown in Figure 23, both bacteria and archaea probe signals were lower 

than total DNA stain at some depths. Consequently, we tried double hybridizations 

with general EUB338 I-III and ARC915 probes to verify if mixed colonies of 

bacteria and archaea were present in the IPB subsurface. Figure 24 shows the 

existence of bacteria and archaea mixed colonies at some depths, which may be 

related with a metabolic association between microorganisms from both domains.  
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Figure 24. CARD-FISH detection of bacterial and archaeal mixed colonies in drilled 
samples from different depts. Double CARD-FISH with bacteria probe (green) and 
archaea probe (red) at (A) 139.4mbs and (B) 284mbs. Scale bars: 10 μm. 

 

Actually, FISH analysis of enrichment cultures designed to grow methanogenic 

archaea showed the presence of mixed colonies even after successive transfers in 

fresh media (Leandro, personal communication). A probably obligatory syntrophic 

association between bacteria and archaea could explain this observation as well as 

the failure, up to now, to isolate archaea from the IPB subsurface. Actually, 16S 

rRNA metagenomics of these cultures showed the presence of microorganisms 

from both domains, represented by Methanosarcina and Methanocella as archaeal 

members and Syntrophomonas and Acetobacterium as bacterial members. On one 

hand, it has been showed that members of the genus Syntrophomonas, which 

consume fatty acids and produce acetate or H2, grow in co-culture with 

methanogens as Methanosarcina (Beaty and McInerney, 1989) and members of the 

genus Methanocella (Li et al., 2015), which consume the metabolic products 

generated by the bacteria. On the other hand, a metabolic consortium may exist 
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between Acetobacterium, an acetogenic microorganism, and Methanosarcina spp., 

which may use the produced acetate by Acetobacterium as energy source (Winter 

and Wolfe, 1979). Associations of this nature could be operating not only in the 

enrichment cultures but also in the IPB subsurface. 

Furthermore, previous studies had described syntrophic consortiums of bacteria 

and archaea in anoxic sediments promoting the AOM (Knittel and Boetius, 2009; 

Briggs et al., 2011) and the existence of these syntrophic consortiums in 

continental subsurface environments has been proposed (Lau et al., 2016). Despite 

that the existence of this type of consortium has not been confirmed in the IPB 

subsurface, the fact of finding methane-oxidizing metabolisms along BH10 column 

by enrichment cultures (Figure 20) and the detection of ANME2c microorganisms 

in the MARTE project framework (Puente-Sánchez, 2016) as well as members of 

the Desulfosarcina/Desulfococcus group (see section 6.1.3.1.1), which can be 

partners of anaerobic methanotrophs of the ANME-2 clade (Schreiber et al., 2010), 

could be an indication of the presence of an AOM association in the IPB subsurface. 

In addition, other studies have shown the co-occurrence of microorganisms from 

both domains in a broad range of habitats which are important for the 

maintenance of biogeochemical cycles such as the iron, sulfur, nitrogen or carbon 

cycles (Edwards et al., 2000; Koch et al., 2006; Weidler et al., 2008; Justice et al., 

2012; Probst et al., 2013). Unfortunately, in most cases the structural relationship 

between both kinds of microorganisms is still unknown.  

Futures studies should be conducted to identify these microorganisms and the 

nature of their metabolic association in the IPB subsurface. 
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6.3.2.  Operative iron and sulfur cycles in the IPB subsurface 

As mentioned, one of the most common microorganisms inhabiting the IPB 

subsurface belongs to the genus Acidovorax. As discussed before, Acidovorax spp. 

have been described as an iron-oxidizing bacteria (Kappler et al., 2005; 

Chakraborty and Picardal, 2013) and, consequently, they are putative 

microorganisms involved in the massive sulfide dissolution through the generation 

of ferric iron in anaerobic conditions (see section 6.5).  

In the IPB subsurface, usually general DNA stain of different samples show a higher 

number of microorganisms than those corresponding to Acidovorax. This might 

imply that different species of microorganisms in the subsurface are co-inhabiting 

with these species. Different combinations of probes were used to identify possible 

Acidovorax partners. As metabolic associations are usual between microorganisms, 

we first tried double hybridizations with Acidovorax probes and complementary 

probes to identify known iron-reducing microorganisms, which could take 

advantage of the ferric iron produced by Acidovorax. Actually, members of the 

genus Acidovorax have been previously described showing anaerobic cycling of 

iron in co-culture with iron-reducing bacteria (Straub et al., 2004). In the IPB 

subsurface, two of the main co-inhabitants of Acidovorax belong to the genera 

Acidithiobacillus (Figure 25A-C) and Acidiphillium (Figure 25D-F), both capable of 

an anaerobic respiration using ferric iron (Osorio et al., 2013; Vera et al., 2013). 

The interaction between these living microorganisms, iron-oxidizers and iron-

reducers, corroborates the importance of cooperation between species in 
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underground environments to maximize the energy obtaining, implying the 

existence of an operative iron cycle in the IPB subsurface at microniche level. 

In addition, members of Sulfobacillus genus are commonly found in the IPB 

subsurface intimately associated with Acidovorax (Figure 25G-I) forming intricate 

mixed colonies (Figure 25J). In spite that several kind of metabolisms has been 

described for Sulfobacillus spp., under anaerobic conditions these microorganisms 

are able to reduced iron using organic matter or CO2 as carbon source and S4O62-, 

S0 or H2 as electron donors (Justice et al., 2014). Although the nature of the 

relationship between Acidovorax and Sulfobacillus is unknown, we estimated that if 

Acidovorax, as iron oxidizer, is able to enhance metal sulfides dissolution, as pyrite, 

Sulfobacillus would be able to use reduced sulfur compounds as electron donors 

and/or ferric iron as electron acceptor, the main products of this reaction (Vera et 

al., 2013). In fact, it has been shown that Sulfobacillus species are able to enhance 

the metallic sulfide bioleaching in co-cultures with iron oxidizers, at least in 

aerobic conditions (Watling et al., 2008). 

On the other hand, it has been found that Acidovorax is not the only supposed 

collaborator of Sulfobacillus. Previous studies have shown the co-ocurrence of 

sulfur-oxidizing and sulfate-reducing microorganisms in subsurface environments 

maintaining an operative a sulfur cycle (Lau et al., 2016). Thus, due to the co-

occurrence at several depths of SRB and Sulfobacillus detected by CARD-FISH 

(Figure 26), both related with sulfur metabolism, we thought that these 

microorganisms could be interacting in the IPB subsurface. To test it, double 

hybridizations with Sulfobacillus specific probe and SRB probe were performed 

and mixed colonies of both microorganisms were detected (Figure 25K-M) at  
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Figure 25. Putative iron and sulfur cycles in the IPB subsurface. A-C, interaction of 
Acidovorax (red) and Acidithiobacillus (green) at 414.8mbs; D-F, interaction of 
Acidovorax (red) and Acidiphillium (green) at 414.8mbs; G-J, interaction of 
Acidovorax (red) and Sulfobacillus (green) at 249.8mbs; K-M, interaction of 
Sulfobacillus (red) and SRB (green) at 139.4mbs;. In grey, reflection. Scale bars 5μm 
except J, 3μm. 
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several depths, which is a strong indication of the existence of an active sulfur 

cycle in IPB subsurface. 

 

 

Figure 26. Distribution of iron-oxidizing (red), iron-reducing (orange), sulfur-
oxidizing (blue) and sulfate-reducing (green) microorganisms along BH10 column 
analyzed by CARD-FISH. Grey squares indicate absence of microorganisms at a 
determined depth. Data about identified compounds and metabolisms of interest 
obtained during the development of the IPBSL project are shown. 
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In addition, due to the observed relationship between Acidovorax and Sulfobacillus, 

we inferred that iron and sulfur cycle might be interconnected. Actually, the 

presence of iron and sulfur metabolism related microorganisms have been 

observed frequently at the same depths along the BH10 column (Figure 26). As a 

consequence, we tried a quadruple CARD-FISH with Acidovorax, Acidiphillium, 

Sulfobacillus and SRB probes, representing iron oxidation, iron-reduction, sulfur 

oxidation and sulfate reduction respectively.  

Figure 27 shows the interaction between these four types of microorganisms. The 

occurrence of both oxidizers and reducers of iron and sulfur compounds at the 

same microniche, in an environment where the metal sulfides are the main 

minerals of the system, raises the possibility that the dissolution of these ores is 

the key to understanding their collaboration. Actually, this interaction was 

observed at different depths (139.4mbs, 206.6 mbs and 249.8 mbs) in which, in 

addition, weathered pyrite has been reported (Figure 26), farther supporting this 

hypothesis.   

However, their association is quite intriguing because the optimal pH described for 

the characterized strains, as well as the redox potentials described for their 

metabolisms, are quite different. On the one hand, Acidiphillium and Sulfobacillus 

are acidophilic microorganisms (Johnson, 1998), whereas Acidovorax and SRB 

generally grow at circumneutral pH (Barton and Tomei, 1995; Willems, 2014). 

However, it must be borne in mind that, so far, no representative of these genera 

has been isolated of the IPB subsurface and, therefore, the native strains of this 

environment may show a wider range of tolerance to pH. In fact, acidophilic SRB 

have been isolated from Río Tinto‘s sediments (Sánchez‐Andrea et al., 2013) and 
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members of the genus Acidovorax have been detected in acid mine drainages 

environments (Méndez-García et al., 2015) and recently in the acidic anaerobic 

sediments of Río Tinto (Kappler, personal communication), so the optimum pH of 

each of these microorganisms may not be an impediment to their association. On 

the other hand, the presence of these microorganisms in the same microniche does 

not fit with the thermodynamic models. Sulfate reduction occurs at negative redox 

potentials (Barton and Tomei, 1995), while both the nitrate reduction, carried out 

by Acidovorax, and the Fe3+ reduction require a positive redox potential (Thauer et 

al., 1977; Weber et al., 2006). Generally, the underground systems show a redox 

stratification in which the different metabolisms are distributed, as have been 

observed in wetlands and sediments (Amend and Teske, 2005; Sánchez-Andrea et 

al., 2011) and, as far as we know, an association of this type has never been 

described before. Therefore, the thermodynamic explanation of this association 

remains, as the pH, an open question. Further studies, that are beyond this work, 

are needed to determine how the redox potential influences the cooperation 

between these microorganisms as well as the possible influence of the presence of 

biofilms (see below) in the distribution and management of the redox potential. 

Nevertheless, although much more data is needed to interpret the results obtained 

through CARD-FISH, the fact that these microorganisms are present in the same 

depths as well as their co-localization in the same colonies at some of those depths 

is a strong indication that the iron cycle and the sulfur cycle could be operating 

jointly in the IPB subsurface, possibly at a microniche level. 
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Figure 27. Putative iron and sulfur cycle interconnection in the IPB subsurface at 
139.4mbs. A, Acidovorax (red); B, Sulfobacillus (blue); C, Acidiphillium (yellow); D, 
sulfate-reducing bacteria (green); and E, merged. In grey, reflection. Scale bars, 10μm 
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6.4. Biofilms 

Natural microbial communities most often live attached to surfaces or interfaces 

forming biofilms, defined as the coexistence of one or more species of 

microorganisms sharing space in a self-produced matrix. The matrix is a three-

dimensional structure mostly composed of extracellular polymeric substances 

(EPS) such as polysaccharides, proteins, nucleic acids, lipids and, above all, water 

(Flemming and Wingender, 2010; Flemming, 2011). Therefore, the development of 

biofilms implies a change in genetic regulation and the consumption of energy to 

generate its components and maintain biofilm integrity (Stoodley et al., 2002; 

Sauer, 2003; Saville et al., 2011). However, biofilm lifestyle provides an ideal 

microenvironment where microorganisms can survive and grow even when 

external conditions are adverse. Some of the functions associated to biofilms are: 

adhesion to surfaces, retention of water, structuration of biomass, sorption of 

organic and inorganic compounds, enzymatic activity, nutrient source, redox 

regulation, or quorum sensing among others (Flemming, 2011; Flemming et al., 

2016).  

It is considered that in deep subsurface environments, where geochemistry and 

geohydrology control nutrient and water availability, most microorganisms show 

very low metabolic rates or remain in a dormant state in poor porous matrix rocks 

(Fredrickson et al., 1997b). Consequently, it has been suggested that in these 

conditions microbial biofilms may not exist due to the high energetic cost required 

for their formation and maintenance (Coombs et al., 2010). Still, the ability of 

isolated subsurface microorganisms to form biofilms has been demonstrated in 
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vitro (Sakurai and Yoshikawa, 2012) as well as the formation of biofilms through in 

situ colonization experiments on added glass and rock surfaces in natural 

subsurface environments (Anderson et al., 2006a; Anderson et al., 2006b). In 

addition, a few studies have shown that microbial biofilms are formed in native 

rock matrixes at least in fracture zones, where the flux of water and nutrients is 

higher, or near the surface, where oxygen is present (Pfiffner et al., 2006; Wanger 

et al., 2006; Jagevall et al., 2011). But up to now, there has been no information 

about the formation of native biofilms in deep poor porous rock matrix, where 

there is no oxygen, water is limited and life is supported mainly by anaerobic low 

energy metabolisms.  

Fluorescence microscopy techniques are useful tools to study the three-

dimensional structure of biofilms, but, as was discussed above, they have been 

discarded to study subsurface samples because the reflection and autofluorescence 

of some minerals in rock samples make very difficult to distinguish them from true 

positive signals (Jagevall et al., 2011). Instead, other microscopy techniques such 

as SEM have been applied, but no information about microbial or EPS composition 

of the biofilms was obtained (Anderson et al., 2006a; Wanger et al., 2006; MacLean 

et al., 2007).  

FISH techniques combined with FLBA and other specific stains offer valuable 

information about biofilms (Neu and Lawrence, 2014). While FISH allows the 

identification of a particular living microorganism present in a sample due to the 

use of specific 16S RNA probes (Amann and Fuchs, 2008), lectins labeled with 

fluorophores used in combination with other specific stains for DNA, proteins and 

lipids can provide data about the biofilm composition (Neu and Lawrence, 2014).  
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6.4.1.  Improving microbial biofilms detection  

CARD-FISH combined with FLBA was applied to deep subsurface samples of the 

IPB to determine the presence of natural microbial biofilms in the rock matrix. 

Different lectins were tested (see Table 4, materials and methods) and parallel 

hybridizations were carried out in clean rock controls with no signal detection. 

CARD-FISH and FLBA analysis revealed the presence of living bacterial and 

archaeal microcolonies surrounded by traces of polysaccharides at all checked 

depths (Figure 28 A-B). It was detected the presence of α-linked fucose residues 

and galactosyl (β-1,3) N-acetylgalactosamine residues in some of the biofilms 

visualized through AAL, UEA I or PNA lectins respectively. Nevertheless, 

Concanavalin A (Con A), which specifically binds internal and non-reducing α-D 

glucosyl and α-D mannosyl residues, was the lectin that revealed broader biofilm 

surface, which is consistent with previous results that indicated that both 

monosaccharides were the most abundant sugars in the subsurface of the IPB 

(Parro, unpublished data). However, the lectin signal was poor and scarce, even 

when more than one lectin was used to reveal the biofilm structure. This fact may 

suggest that either i) the existence of certain glycoconjugates unrecognized by the 

lectin used; ii) that in the subsurface, EPS production may be reduced in response 

to low nutrient levels (Stanley and Lazazzera, 2004); or iii) the signals correspond 

to the remains of the exopolysaccharides which were consumed by 

microorganisms, since the EPS matrix can serve as a reservoir of nutrients to 

maintain the geobiochemical cycles (Pinchuk et al., 2008; Neu and Lawrence, 

2016). Furthermore, because CARD-FISH requires a large and aggressive sample 
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preparation protocol, the low and sparse lectin signals observed could be also due 

to the numerous washing steps, the inactivation of peroxidases or the cell 

permeabilization steps required by this technique. 

 

Figure 28. Bacterial biofilms detected at 414.8mbs by CARD-FISH (A and B) and FISH 
(C and D). In red, EUB338 I-III probe signal. In green, FITC-ConA lectin signal. In gray, 
reflection. Scale bars: A and B, 15 μm; C and D, 5 μm. 

 

To avoid the influence of the CARD-FISH protocol on the integrity of the biofilms, 

we repeated the experiment using FISH for microorganism detection. The FISH-

FLBA hybridization showed the existence of well conserved and mature biofilms 

on the subsurface rock matrix (Figure 28C and D). However, the number of 

colonies visualized by FISH was lower, as expected, than by CARD-FISH. This 
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reduction in the number of microorganisms detected in comparison to CARD-FISH 

may be due to the low metabolic rate that some microorganisms present in the 

subsurface, since FISH signal intensity is directly proportional to the number of 

ribosomes present in the cells (Pernthaler et al., 2001). Consequently, the 

microorganisms that comprise these biofilms detected by FISH are not in a 

dormant state but are metabolically active, which corroborates the concept of a 

living and functional subsurface biosphere. 

In order to visualize as many microorganisms as possible without compromising 

the integrity of biofilms, DOPE-FISH (Stoecker et al., 2010) was checked as an 

alternative signal amplification method. The signal intensity of DOPE-FISH was 

compared with FISH signal using E. coli in laboratory control experiments (Figure 

29). These results showed that the fluorescence signal using DOPE-FISH was 

almost twice that of FISH, in accordance with Stoecker et al. (2010). However, 

DOPE-FISH background was 3.7 times higher than that of FISH, resulting in a final 

increase of just 1.2 times in net fluorescence signal compared to FISH, defined here 

as cell fluorescence minus background fluorescence, when the hybridization was 

carried out in the same conditions. To increase the signal-noise ratio, alternative 

hybridization buffers were tested. It has been stated that the CARD-FISH buffer, 

which contains blocking reagent and dextran sulfate, increase the signal up to 20% 

(Schimak et al., 2015). In this work, geneFISH hybridization buffer (Moraru et al., 

2010), which contains extra blocking reagents such as salmon sperm DNA and 

yeast RNA to decrease the background, was tested. Our results indicate that the 

use of geneFISH buffer in a pre-hybridization incubation as well as in the 

hybridization not only decreased the background intensity but increased the cell 
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signal intensity, yielding an increase of net fluorescence signal in DOPE-FISH of 2.4 

times over that of FISH (Fig. 3). Other methods for signal amplification such as 

MIL-FISH (Schimak et al., 2015) were tested but no remarkable improvement was 

achieved in our samples (data not shown). 

 

Figure 29. Comparison of FISH and DOPE-FISH mean fluorescence intensity of cells, 
background and net fluorescence efficiencies in E. coli. Hybridizations were carried 
out with FISH buffer (blue) or geneFISH buffer with pre-hybridization step (red). 

6.4.2.  Biofilms in deep subsurface rock matrix 

DOPE-FISH and FLBA were then applied to subsurface rock samples showing a 

greater number of detected microorganisms than FISH hybridizations with a 

similar degree of biofilm integrity (Figure 30). Proteins and lipids are also present 

in the subsurface biofilms. In most of the detected biofilms, the main detected 

components were polysaccharides and proteins (Figure 30B-C), with some 

exceptions where lipids seemed to be more abundant than proteins (Figure 30A).  
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Figure 30. Bacterial biofilm detection in subsurface hard rock samples from different 
depths. DOPE-FISH of bacteria (red),  FITC-ConA  (green), Sypro Ruby (violet) and Nile 
red (yellow) at 355.7mbs (A), 420mbs (B) and 519.1mbs (C). Scale bars 10 μm.  
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All colonies exhibited, at least, traces of EPS surrounding them. In fact, it is 

noticeable that biofilms were detected in samples from all checked depths, even in 

poor porous rocks. This indicates that the biofilm lifestyle is common in the 

subsurface despite being considered an oligotrophic environment along with the 

energetic cost of biofilm production and maintenance (Sauer, 2003; Saville et al., 

2011). In an environment where water and nutrients are limited and energy must 

be obtained from inorganic sources, the derivation of energy to biofilm production 

underlines its importance not only in the retention of nutrients and water (Coyte 

et al., 2016) but also in efficiency in the generation of energy (Vera et al., 2013). 

6.4.3.  Multi-species biofilms in deep subsurface rock matrix 

Because bacterial and archaeal mixed colonies were detected in some of the 

samples from different depths, double DOPE-FISH and FLBA were used to 

determine whether these microorganisms were able to produce biofilms. Figure 31 

shows the existence of native subsurface biofilms with a mixture of 

microorganisms from both domains. The existence of these multidomain biofilms 

is indicative of the advantage of bacterial and archaeal collaboration (Zelezniak et 

al., 2015) which may be extremely critical on the subsurface.  

It is interesting to note that usually the EPS signal is not concentrated in only one 

single colony but extends along the rock matrix, interconnecting more than one 

cluster of cells (Figure 30 and Figure 31), separated by a substantial distance. 

Gantner et al. (2006) showed that “calling distance” of quorum sensing can extend 

up to 78 μm by single species biofilms. However, cooperation between different 
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microorganisms seems to need their co-aggregation (Nielsen et al., 2000; Egland et 

al., 2004; Zelezniak et al., 2015). Yet, in subsurface environments, where confined 

space can limit the aggregation of cells, the possibility of communication and 

cooperation by diffusion of metabolites between different microcolonies, even 

when the distance is significant, cannot be discarded.  

 

 

Figure 31. Detection of bacterial and archaeal mixed biofilms using double DOPE-FISH 
and FLBA at 139.4mbs. A and D, DOPE-FISH with bacteria (red) and archaea (blue) 
probes. B and E, FLBA with ConA, AAL and PNA lectins (green). C anf F, merged. Scale 
bars 10 μm.  
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6.5. Testing the anaerobic subsurface bioreactor hypothesis of Río Tinto 

origin  

As mentioned in the introduction, the natural origin of Río Tinto was demonstrated 

after the study of the mineralogy of ancient sedimentary terraces, which were 

formed under the same conditions that the river presents today: an extraordinary 

concentration of ferric iron and low pH on its waters (Fernández‐Remolar et al., 

2003). This observation discarded the anthropological origin of the river’s features 

by mining activity, which would not begin until millions of years later. An 

anaerobic underground bioreactor located in the Peña de Hierro area was 

proposed as the natural origin of Río Tinto’s characteristics (Fernández-Remolar et 

al., 2008a; Fernández-Remolar et al., 2008b). The microorganisms inhabiting the 

IPB subsurface would dissolve the metallic sulfides that are abundant in this 

region through anaerobic iron-oxidizing metabolisms.  

To carry out an exhaustive study and demonstrate the existence of the mentioned 

bioreactor, two drilling projects have been carried out in the IPB subsurface, the 

MARTE and the IPBSL projects. Thanks to both projects, great information has 

been obtained about its underground biosphere as it has been detailed throughout 

this work. The mineralogical composition and the energy sources available for this 

bioreactor are today well characterized. We also know that the deep biosphere of 

the IPB is active, the main microbial populations of the ecosystem and the 

metabolisms that are being carried out at different depths. However, up to now, we 

are missing the explicit demonstration that the microorganisms inhabiting the IPB 

subsurface can dissolve the metal sulfides that comprise this geological unit 

generating the high iron content and acidic pH that Río Tinto presents. 
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6.5.1.  Generation of Río Tinto features from native samples of the IPB 

subsurface 

To check if the interaction of water, native microorganisms and substrates of the 

IPB subsurface could generate an increase of the iron in solution and a low pH at 

natural conditions, a simple experiment was performed. Three samples from 

different depths: 102.6, 139.4 and 228.6mbs, were chosen in base of their high 

pyrite content: 10.6%, 8.5% and 8.5% respectively (Appendix 2 and Figure 32D). 

Samples were stored after sampling the drilling cores in sterile bottles under 

nitrogen atmosphere and subsamples of the same depths were sterilized and 

stored in the same conditions, which would serve as abiotic controls. In both cases, 

only sterile and anoxic milliQ water was added at the beginning of the experiment 

and iron production and pH was followed for ten months.  

Figure 32 (A- C) shows the generation of iron in solution at all tested depths, being 

the cultures of samples from 102.6mbs and 139.4mbs where more soluble iron 

production was observed. At these depths, 4.6g/l and 6.2g/l of total iron in 

solution was measured respectively after ten months of incubation. All controls 

also showed some increase of iron in solution, but the great difference of iron 

production between cultures and sterilized controls indicates that most of the iron 

solubilization is the consequence of the microbial activity present in the samples, 

although a minimal abiotic production is taking place.  
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Figure 32. Total iron production by microbial activity (filled squares) or abiotic 
processes (open squares) in natural samples from 102.6 mbs (A), 139.4mbs (B) and 
228.6mbs (C) of the IPB subsurface. Final Fe3+/Fe2+ ratio of each culture is indicated. 
In D, BH10 stratigraphic column in which pyrite content and depths were pyrite 
alteration was detected are indicated. 
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Must be taken into account that these cultures are representatives of the IPB 

subsurface since only native samples were present and no microbial inoculum or 

additional compounds were added. Hence, native microorganisms of the rocky 

substrates are active, their metabolism is maintained by the natural resources of 

the samples and, as a consequence, dissolution of the iron-bearing minerals is been 

carried out. However, the nature of the minerals that are being dissolved is not 

clear since, at those depths, a diverse mineralogical composition was identified, 

including iron-bearing minerals as pyrite, illite or clinochlore (Appendix 2). 

Nevertheless, at 102.6mbs and 139.4mbs signs of weathered pyrite were noticed 

in the BH10 column, while at 228.6mbs, the culture in which a much lower total 

iron solubilization was detected, pyrite alteration was not observed (Figure 32D). 

This correlation might indicate that pyrite, the massive iron sulfide of the IPB, is 

the main mineral dissolved at those depths and, therefore, in these cultures. If we 

consider that Fe3+ is the chemical oxidant of pyrite (Chandra and Gerson, 2010), 

even at neutral pH (Moses and Herman, 1991), it is feasible to associate the large 

difference in total iron release detected in active cultures to the generation of Fe3+ 

mediated by microorganisms, which would not be produced in sterile cultures. 

Actually, while in the sterile controls the Fe2+ was the dominant iron specie, in the 

active cultures that showed a high iron solubilization, the Fe3+ concentration was 

higher than the concentration of Fe2+ (Figure 32A and B). At all analyzed depths, 

iron-oxidizing microorganisms as Acidovorax have been detected by CARD-FISH 

(see section 6.1.3.1), which would support the hypothesis of a putative pyrite 

dissolution mediated by the biological generation of Fe3+. The maintenance of Fe2+ 

over time in all non-sterile cultures may indicate the presence of an iron-reducing 
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metabolic activity carried out by microorganisms such as A. ferrooxidans or 

Acidiphillium spp., which were also detected by CARD-FISH at these depths and 

would reverse the iron oxidation state.  

In relation the pH, instead an acidification of the water as was expected due to the 

pyrite oxidation, a neutral pH was maintained (data not shown). The dissolution of 

pyrite generates protons (Vera et al., 2013), to which should be added the protons 

released by the ferric ion hydrolysis (Langmuir and Whiitemore, 1971). However, 

pH might be maintained neutral due to the operation of additional biological 

processes as sulfate reduction (Blodau, 2006; Koschorreck, 2007), the generation 

of NH4+ or the presence of neutralizing minerals. Thus, the solution remains 

neutral if the iron produced is not sufficient to acidify the pH. Consequently, since 

most of Fe3+ precipitates at neutral pH and in this experiment only iron in solution 

was measured, it is possible that, in both sterile and active cultures, the real total 

iron produced has been underestimated.  

Interestingly enough, as shown in these cultures the pH measured in the water 

column of borehole BH10, which has been selected for being in the origin of the 

underground bioreactor, few months after drilling was circumneutral, although the 

pH measured in the downgradient borehole BH11 (400m away from borehole 

BH10) was very acidic (pH~3). This suggests that the groundwater plume becomes 

acidic as it flows through the metal sulfides of the IPB due to the interaction of an 

increasing concentration of ferric iron with these ores (Gómez-Ortiz et al., 2014). 

At present, these cultures are still operational and will be monitored in the coming 

months to verify if the pH varies after a higher production of ferric iron. 

Nevertheless, this experiment allows to explain the natural origin of the high 
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concentration of iron detected in the Río Tinto basin as a consequence of the 

operation of a subsurface bioreactor in the IPB, as proposed. 

6.5.2. The nitrate-reducing microorganism’s case 

The subterranean origin of Río Tinto implies that anaerobic iron-oxidizing 

microorganisms are operating in the IPB subsurface. However, in both the MARTE 

and the IPBSL projects, only members of the genus Acidovorax, described in the 

literature as anaerobic iron oxidizers, have been detected.  

Acidovorax is a genus of the family Comamonadaceae of the Beta-proteobacteria 

phylum that, in general, is divided into two clusters. In the first, only pathogenic 

plant species are included, while the second comprises environmental species 

(Willems, 2014), including species isolated from sediments and underground 

environments (Huang et al., 2012; Chakraborty and Picardal, 2013; Lee et al., 

2015). Although different metabolisms have been attributed to members of the 

genus Acidovorax under anaerobic conditions, such as the oxidation of H2 or 

arsenite (Huang et al., 2012; Lee et al., 2015), habitually have been described as 

mixotrophic microorganisms, which use acetate as carbon source, ferrous iron as 

electron donor and nitrate as electron acceptor at circumneutral pH (Straub et al., 

2004; Kappler et al., 2005; Chakraborty and Picardal, 2013). 

Equation 7 

10𝐹𝑒2+ + 2𝑁𝑂3
− + 18𝐻+ → 10𝐹𝑒3+ + 𝑁2 + 6𝐻2𝑂    (7) 
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The circumneutral nitrate-dependent Fe2+ oxidation (NDFO) (Equation 7) has 

generated great interest since this metabolism was first described twenty years 

ago in an enrichment culture (Straub et al., 1996) from which members of the 

genus Acidovorax were isolated (Straub et al., 2004). Until then, only the anaerobic 

iron oxidation carried out by anoxigenic photosynthetic microorganisms was 

known (Hedrich et al., 2011). In the following years, it was shown that numerous 

microorganisms of diverse phylogenetic groups and isolated from a wide range of 

habitats could carry out this metabolism (Hafenbradl et al., 1996; Benz et al., 1998; 

Lack et al., 2002; Kumaraswamy et al., 2006; Weber et al., 2009), and it was 

suggested that the oxidation of iron through the reduction of nitrate could be very 

relevant in the iron and nitrogen cycles on a global scale (Straub et al., 2001). 

However, all the microorganisms that carry out the NDFO, including the members 

of the genus Acidovorax, require an organic co-substrate and, although the 

presence of iron favors their growth, it does not seem indispensable (Muehe et al., 

2009; Chakraborty et al., 2011). This observation, together with the failure in the 

detection of proteins or genes related to the enzymatic oxidation of iron in NDFO 

microorganisms (Carlson et al., 2013), led to question the energy benefits of iron 

oxidation through this metabolism.  

Subsequent research, focused mainly on members of the genus Acidovorax, 

suggested an indirect iron oxidation by these microorganisms through the reactive 

nitrogen species produced by nitrate respiration (Picardal, 2012; Klueglein and 

Kappler, 2013; Klueglein et al., 2015). Nitrite and nitric oxide, which are produced 

transiently during denitrification, are strong oxidants in aqueous solutions (Van 

Cleemput and Baert, 1983). Different experiments have shown that under anoxic 
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and neutral conditions NO2
- (Equation 8), and the subsequent produced NO 

(Equation 9), are able to oxidize iron at neutral pH, with N2O being the main 

product of this reaction (Equation 10) as is indicated in equation 11 (Moraghan 

and Buresh, 1977; Yan et al., 2015). 

Equation 8 

𝑁𝑂2
− + 𝐹𝑒2+ + 2𝐻+  → 𝐹𝑒3+ + 𝑁𝑂 + 𝐻2𝑂   (8) 

Equation 9 

𝑁𝑂 + 𝐹𝑒2+ + 𝐻+  → 𝐹𝑒3+ + 𝐻𝑁𝑂  (9) 

Equation 10 

2𝐻𝑁𝑂 → 𝑁2𝑂 +  𝐻2𝑂 (10) 

Equation 11 

Overall reaction:  𝑁𝑂2
− + 2𝐹𝑒2+ + 3𝐻+  → 2𝐹𝑒3+ + 1

2⁄ 𝑁2𝑂 + 3
2⁄ 𝐻2𝑂   (11) 

 

Far from being a slow oxidative reaction, Klueglein and Kappler (2013) showed 

that, during an anoxic incubation, 14% of 1 mM Fe2+ solution was oxidized by 1mM 

NO2
- within the first minute and almost completely after twenty minutes, being 

even faster the oxidation rate at acidic pH. These authors demonstrated that the 

presence of nitrate reduction products leads to an overestimation of the iron 

oxidation rate of NDFO microorganisms such as Acidovorax, and questioned the 

existence of an enzymatic oxidation of iron coupled to the reduction of nitrate that 

was proposed in previous studies of this microorganism. 

Based on these data, several authors defended that all nitrate-reducing 

microorganisms have the innate ability to catalyze the oxidation of iron through 

the generation of reactive nitrogen species (Carlson et al., 2013). The observation 
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that microorganisms such as E. coli or Pseudomonas spp. can oxidize iron when 

they use nitrate as electron acceptor, supports this hypothesis (Brons et al., 1991; 

Li et al., 2017). Nowadays, more than a gain of electrons, the improvement of 

growth observed in nitrate-reducing species such as Acidovorax in the presence of 

iron is attributed either to its high demand as a nutrient (Klueglein and Kappler, 

2013) or to the detoxifying effect that can lead to the elimination of both Fe2+ and 

the reactive nitrogen species product of its metabolism (Carlson et al., 2013). 

However, a possible enzymatic oxidation of iron has not been completely ruled out 

and both processes, biotic and abiotic, are accepted today (Carlson et al., 2013; 

Schaedler et al., 2018). 

 

6.5.2.1.  Fe oxidation by nitrate-reducing microorganisms of the IPB 

Since NO2
- oxidizes Fe2+ at neutral and anaerobic conditions (Yan et al., 2015), we 

considered the possibility that, in addition to Acidovorax, other nitrate-reducing 

microorganisms that inhabit the IPB can also carry out an indirect iron oxidation 

and, consequently, facilitate the dissolution of metallic sulfides in the subsurface. 

To verify this hypothesis we compare the iron oxidation ability of two of the most 

abundant nitrate-reducing microorganisms detected in the IPBSL project, 

Acidovorax and Tessaracoccus lapidicaptus. Because no member of the genus 

Acidovorax has been isolated so far from the IPB subsurface, we used instead 

Acidovorax BoFeN1, one of the closest species to the 16S rRNA sequences of 

Acidovorax genus obtained by non-culture-dependent techniques in the IPBSL 

project (data not shown). 
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Figure 33.  Comparison of iron oxidation rate of T. lapidicaptus (A) and Acidovorax 
BoFeN1 (B).  

 

As shown in Figure 33, both microorganisms are capable of oxidize iron. While 

Acidovorax, as described before for this genus (Chakraborty and Picardal, 2013; 

Klueglein et al., 2014), showed a total iron oxidation after 8 days, the iron 

oxidation rate of T. lapidicaptus was much lower, showing an almost total 

conversion of ferrous iron to ferric iron after 45 days.  

 

Figure 34. Comparison of microbial growth of Acidovorax BoFeN1 and T. lapidicaptus 

in heterotrophic cultures amended with NO3
- and Fe2+.  
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Even though the difference in the Fe2+ oxidation rate between both 

microorganisms could be due to the lower growth rate of T. lapidicaptus (Figure 

34), the lack of periplasmic space in gram-positive bacteria and the pathway used 

by each bacteria to reduce nitrate should be considered. Acidovorax BoFeN1 is a 

gram-negative bacteria that carry out a respiratory denitrification (Kappler, 

personal communication), in which nitrate reduction takes place in the cytoplasm 

and the nitrite produced is transported to the periplasm, where it can be further 

reduced to N2 (Tiedje, 1988). Thus, the interaction of nitrogen oxidative species 

and the Fe2+ that penetrates into the periplasmic space or is retained in the outer 

membrane can be enhanced (Carlson et al., 2013; French et al., 2013). On the 

contrary, members of the genus Tessaracoccus are gam-positive bacteria that carry 

out a dissimilatory nitrate reduction to ammonia (DNRA), as shown in the 

preliminary results obtained from their whole-genome sequencing (Leandro et al., 

2017). In this case, the reduction of nitrate to nitrite is produced by 

transmembrane proteins and may be associated with energy conservation. 

However, the nitrite can be reduced to ammonium by a cytoplasmic protein 

(Tiedje, 1988), resulting into a lower probability of interaction between nitrite and 

Fe2+, which would be mainly retained by the thick cell wall of the gram-positive 

bacteria (French et al., 2013).  

Nevertheless, the observation of Fe3+ production by T. lapidicaptus, genus in which 

iron-oxidizing activity has never been described before, supports the hypothesis of 

an innate ability to catalyze the oxidation of iron through nitrate respiration.  
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6.5.2.2.  Fluorescence microscopy to detect Fe oxidation by nitrate-reducing 

microorganisms in the IPB  

As shown above, both Acidovorax and T. lapidicaptus can oxidize iron under 

anaerobic conditions. However, while only a nitrate-reducing metabolism has been 

attributed to Acidovorax in the absence of oxygen (Kappler et al., 2005; Huang et 

al., 2012; Lee et al., 2015), T. lapidicaptus is able to carry out alternative 

metabolisms such as fermentation (Puente-Sánchez et al., 2014a). To verify that an 

operative iron-oxidizing metabolism, direct or indirect, is being carried out in the 

IPB subsurface by both Acidovorax and T. lapidicaptus, we make use of a specific 

Fe3+ fluorescent metal probe.  

The use of fluorescent sensors is a viable approach to visualize the presence of 

specific metal ions (Hao et al., 2013; Yin et al., 2015). Nowadays, a high variety of 

fluorescent metal probes are available to detect metals specifically, including zinc, 

cadmium, copper or iron among many others (Hao et al., 2016). In recent years, 

numerous studies have applied these probes to analyze both intracellular and 

extracellular locations of a wide range of metal ions by fluorescence microscopy, 

which have been useful to understand physiological and pathological processes 

occurring in living systems (Domaille et al., 2008).  

Therefore, we applied fluorescent ferric iron sensor in combination with CARD-

FISH using Acidovorax and T. lapidicaptus specific probes to determine if the 

presence of these microorganisms correlate with the product of iron-oxidizing 

metabolisms in the IPB subsurface. Samples from several depths were analyzed 

and, as Figure 35 shows, both microorganisms were detected in direct contact with 

Fe3+ in the IPB subsurface. 
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Figure 35. Ferric iron and microorganisms co-localization in the IPB subsurface. A-C, 
Acidovorax at 414.8mbs. D-F, T. lapidicaptus at 228.6 mbs. In red, CARD-FISH signal. In 
blue, ferric iron fluorescence signal. In grey, reflection. Scale bars, 10μm. 

 

Regarding the members of the genus Acidovorax, in some cases the fluorescent Fe3+ 

probe signal was exactly co-localized with the CARD-FISH signal (Figure 35A-C). 

This phenomenon was previously described by Schmid et al. (2014), who 

attributed the co-localization of Fe3+- Acidovorax to the cell encrustation, both 

intracellular and extracellular, as consequence of Fe3+ precipitation at neutral pH, 

which finally causes the death of the microorganism (Miot et al., 2015). However, 

in our case, a high percentage of colonies did not show signs of biomineralization 

(Figure 36A). Previous studies carried out with members of this genus revealed 

that, in continuous flow incubation systems in which the amount of Fe3+ is low, the 

encrustation of the cells is minimized and the culture remains active for longer 
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periods of time than in batch cultures (Chakraborty et al., 2011). Accordingly, 

those Acidovorax colonies that didn’t show cell encrustation could be located in 

subsurface areas where there was a greater flow of water than those areas where 

Acidovorax presented signs of encrustation. This flow would decrease local Fe3+ 

concentration and, consequently, avoid Acidovorax encrustation.  

On the other hand, while most Acidovorax colonies were surrounded by Fe3+, some 

T. lapidicaptus colonies which didn’t show a positive signal for the fluorescent 

metal sensor were found. This observation correlates with a possible alternative 

anaerobic metabolism for this microorganism. Thus, at those locations where 

organic matter is available but no nitrate, T. lapidicaptus could grow by using a 

fermentative metabolism, not producing the oxidation of iron. The fact of finding 

ferric iron surrounding some colonies is indicative of iron oxidation by T. 

lapidicaptus in this environment, probably through the production of nitrite.  

The observation of Fe3+ surrounding colonies of both, members of the genus 

Acidovorax and members of the specie T. lapidicaptus, indicates that these 

microorganisms are carrying out a direct or indirect iron-oxidizing metabolism in 

the IPB subsurface, supporting the hypothesis of an operative metallic sulfide 

dissolution by nitrate-reducing microorganisms in this environment if they are in 

contact with these ores. Actually, these microorganisms were detected associated 

to biofilms, which are essential to enhance the biooxidation of metallic sulfides 

(Rohwerder et al., 2003; Sand and Gehrke, 2006). Unlike the biofilms in which 

Acidovorax was found (Figure 36A and B), it was not possible to reveal the 

complete biofilm structure in which members of T. lapidicaptus are located (Figure 

36C and D), probably because the exopolysaccharides that surround them are not 
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recognized by the fluorescent lectins used. However, in both cases the Fe3+ signal is 

mostly co-localized with the exopolysaccharide signal, which is in accordance with 

the fact that EPS are commonly responsible for metal ions binding, like ferric iron 

(Sand and Gehrke, 2006). 

 

 

Figure 36. Microorganisms-Fe3+-EPS co-localization in the IPB subsurface. A and B, 
DOPE-FISH with Acidovorax probe (red) at 139.4mbs; C and D, DOPE-FISH with T. 
lapidicaptus probe (red) at 228.6mbs. In blue, Fe3+ signal. In green, ConA lectin signal. 
In grey, reflection. Scale bars 10μm.  
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6.5.3.  Pyrite dissolution by nitrate-reducing microorganisms 

The biological dissolution of metal sulfides through the generation of Fe3+ has 

raised great interest in recent decades, mainly due to its possible application in 

biomining (Brierley and Brierley, 2013). Several microbial groups, which present 

different physiologies in terms of their response to oxygen (aerobic, facultative and 

anaerobic) or optimal pH of growth (neutrophiles, moderate and extreme 

acidophiles), have the capacity to oxidize iron (Hedrich et al., 2011) and, therefore, 

to induce the dissolution of metal sulfides such as pyrite following the equation 1 

(see list of equations in page 17). 

Equation 12 

FeS2  + 7
2⁄ O2 + H2O →  2SO4

2−  +  Fe2+ + H+            (12) 

Equation 13 

𝐹𝑒(𝑎𝑞)
3+ +  3H2O → Fe (𝑂𝐻)3(𝑠) + 3H+    (pH ˃2.5)          (13) 

 

However, most of the studies have focused their efforts on analyzing the 

biooxidation of these minerals at acidic conditions since it was traditionally 

assumed that the pyrite oxidation at neutral pH was mainly produced by oxygen 

(Equation 12) due to the low solubility of Fe3+ at pH higher than 2.5 (Equation 13) 

(Nordstrom, 1982). Hence, as pyrite oxidation rate by Fe3+ is higher than by 

oxygen, most of the available data about pyrite biooxidation refer to acidophilic 

microorganisms, which oxidize iron using oxygen as electron acceptor (Rohwerder 

et al., 2003; Vera et al., 2013), and pyrite biooxidation at circumneutral and 

anaerobic conditions using Fe3+ has been ignored. In any case, the few studies 
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dedicated to the analysis of the chemical oxidation of pyrite at neutral pH have 

indicated that the pyrite oxidation mediated by Fe3+ is possible, showing oxidation 

rates one order of magnitude higher under these conditions than the rate observed 

in saturated oxygen media, in which the critical element will be the maintenance of 

a high concentration of Fe3+ (Moses et al., 1987; Moses and Herman, 1991). 

Therefore, an anaerobic oxidation of pyrite at neutral pH is possible if the 

generation of high Fe3+ concentration is produced by microorganisms capable of 

oxidize iron in these conditions. 

Curiously, several bioremediation field studies have shown that nitrate-reducing 

microbial activity in underground environments, operating in anaerobiosis and 

neutral pH, is always associated with an increase in SO42- and iron in solution if 

pyrite is present in the system (Postma et al., 1991; Schwientek et al., 2008; Zhang 

et al., 2009). These studies, which were initiated to analyze aquatic underground 

systems contaminated with NO3
- due to the excessive use of fertilizers in 

agriculture, have shown that the groundwater, in addition, is enriched with trace 

metals, whose concentration depends directly on its content in pyrite (Houben et 

al., 2017). Since the organic matter in these systems is mostly recalcitrant, it was 

suggested that pyrite could be the main electron donor used by denitrifying 

chemolithotropic microorganisms (Equation 14) (Postma et al., 1991). As a result, 

the pyrite would dissolve and SO42-, iron and trace metals released while the NO3
- 

concentration would decrease. The isotopic composition of nitrogen and sulfur 

compounds carried out in these environments supported this hypothesis 

(Schwientek et al., 2008; Zhang et al., 2012). 
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Equation 14 

5𝐹𝑒𝑆2 + 14𝑁𝑂3
− + 4𝐻+ →  7𝑁2 + 10𝑆𝑂4

2− + 5𝐹𝑒2+ + 2𝐻2𝑂         (14) 

 

Nevertheless, there is controversy about whether chemolithotropic denitrifying 

microorganisms, or any other microorganisms, have the ability to use pyrite as 

direct electron donor. Several studies have been carried out in the last decades but 

the results obtained are totally contradictory. Schippers and Jørgensen (2001, 

2002) observed that, in marine sediments, the oxidation of pyrite was carried out 

chemically by manganese oxide and found no evidence of biological oxidation. 

These researchers observed that only iron sulfide (FeS) is susceptible of oxidation 

in the presence of nitrate-reducing microorganisms via the polysulfide-

mechanism.  

Equation 15 

𝐹𝑒𝑆 + 𝐻+ → 𝐹𝑒2+ + 𝐻𝑆−           (15) 

 

In this case, Fe2+ could be oxidized by NDFO microorganisms, resulting in the 

precipitation of Fe3+ and the generation of H+ (Equation 13), being the latter the 

main oxidant of acid-soluble minerals as FeS (Equation 15) (Rohwerder et al., 

2003; Vera et al., 2013). Studies on wetland soils carried out by Haaijer et al. 

(2007), in which the addition of FeS to bioreactors induced the release of SO42- in 

the media, while in bioreactors amended with pyrite no change in anion 

composition was observed, corroborated these data. According to these authors, 

the oxidation of the FeS and not the pyrite would explain the increase of SO42- and 



157 

  

iron and the decrease of nitrate in underground environments (Schippers and 

Jørgensen, 2002; Haaijer et al., 2007). 

On the other hand, subsequent studies contradicted these results and showed that 

the addition of pyrite to reactors with natural sediment samples does enhance the 

growth of nitrate-reducing microorganisms and increases the concentration of 

SO42- in solution (Jørgensen et al., 2009; Torrentó et al., 2011). Studies carried out 

with different species of Thiobacillus, mainly Thiobacillus denitrificans, 

corroborated the capacity of these chemolithotropic denitrifying microorganisms 

to grow in cultures in which pyrite was the only electron donor available (Torrentó 

et al., 2010; Bosch et al., 2012; Vaclavkova et al., 2015). Since the influence of NO3
-, 

NO2
- or Fe3+ as pyrite oxidants is discarded at neutral pH, the only pathway 

currently contemplated is the direct oxidation of pyrite. However, the mechanism 

by which the pyrite dissolves and the chemolithotropic nitrate-reducing 

microorganisms get the energy is not yet clear. In fact, up to now, no study has 

verified that, in incubations with nitrate-reducing microorganisms, the proposed 

stoichiometry for the direct dissolution of pyrite (Equation 14) is fulfilled, although 

the possibility of an incomplete denitrification process (NO3
- to NO2

-, NO or N2O) 

has also been considered (Torrentó et al., 2010). Since iron precipitates at neutral 

pH, only the measures of SO42-and nitrate in solution have been taken into account 

to analyze pyrite dissolution, which, generally, show that the SO42-produced is not 

sufficient to explain the amount of NO3
-
 consumed. According to different authors, 

the possibility of generating diverse chemical sulfur species such as thiosulfate or 

tetrathionate, which would underestimate the total amount of total sulfur 

produced (Bosch et al., 2012), as well as the presence of a heterotrophic 
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respiration of NO3
- or a NDFO metabolism, which would overestimate the amount 

of nitrate reduced by oxidation of pyrite (Torrentó et al., 2010; Vaclavkova et al., 

2015), would be the cause of this discrepancy. 

Nevertheless, due to the low solubility of the Fe3+ at neutral pH, all the bioleaching 

studies carried out so far have obviated its possible role in pyrite dissolution, 

although its oxidizing potential in these conditions was shown decades ago (Moses 

et al., 1987; Moses and Herman, 1991). In addition, the role of reactive nitrogen 

species in the maintenance of a high Fe3+ concentration has not been considered 

either in this scene. Consequently, the possibility that pyrite dissolution can occur 

through the indirect generation of Fe3+ by any nitrate-reducing microorganism has 

never been contemplated. 

 

6.5.3.1.  Pyrite dissolution by microorganisms inhabiting the IPB 

Based on the results obtained so far, nitrate-reducing microorganisms are 

candidates to dissolve metallic sulfides such as pyrite in the IPB subsurface due to 

its ability to generate Fe3+. However, since up to now a pyrite dissolution mediated 

by Fe3+ produced biologically at neutral pH has not been reported, to determine if 

the pyrite biooxidation under anaerobic and neutral conditions by nitrate-reducing 

microorganisms such as Acidovorax is possible, batch experiments were carried 

out for 45 days in which the dissolution of pyrite was analyzed under different 

culture combinations: presence or absence of microorganisms as well as initial 

presence or absence of ferrous iron (Table 8). Furthermore, additional controls 
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were carried out with NO2
- in the presence or absence of ferrous iron to determine 

its importance in the chemical regeneration of Fe3+. 

 

Table 8. Experimental culture conditions to determine if Acidovorax is able to dissolve 
pyrite at neutral and anoxic conditions. 

Culture 
 

Carbon 
source 

Electron acceptor Iron source Inoculum 

1 

Pyrite 

Acetate NO
3

-
 Fe2+ Acidovorax BoFeN1 

Control 2 Acetate NO
3

-
 Fe2+ - 

Control 3 Acetate NO
2

-
 Fe3+ - 

Control 4 Acetate NO
3

-
 - Acidovorax BoFeN1 

Control 5 Acetate NO
3

-
 - - 

Control 6 Acetate NO
2

-
 - - 

 

 

As Figure 37A shows, in those cultures in which Acidovorax grew in the presence of 

Fe2+ (culture 1) complete iron oxidation was observed after seven days. The fact of 

not finding nitrite in the medium indicates that iron oxidation was, at least in part, 

chemically produced (Figure 38B). In this culture, the total iron concentration in 

solution decreased according to the oxidation of Fe2+ (Figure 37A), possibly due 

the precipitation of the Fe3+ at neutral pH in the form of Fe(OH)3 as indicated in 

equation 12 (Moses and Herman, 1991; Bonnissel-Gissinger et al., 1998). However, 

the precipitation of Fe3+ seems to reach equilibrium since its concentration in 

solution remains constant after the tenth day. In fact, from this day, the 

concentration of Fe2+ and total iron in solution are also constant, increasing 

slightly in the last phase of the experiment. This balance between the different iron 

oxidation states could be a sign of the generation of Fe-oxide cell encrustations as 



160 

  

previously observed in this specie in batch cultures (Kappler et al., 2005; Schmid et 

al., 2014; Miot et al., 2015). As discussed (see section 6.5.2.2), the precipitation of 

Fe3+ in the periplasmic space and around the membrane of Acidovorax produce the 

death of the microorganism, which could explain the non-reduced NO3
- that 

remains in the medium at the end of the experiment (Figure 38B), and, therefore, 

the oxidation of Fe2+ ceases. Yet, as shown in Figure 38A, a total iron increase of 

6.54 mg was observed in the presence of Acidovorax, being 7.15 times higher than 

the iron released in the non-inoculated controls with initial Fe2+ and NO3
-
 (control 

2). In control 2 (Figure 38A), the small amount of ferric iron produced could be due 

to a slight oxidation of Fe2+ either by some undetermined oxidant present in the 

culture media or the entry of a minimum amount of oxygen into the system. This 

minimal production of Fe3+ could oxidize the pyrite, which would explain the 

0.91mg of extra iron (Figure 38A) as well as the slight fluctuations of Fe2+ and Fe3+ 

detected in this control (Figure 37B). Nevertheless, the great difference in iron 

released between inoculated and non-inoculated cultures (Figure 38A) is a strong 

indication that Acidovorax is capable of promoting the dissolution of pyrite 

through the oxidation of Fe2+, which does not occur in the non-inoculated control 

(Figure 37A and B).  

On the other hand, additional non-inoculated controls were carried out in which 

the NO3
- was replaced by NO2

- (control 3) to evaluate its importance in the 

oxidation of Fe2+ and the subsequent oxidation of pyrite at neutral pH. In this 

control, Fe2+ oxidation is chemically produced by NO2
-, which is confirmed by the 

decrease of this compound in solution (Figure 38B).  



161 

  

 

Figure 37. Changes in the iron oxidation state observed in (A) cultures inoculated with 

Acidovorax in the presence of Fe2+; (B) controls with initial Fe2+and NO3
-
; and (C), 

controls with initial Fe2+ and NO2
-
.  

 

In the presence of NO2
-, like in culture 1 in which Acidovorax was present, a total 

oxidation of Fe2+ was observed accompanied by a total iron decrease in solution 

due to the possible formation of precipitates in the form of Fe(OH)3 (Figure 37C). 

However, the iron oxidation rate in this control was much slower than that shown 

in the presence of Acidovorax (Figure 37A and C). Recently, Schaedler and 

colleagues (2018) observed this same phenomenon in microcosms, in which the 

Fe2+ oxidation rate mediated by microorganisms was much higher than the 

chemical oxidation mediated by  NO2
-. They also observed that the addition of Fe2+ 

stimulated the expression of genes related to nitrate reduction, indicative of a 

direct influence of Fe2+ on microbial metabolism. Consequently, the authors 

suggested that, in addition to a chemical oxidation mediated by nitrite (indirect), a 

biological Fe2+ oxidation (direct) could also be operating in their system. 

Accordingly, in spite that a direct iron oxidation by Acidovorax BoFeN1 has been 

questioned (Klueglein and Kappler, 2013), the fast Fe2+ oxidation rate observed in 
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the presence of Acidovorax in our experiments strongly suggest the existence of 

both chemical and biological Fe2+ oxidation in inoculated cultures as suggested 

(Schaedler et al., 2018). On the other hand, since no NO2
- was detected in cultures 

where Acidovorax grew while a small amount remained in the chemical control 

(Figure 38B), another plausible explanation for the fast Fe2+ oxidation rate 

observed could be that, as discussed above (see section 6.5.2.1), the 

microorganism also favors the interaction between Fe2+ and NO2
- in the periplasm 

and, therefore, the chemical generation of Fe3+. Thus, both a biological and a 

chemical enhanced Fe2+ oxidation would explain the 2.9 times higher pyrite 

dissolution observed in Acidovorax cultures in relation to the controls with initial 

Fe2+ and NO2
- (Figure 38A).  

 

 

Figure 38. Iron released after pyrite dissolution (A) and nitrate and nitrite 
concentration (B) detected in the cultures carried out in presence of initial ferrous 
iron.  
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The fact that both culture 1 and control 3, in which Fe2+ oxidation has been 

observed (Figure 37A and C), showed a higher final iron production than those 

controls in which iron oxidation has not occurred (control 2, Figure 37B) or in 

which initial Fe2+ was not added (Figure 39A, see below) corroborates that Fe3+ is 

the main oxidant of pyrite even at neutral pH (Moses et al., 1987; Moses and 

Herman, 1991). Therefore, despite its low solubility, the role of Fe3+ in the 

dissolution of metal sulfides in neutral underground systems cannot be ruled out 

as proposed earlier (Schippers and Jørgensen, 2002; Jørgensen et al., 2009; Bosch 

et al., 2012). In fact, the possible contribution of Fe3+ in the pyrite oxidation in 

neutral underground environments has been previously contemplated (Bottrell et 

al., 2000; Schwientek et al., 2008). But the absence of chemical oxidation of pyrite 

at neutral pH in the presence of amorphous iron oxide discarded this idea 

(Schippers and Jørgensen, 2002). Still, Luther III (1987) suggested that if Fe3+ is in 

direct contact with pyrite, the local generation of H+ could favor the Fe3+ 

mobilization and, therefore, the dissolution of the mineral at neutral pH.  

In addition, in spite that biological Fe2+ oxidation may be produced by Acidovorax, 

the role of NO2
- in the oxidation of Fe2+ (Figure 37C) and the subsequent pyrite 

dissolution (Figure 38A) is indisputable, as shown in control 3. Hence, the 

influence of heterotrophic nitrate-reducing microorganisms on the dissolution of 

metal sulfides should not be ruled out either. Actually, in most of the studies 

carried out so far, both field studies and under controlled laboratory conditions, 

NO2
- in solution has not been detected (Schwientek et al., 2008; Jørgensen et al., 

2009; Torrentó et al., 2010). However, the absence of NO2
- has been attributed to 

its conversion to N2 by denitrifying microorganisms and its iron oxidant capacity 
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has not been considered, resulting in a possible overestimation of the direct pyrite 

oxidation rate by denitrifying chemolitotrophic microorganisms (Bosch et al., 

2012) as suggested by Yan et al. (2015).  

 

 

Figure 39. Iron released after pyrite dissolution (A) and nitrate and nitrite 
concentration (B) detected in the cultures carried out in absence of initial ferrous 
iron.  

 

Interestingly, a slight iron generation was also observed in those inoculated 

cultures in which no initial iron was added (Figure 39A). As no Fe2+ was added, no 

Fe3+ production should take place and, therefore, no pyrite dissolution should be 

observed. Although the amount of iron detected was small, the difference between 

inoculated (control 4) and non-inoculated (controls 5 and 6) cultures was 

significant (Figure 39A). Since the possibility of a direct pyrite biooxidation by 

heterotrophic nitrate-reducing microorganisms is today discarded, we can assume 

that pyrite, upon contact with the culture medium, released small number of iron 

molecules, which could explains the presence of iron in these controls. Thus, in 

those cultures inoculated with Acidovorax (control 4), this small amount of iron 

could be susceptible of being part of the oxidation-reduction cycle mediated by the 
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pyrite and the NO2
- produced by the microorganism, resulting in a higher 

production of iron than the observed in the non-inoculated control 5 (Figure 39A). 

Actually, no NO2
- was observed in this culture at the end of the experiment (Figure 

39B), which suggest that NO2
- has been consumed either due to its reaction with 

Fe2+ (Equation 8, see list of equation in page 17) or due to a complete 

denitrification carried out by Acidovorax. However, if we consider than the iron 

released in control 4 was due to the chemical oxidation of Fe2+ by NO2
- and the 

subsequent attack to pyrite by the Fe3+, accordingly, the NO2
- added to control 6 

(Figure 39B) should have been able to produce the oxidation of Fe2+ and show a 

similar iron release than the controls carried out in presence of Acidovorax. 

Instead, the final iron production in Acidovorax cultures (control 4) was 2 times 

higher than those non-inoculated control carried out with NO2
- (control 6), which 

showed a final iron increase similar to the control with initial NO3
- (control 5) 

(Figure 39A).  

Furthermore, the analysis carried out by fluorescence microscopy of the pyrite 

resulting from these experiments, both in the presence and absence of iron, 

showed that Acidovorax is attached to the mineral (Figure 40). If we discard a 

direct pyrite oxidation, these observations indicate that Acidovorax, in addition to 

increasing the iron oxidation rate, could increase the local concentration of Fe3+ in 

the mineral-microorganism interface, resulting in a higher pyrite dissolution rate 

in inoculated cultures than in non-inoculated cultures. In fact, co-localization of 

iron and cells was observed by fluorescence microscopy (Figure 40), which would 

support this hypothesis. Thus, the microorganism-mineral interaction could be 
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crucial for the metallic sulfides dissolution mediated by nitrate-reducing 

microorganisms, as has been observed in bioleaching studies mediated by 

acidophilic iron-oxidizing microorganisms such as At. ferrooxidans (Sand and 

Gehrke, 2006). 

 

Figure 40. Acidovorax attachment to pyrite resulting of cultures carried out in the 
presence (A-C) or absence (D-F) of initial iron. In green, Acidovorax stained with 
SybrGold. In blue, Fe3+ stain. In gray, reflection. Scale bars 5μm. 

 

 

Interestingly, in those cultures in which no initial ferrous iron was added, the 

number of microorganisms attached to pyrite was higher than in cultures in which 

initial ferrous iron was added (Figure 41). While in the first case the number of 

cells was 2.9x107±3.94x106 microorganisms/mm2, in the presence of iron a lower 

number of cells, 9.83x106± 2.79x106 microorganisms/mm2, was observed. This 

result strongly suggests that Acidovorax could attach to the pyrite in search of an 
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iron source, either because it is used as energy source, because its high demand as 

a nutrient or its detoxifying effect as Klueglein and Kappler (2013) and Carlson et 

al. (2013) suggested respectively. 

 

 

Figure 41. Comparison between the number of Acidovorax cells attached to pyrite 
after culturing in the presence (A) and absence (B) of initial ferrous iron. In green, 
Acidovorax stained with SybrGold. In gray, reflection. Scale bars 10μm. 

 

Regarding the pH, while the cultures inoculated with Acidovorax, in the presence or 

absence of initial Fe2+, showed a slight pH increase, the sterile controls did not 

show any variation (data not shown), which suggests that the consumption of H+ is 

higher than the H+ release due to the precipitation of Fe(OH)3. Although oxidation 

of pyrite is generally accompanied by acidification of the medium (Bonnissel-

Gissinger et al., 1998), in some studies carried out to determine the oxidant 

capacity of Fe3+ under anaerobic and neutral conditions, an increase in pH was also 

observed in the absence of any buffer in the medium (Moses et al., 1987). However, 
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no hypothesis has been advanced that explains the basification of the medium 

during the dissolution of pyrite under these conditions. 

Unfortunately, because these experiments were designed exclusively to determine 

if Acidovorax had the ability to biooxidate pyrite, the data necessary to calculate its 

dissolution rate, such as the specific surface area of the pyrite used, were not 

calculated. Therefore, it is not possible at this moment to compare the ability of 

Acidovorax to lixiviate pyrite with the available dissolution rates of acidophilic and 

aerobic microorganisms such as At. ferrooxidans, which has been extensively 

studied in the last decades (Fowler et al., 2001; Rojas-Chapana and Tributsch, 

2001; Rohwerder et al., 2003; Sand and Gehrke, 2006). In addition, the generation 

of cellular encrustations makes it difficult to obtain real values of pyrite dissolution 

by these microorganisms in cultures in which initial Fe2+ was added. In natural 

environments, such as the subsurface, the concentration of local iron could be 

much lower, which could prevent the inactivation of these microorganisms due to 

the precipitation of Fe(OH)3, as discussed in section 6.5.2.2. In this case, the 

dissolution of pyrite might not be affected by the formation of growth-limiting cell 

encrustations. Therefore, additional experiments with continuous flow systems are 

necessary to determine the real rate of pyrite biooxidation mediated by Acidovorax 

at neutral pH and anaerobic conditions.  

Nevertheless, these data confirm that an anaerobic oxidation of pyrite at neutral 

pH by nitrate-reducing microorganisms such as Acidovorax is possible. Actually, in 

the IPBSL project, 30% of microorganisms identified by at least two different 

techniques (Amils et al, unpublished results) are able to use nitrate as electron 

acceptor, including members of the genera Tessaracoccus, Rhizobium, 
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Hymenobacter, Propionibacterium, Aquabacterium or Pseudomonas, reducing 

nitrate to nitrite (Kaspar, 1982; Straub et al., 2004; Buczolits et al., 2006; Li et al., 

2017). If we consider that these microorganisms can potentially induce iron 

oxidation through the generation of nitrogen reactive species, as was 

demonstrated for members of the genus Tessaracoccus (see section 6.5.2.1) or 

Pseudomonas (Li et al., 2017), and consequently able to promote pyrite dissolution 

as shown for Acidovorax BoFeN1, they are, together with Acidovorax, putative 

candidates to dissolve metallic sulfides in anaerobic and neutral conditions. Thus, 

those microorganisms with the ability to directly oxidize iron may not be the only 

ones involved in the generation of the high concentration of Fe detected in the 

Tinto basin, which means that nitrate-reducing microorganisms should be also 

considered. Accordingly, nitrogen and iron cycles could be the key biogeochemical 

cycles that can explain the subsurface origin of the high concentration of iron in 

Río Tinto. 

6.5.4.  Correlative Fluorescence-Raman microscopy 

One of the main unknowns that must be solved to understand the functioning of 

underground ecosystems is how mineralogy affects the distribution of the 

microbial populations or, on the contrary, how a specific microbial population 

affects the mineralogy of the system. Several studies have shown that deep 

subsurface biodiversity depends directly on the mineralogical composition of the 

subsurface. Minerals, being considered the main sources of electron donors and 

acceptors in these ecosystems, would determine which chemolithotropic 
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metabolisms can be carried out and, therefore, the microorganisms that inhabit a 

certain microniche (Jones and Bennett, 2014; Rempfert et al., 2017). However, up 

to now, hardly any studies have been carried out to relate the presence of a 

determined metabolism to the presence of a specific type of mineral (Jones and 

Bennett, 2014) and no study has analyzed how the microorganism-mineral 

interaction can affect the ecosystem. 

In the IPB subsurface, this issue acquires even greater relevance. As we have 

shown before, the generation of the characteristics detected in the Tinto basin is 

consequence of the metabolic activity of the microorganisms that inhabit this 

environment, interacting with the minerals of the IPB subsurface. As discussed 

above, nitrate-reducing microorganisms seems to be involved in the dissolution of 

metal sulfides, mainly pyrite, giving rise to the high concentrations of ferric iron 

detected in the river. In addition, as discussed, this process is more effective if the 

microorganisms are attached to the metal sulfide (Sand and Gehrke, 2006; Vera et 

al., 2013). 

To determine if nitrate-reducing microorganisms are in contact in the subsurface 

with metallic sulfides, we make use of the correlation between fluorescence and 

confocal Raman microscopy. On the one hand, fluorescence microscopy allows the 

identification of a specific microorganism by using specific probes (Amann et al., 

1995) and, on the other hand, confocal Raman microscopy allows the analysis of 

the composition and molecular structure of the mineral substrate (Smith and Dent, 

2013). Thus, while FISH will provide the location of a specific microorganism, the 

mineral to which it is attached can be identified by means of Raman spectroscopy. 
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6.5.4.1.  Avoiding fluorescence interference 

The main problem of correlating fluorescence microscopy and confocal Raman 

microscopy lies in the need of fluorophores. Both fluorescence and Raman 

spectroscopy are based on the same principle: the incidence of a monochromatic 

light source on a molecule will cause changes in its wavelength, which will be 

recorded in a detector (Paddock, 1999; Smith and Dent, 2013). Since the 

fluorescence phenomenon is considerably more efficient than the Raman 

scattering, it can mask the Raman signal, to such an extent that fluorescence is 

considered the natural enemy of Raman spectroscopy (Dieing et al., 2011). To 

avoid the interference of fluorescence in Raman spectroscopy, it is possible to 

make use of fluorophores that are not excited by the laser line used for the 

acquisition of the Raman spectrum. However, the use of fluorophores that are 

excited with the same wavelength is also possible if, prior to the Raman analysis, 

the fluorophore is photobleached (Read et al., 2010). Photobleaching is a light-

induced process resulting in the permanent photochemical destruction of the 

fluorophore, thus photobleached molecules will lose the ability of emit 

fluorescence and will not interfere in the Raman analysis (Song et al., 1995).  

To choose in our study the most suitable fluorophores for the FISH-Raman 

correlation, several fluorophores were analyzed by CRM, whose excitation laser 

line was 532nm.  
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Figure 42. Raman spectra of the different fluorophores tested in this study. A, Raman 
spectra of Pacific Blue (blue), FITC (light green), Alexa 488 (green), CY3 (orange), 
Alexa 594 (red) and Alexa 633 (brown). B, Laser induced photobleaching of Cy3 
fluorophore after 60s of laser incidence. C, Laser induced bleaching of Alexa633 
fluorophore after 60s of laser incidence. 

 

Figure 42A shows that, by confocal Raman microscopy, the fluorescence signal 

were detected for all the fluorophores analyzed, even in those whose excitation 

does not coincide with the incident wavelength, which can be explained by the 

wide excitation spectrum that they present. Although in this case the intensity of 

fluorescence detected was lower, as shown for the Pacific Blue fluorophore 

(excitation max at 410nm), it could not be seen clearly the Raman signal of the 

molecule, which was hidden by the emitted fluorescence signal. However, all 

fluorophores were susceptible to photobleaching, showing fluorophores CY3 and 
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Alexa 633 the highest fluorescence loss after only one minute of laser incidence 

(Figure 42B and C). In fact, CY3 fluorophore has been previously used in Raman-

FISH analysis showing a similar photobleaching rate (Huang et al., 2007). 

Therefore, the subsequent Raman-FISH experiments for the IPB subsurface 

samples were carried out using one of these fluorophores, CY3 or Alexa 633, 

whose choice in each sample was made based on the data obtained in the non-

specific binding controls of the fluorescent molecules detailed in section 6.1.1. 

 

6.5.4.2.  Organic material reference 

Since it is expected that the area to be studied by CRM in native subsurface 

samples contain organic matter due to the presence of microorganisms, several 

different organic compounds and polymers were analyzed to serve as a reference 

in the interpretation of their Raman spectra (Figure 43). The materials analyzed 

included: proteins, such as lysozyme and trypsin; polysaccharides, such as starch 

and cellulose; and sugars, such as glucose. In addition, the Raman spectra of the 

bacteria S. aureus and E. coli were included as reference material, which were 

obtained in the same Raman equipment in which all the measurements of this 

work were made. 
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Figure 43. Raman spectra of selected organic reference material. From top to bottom: 
E. coli spectrum (red), E. aureus spectrum (blue), lysozyme spectrum (green), starch 
spectrum (black) and cellulose spectrum (purpura). The characteristic bands of each 
spectrum are shown. 

 

Table 9 summarizes the assignment of the Raman bands to characterize the 

reference material. All the spectra of the organic matter analyzed were 

characterized mainly by the presence of prominent bands in the range of 2800-

3020 cm-1, which are typical of the stretching mode of the CH bond, probably 

originated from the functional groups -CH3, -CH2 and -CH of the different molecules 

(Figure 43). Polysaccharides, both starch and cellulose, present bands of great 

intensity at 1127 cm-1, which can be assigned to the C-C stretching bond and the C-

O-C glycosidic link, and between 1400-1420 cm-1, assigned to the vibration of the 

COO- group. Regarding the Raman spectrum of proteins, the characteristic peaks of 

tryptophan (770cm-1), phenylalanine (1014cm-1), and the amide III (1270cm-1) 
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and amide I (1670cm-1) bonds were observed. Finally, both the spectra of E. coli 

and S. aureus showed characteristic peaks of carbohydrates, lipids and proteins, 

the main constituents of the microbial cells, as well as a series of low intensity 

bands that were assigned to the DNA/RNA nucleotide rings vibration (at 785cm-1 

for uracil and cytosine and at 1580cm-1 for adenine and guanine). 

 

Table 9. Assignment of Raman bands. Str= stretching, def=deformation, 
breath=breathing, asymm= asymmetric, symm=symmetric, G= guanine, A=adenine, 
C=cytosine, U=uracil, Phe=phenylalanine, Trp=tryptophan. 

 

Raman band or 

band range (cm
-1

) 

Assignment 
Reference 

Carbohydrates DNA/RNA Lipids Proteins 

2800-3020 
CH, CH

2
 and CH

3
 

str  

CH, CH
2
 and CH

3
 

str 

CH, CH
2
 and CH

3
 

str 
b, f, g 

1670-1680 
   

Amide I e, h 

~1580 
 

G and A ring str 
  

c, d, e 

1400-1420 symm  COO- str 
   

e, f, j 

1350-1475 CH and CH
2
 def 

 
CH and CH

2
 def CH and CH

2
 def a, c, f, h 

1270 
   

Amide III c, h 

1160 
C–C, C–O ring 

breath, asymm    
e, j 

1127 
C-C str and C-O-C 

glycosidic link  
C-C str C-C str e, j 

1092 
 

Phosfate ester 
str, symm 

Phosfate ester 
str, symm  

c, e 

1014 
  

Phe 
 

h 

785 
 

C and U ring str 
  

c, d, f 

770 
   

Trp h 

530-540 
C-O-C glycosidic 

link    
e, I, j 

306-480 
Skeletal mode 
carbohydrates    

e, j 

a- Cael et al. (1973)                    f- Lin-Vien et al. (1991) 

b- Czamara et al. (2015)          g- Maquelin et al. (2002) 

c- Dieing et al. (2011)               h- Rygula et al. (2013) 

d- Harz et al. (2005)                 i- Schuster et al. (2000) 

e- Ivleva et al. (2009)               j- Wagner et al. (2009) 
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6.5.4.3.  Raman-FISH for IPB subsurface native samples 

The selected microorganism for the study using Raman-FISH was Acidovorax. The 

members of the genus Acidovorax are able to oxidize iron by reducing nitrate 

(Straub et al., 2004; Kappler et al., 2005) and, as showed in section 6.5.3.1, are able 

to promote pyrite dissolution. Therefore, Acidovorax is one of the genera that could 

be involved in the dissolution of metal sulfides in the IPB subsurface.  

CARD-FISH was performed with the specific probes to detect members of the 

genus Acidovorax in selected rock samples from several depths. Once 

microorganisms were located by means of fluorescence in the coordinate system 

used, an analysis of the area was performed using CRM. In our studies, Raman 

analyses were carried out by mapping different focal planes (z-stack) of each 

studied area, in which a single spectrum/μm2 was acquired. As a result, for each 

analyzed area thousands of spectra were obtained that provided information on 

the structure and chemical composition of the sample in three dimensions at high 

resolution.  

The thousands of spectra obtained from each analyzed area could be classified into 

three representative spectra, called spectrum A, spectrum B and spectrum C, which 

were repeated throughout the Raman mappings (Figure 44A and B). Both 

spectrum A and spectrum B (Figure 44A) showed the characteristic peaks of the 

CH stretching bond of organic matter in the range 2800-3020 cm-1. However, 

unlike spectrum B, spectrum A presents Raman bands representative of different 

organic compounds such as proteins at 1014 cm-1 and 1672 cm-1, assigned to the 

presence of Phe and to the amide I bond respectively; and DNA and phospholipids 

at 1092 cm-1, assigned to the phosphate ester bonds. On the contrary, the spectrum 
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B is characterized by the presence of bands in the range of 530-540 cm-1 as well as 

1160 cm-1, which are representative of carbohydrates. Thus, we could determine 

that spectrum A corresponds to bacteria, that is to say to members of the genus 

Acidovorax, and spectrum B corresponds to polysaccharides. 

 

 

Figure 44. Representative Raman spectra detected by CRM in areas where members of 
the genus Acidovorax were located by CARD-FISH. A, Raman spectra assigned to 
organic matter: in red, spectrum A/Acidovorax; in green, spectrum B/polysaccharides. 
B, Raman spectrum assigned to pyrite (spectrum C); and D, Raman spectrum assigned 
to hematite. The characteristic bands of each spectrum are indicated. 
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Figure 45 is a two-dimensional representation of the position of both spectra in the 

analyzed area of a sample taken at 228.6mbs showing the presence of 

polysaccharides surrounding the cells. This observation corroborates the data 

presented above which indicated that members of the genus Acidovorax are 

included in biofilms (Figure 36B). As shown before, iron was present in 

Acidovorax-containing biofilms, which would enhance the metallic sulfides 

dissolution. 

 

 

Figure 45. Maximum intensity projection of organic matter Raman maps of a native 
sample of the IPB subsurface from 228.6 mbs. In red, location of the spectra assigned 
to Acidovorax. In green, location of the spectra assigned to polysaccharides. Scale bar, 
5μm. 

 

On the other hand, spectrum C corresponds to the average spectra of the mineral 

substrate on which the microorganisms are attached (Figure 44B). The spectrum C 

shows two peaks of high intensity at 347 and 384 cm-1 and a less intense band at 

435 cm-1, which are characteristic of the Raman-active modes of pyrite (Ushioda, 

1972; Vogt et al., 1983; Bryant et al., 2018). The first corresponds to the S2 

dumbbell libration (Eg), the second to the symmetric stretching of the S-S link in 
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phase (Ag) and the third to the coupling of the libration and stretch modes (Tg (3)) 

(Blanchard et al., 2005). All the Acidovorax colonies detected were attached to 

pyrite in each of the samples analyzed in this study. In some cases the presence of 

hematite was detected in the studied area. The hematite spectrum (Figure 44D) is 

easily recognizable due to the presence of bands at 227 cm-1, 246 cm-1, 293 cm-1, 

412 cm-1 , 498 cm-1, 610 cm-1 and, above all, the strong band at 1322 cm-1, whose 

intensity varies with the applied intensity of the incident laser (De Faria et al., 

1997; De Faria and Lopes, 2007). Hematite is a ferric iron oxide whose appearance 

has been observed after the dissolution of pyrite at alkaline pH as a secondary 

mineral (Caldeira et al., 2003). In addition, hematite has been observed in the 

terraces formed in Río Tinto basin, as a final product of iron hydroxides evolution 

(Fernández-Remolar et al., 2005). 

Interestingly, the pyrite Raman spectrum varies in different samples and even 

within the same analyzed area in each sample. Variations in the relative intensity 

of the Eg and Ag bands were observed as well as changes in the pyrite bands 

positions (Figure 46). In fact, both parameters of the pyrite Raman spectrum vary 

greatly from one study to another (Ushioda, 1972; Vogt et al., 1983; Blanchard et 

al., 2005; Cavalazzi et al., 2012). Recently, this variability has been analyzed in 

depth by Bryant and collaborators (2018), who determined that both the 

crystalline orientation of the pyrite and laser heating are the main causes of the 

differences in the pyrite Raman spectra. On the one hand, the changes in the 

relative intensity of the Eg and Ag bands were attributed to the crystalline 

orientation of the pyrite with respect to the polarization plane of the incident laser, 

which, in addition, may be affected by the laser power. Actually, the intensity ratio 
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of the Ag band relative to the Eg band vary from 0.9 to 3.5 in different studies in 

which different pyrite size and morphologies were analyzed using different laser 

power. Bryant and collaborators showed variations in the range of 0.22-1.3 in 

centimeter scale cubic pyrite while in pyritohedral pyrite (12 faces) varied from 

0.81 to 2.01 due to the differential excitation of the bands of the different analyzed 

pyrite faces. However, in the Raman spectra obtained from the natural pyrite of the 

IPB subsurface samples, variations of the intensity ratios of the Ag relative to Eg 

band in the range of 0.6-3.5 have been observed in the same pyrite grain, which, to 

our knowledge, never has been described before (Figure 46A and B).  

 

 

Figure 46. Variations detected in the pyrite Raman spectrum in which Acidovorax was 
attached (see Figure 45) in a sample from 228.6mbs of the IPB subsurface. A, Raman 
map of the variations in the intensity ratio of the Ag band relative to Eg band. B, 
Raman spectra showing the minimum and maximum intensity ratio of the Ag band 
relative to Eg band. C, Raman map of the Eg band displacement. D, Raman spectra 
showing the minimum and maximum Raman shift detected in the pyrite bands. Scale 
bar, 5μm. 
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On the other hand, the displacement of the position of the pyrite bands towards 

lower wavelengths has been attributed either to an effect of laser heating or to the 

presence of trace elements such as copper, zinc or lead among others (Bryant et al., 

2018). While in the latter case the variation of the position of the bands is minimal 

(up to ~ 1cm-1), downshifting of the pyrite bands up to 12.7 cm-1 due to the laser 

heating has been observed (Bryant et al., 2018). However, these extreme 

variations in bands position have only been detected modifying the laser power in 

pyrite which grain size was below 10μm. In our analyzes, variations up to 10cm-1 

in the position of the pyrite bands have been detected in the same grain (Figure 46 

C and D), which in all cases had at least 150μm. In addition, a low laser power has 

been used in our experiments, which was held constant throughout the analysis. 

Hence, the observed Raman shifts in those pyrite grains where Acidovorax was 

present may not be a consequence of the laser heating. 

In the native pyrite of the IPB subsurface in which Acidovorax is attached, both the 

range of relative intensity of the Eg and Ag bands and the range of displacement of 

the observed bands do not conform the variations in the Raman spectra of the 

pyrite due to the effects of the crystalline orientation or laser heating described 

above. However, there is no data available about pyrite Raman spectra and its 

variability in a lateral micrometer scale since all measurement made up to now 

where carried out with macroscopic techniques which provide only averaged 

information (Bryant et al, 2018 and references therein). Actually, natural pyrite 

may be found in a varied combination of crystal orientations due to the 

microscopic alteration of growth faces (Chandra and Gerson, 2010). In addition, 

spatially resolved surface characterization of pyrite performed with alternative 
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microanalytical methods as scanning photoelectron microscopy (SPEM) or X-ray 

photoemission electron microscopy (PEEM) revealed a very heterogeneous pyrite 

surface, both topographically and chemically (Chandra and Gerson, 2010). Hence, 

the resolution of the Raman equipment applied in other studies may be not 

sufficient to detect the surface variability observed in our microanalysis. 

On the other hand, no Raman analysis of pyrite performed so far has included the 

effect that microorganisms can cause on the mineral and, therefore, in their Raman 

spectra. In fact, in Figure 45 and Figure 46 (A and C), which show Raman maps of 

the microorganisms and the variations of the pyrite Raman spectrum of the same 

analyzed area, a correlation between both is detected. To determine if the presence 

of Acidovorax influences the relative intensity of the Eg and Ag bands or their 

position displacement, the variations of both parameters were analyzed in the 

presence or absence of the microorganism in each mapping performed in this 

study. 

 

 

Figure 47. Average values of the intensity ratio of the Ag band relative to Eg band (A), 
the position of the Eg band (B) and the position of the Ag band (C) of pyrite Raman 
spectra in presence (red) or absence (black) of Acidovorax resulting from Raman 
analysis of the IPB subsurface native samples. 
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As shown in Figure 47, it is clearly observed that in the presence of Acidovorax the 

ratio of the intensity of the Ag band relative to Eg band is considerably lower than 

the values determined in the absence of the microorganism (Figure 47A). In the 

presence of Acidovorax, the values fluctuate between 1.11-1.54, with an average 

value of 1.34 while in the absence of Acidovorax, the values fluctuate between 1.19 

and 2.03, showing an average value of 1.60. As discussed above, the difference in 

the ratios of the intensity of the Ag and Eg bands are attributed to the crystalline 

orientation of the mineral (Bryant et al., 2018). Therefore, these data could 

indicate that Acidovorax attach preferentially to those faces of pyrite in which the 

band Eg, which represents the S2 dumbbell libration of the pyrite structure, shows 

a greater intensity. However, the possibility that Acidovorax, in some way, could 

affect the pyrite structure cannot be ruled out due to the great range of relative 

intensity Ag/Eg observed in the same pyrite grain.  

 Regarding the Raman displacement of the Ag and Eg bands, the minimum 

difference in the average position of both bands in the presence and absence of the 

microorganism seems to indicate that there is no correlation between the location 

of Acidovorax and this displacement (Figure 47B and C). However, the results 

obtained indicate that the presence of Acidovorax seems to extend the range of 

displacement of both bands, being its average value slightly displaced at longer 

wavelengths, which is the opposite to what has been described before, since 

changes in pyrite position bands tent to downshift due to the laser heating or the 

presence of trace metals (Bryant et al., 2018). 

In addition, many studies have shown that the formation of biofilms enhance the 

dissolution of metal sulfides since ferric iron is concentrated in the 
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microorganism-mineral interface due to the presence of exopolysaccharides, such 

as those containing uronic acid (Sand and Gehrke, 2006; Vera et al., 2013).  As 

Acidovorax biofilms contain a considerable amount of iron (see section 6.5.2.2), the 

possibility that the presence of iron-exopolysaccharides could affect the Raman 

spectrum of pyrite was also analyzed. However, our analysis did not show a 

correlation between the presence of exopolysaccharides and the variations in the 

Raman spectrum of pyrite in the native samples of the IPB subsurface (data not 

shown). 

To determine if Acidovorax is responsible of the changes observed in the pyrite 

Raman spectra in native samples of the IPB subsurface, the surface 

characterization of the biooxidated pyrite by Acidovorax resulting from the 

experiment described above (section 6.5.3.1) is being carried out at this moment 

and only the preliminary results of the pyrite obtained from control 4 and control 

5, the cultures in which initial ferrous iron was no added, are included in this 

memory.  

Preliminary results of the pyrite obtained from the control 4, in which Acidovorax 

was grown in absence of initial ferrous iron, indicate that, although there seems to 

be no co-localization of Acidovorax with the variation of the Raman position of the 

Ag and Eg bands (data not shown), as observed in native subsurface samples, 

Acidovorax is co-localized in the areas where the pyrite shows a minor intensity 

ratio of the band Ag relative to the Eg band (Figure 48). 
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Figure 48. Raman map of the biooxidized pyrite by Acidovorax (control 4) showing the 
co-localization of cells and pyrite areas which showed a low intensity ratio of Ag band 
relative to Eg band. A and B, location of the Raman spectra assigned to Acidovorax. C 
and D, Raman map of the variations in the intensity ratio of the Ag band relative to Eg 
band. E and F, merged. 

 

 

In the experiment carried out to determine if Acidovorax was able to oxidize pyrite, 

pyrite coupons cut in parallel to {100} face of the mineral were used. However, 
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since the coupons were not polished, the pyrite surface was not completely smooth 

and presented different crystal orientations due to the presence of cracks and 

imperfections. The existence of these dissimilarities, both topographic and 

orientation, on the surface of the starting mineral could indicate that Acidovorax 

attach preferentially either to areas where the ratio of the intensity of the band Ag 

in relation to the band Eg tends to 1 or to areas where there are imperfections. In 

fact, several studies have shown that both parameters can influence the adhesion 

of microorganisms to pyrite. It has been observed that At. ferrooxidans 

preferentially attach to pyrite, in addition to areas where there are imperfections, 

to areas with low degree of crystallization (Sanhueza et al., 1999) or oriented along 

the crystallographic axes (Edwards and Rutenberg, 2001). Furtermore, it has been 

observed that members of the genera Leptospirillum and Acidithiobacillus attach 

preferentially to electronegative areas (Gehrke et al., 1998; Schippers et al., 2013). 

While adhesion to areas that show imperfections can be attributed to an increase 

in the area of contact between microorganism-mineral, preferential adhesion to 

certain crystallographic orientations or to electronegative zones remains as an 

open question. 

However, although the starting pyrite presents variations, the analysis of Raman 

mappings performed in the biooxidated and control pyrite show clearly that 

Acidovorax, indeed, does influence the pyrite Raman spectrum. Figure 49 shows 

the comparison of the average pyrite Raman spectra of several planes obtained 

from cultures in which Acidovorax grew in the absence of initial iron (control 4, see 

section 6.5.3.1) and the average pyrite Raman spectra of its respective non-

inoculated control (control 5). These preliminary results show that, in cultures 
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where Acidovorax grew, the average pyrite Raman spectra present changes in the 

ratio of the intensity of the band Ag relative to Eg band, which tends to be lower, as 

well as displacements of both bands at higher wavelengths.  

 

 

Figure 49. Pyrite Raman spectra comparison between biooxidized and control pyrite. 
A, intensity ratio of the Ag band relative to Eg band; B, Raman position of Eg band; C, 
Raman position of Ag band. 

 

If we consider that in this culture an increase of final iron was observed (Figure 

39A), that is, pyrite dissolution, it is reasonable to relate the variations of the 

average pyrite Raman spectra with the activity of Acidovorax. However, more in-

depth analysis is needed to determine why Acidovorax attach to specific areas of 

pyrite and how it produces these modifications in the mineral. 

Nevertheless, the repeated observation of Acidovorax attached to pyrite in the IPB 

subsurface at different depths being part of iron-containing biofilms as well as the 

presence of hematite, together with the data present above in which it was proved 

that this microorganism is able to promote the pyrite dissolution, supports the 

hypothesis that nitrate-reducing microorganisms such as Acidovorax are, at least in 
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part, responsible for the dissolution of this mineral at neutral pH and, therefore, of 

the subsurface origin of the high concentration of iron found in Río Tinto. 

6.6. Overall discussion 

 

Thanks to the IPBSL project and its predecessor, the MARTE project, it has been 

possible to characterize in depth both the geochemical characteristics and the 

microbial diversity dwelling in the IPB subsurface. To determine both microbial 

and metabolic diversity, several complementary methodologies have been 

implemented, ranging from the use of more traditional techniques such as cloning 

or enrichment cultures to the use of state-of-the-art techniques such as NGS. The 

results obtained from both projects have shown that life in the IPB subsurface is 

(relatively) abundant and diverse, even though the hard rock subsurface systems 

are considered extreme oligotrophic environments. 

The subsurface is considered an extreme environment, fundamentally, due to the 

low energy availability (Kerr, 2002; Hoehler, 2004; Jørgensen and Boetius, 2007). 

This is the reason why it has traditionally considered that most of the 

microorganisms that inhabit these systems are in a dormant state (Hoehler and 

Jorgensen, 2013). However, in the IPB subsurface, energy availability does not 

seem to be a limiting factor. The presence of both organic acids and putative 

inorganic electron donors and acceptors that can be used by microorganisms in 

their metabolism has been detected. Although the concentration of these 

compounds is not very high, many of the microorganisms that inhabit the IPB 
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subsurface seem to be not only alive, or simply "surviving" as has been proposed 

(Kerr, 2002; Jørgensen and Boetius, 2007; Hoehler and Jorgensen, 2013), but also 

active, as shown by the hybridizations carried out with FISH probes, which 

indicate the presence of a considerable amount of ribosomes in the hybridized 

microorganisms. The oligotrophy, therefore, does not seem to be an impediment to 

life in the IPB subsurface, as it is not in other underground environments (Zinke et 

al., 2017). Actually, some of the microorganisms isolated in this system, such as 

Tessaracoccus T2-5-50, showed a higher growth rate under oligotrophic conditions 

than in the presence of high concentrations of organic matter, hence they seem to 

be very well adapted to conditions of low availability of nutrients (Leandro, 

personal communication). 

In addition, not only many of the microorganisms appear to be active, but they also 

obtain the necessary amount of energy to produce and maintain biofilms, which 

entails a high energy cost. However, the investment of energy to produce these 

structures could be a long-term benefit for microorganisms in the subsurface, since 

it implies greater retention of water and nutrients as well as the provision of an 

energy reservoir (Flemming, 2011; Flemming et al., 2016; Neu and Lawrence, 

2016). In fact, biofilms seem to be a fairly widespread lifestyle in the IPB 

subsurface. 

On the other hand, the complete set of data obtained in the IPBSL project indicates 

that in this system there is a great diversity, both microbial and metabolic. In fact, 

the biosphere detected in the IPB subsurface is much more diverse than the 

prokaryotic biodiversity detected in the Río Tinto basin, both in the water column 

(González-Toril et al., 2003) and in the sediments (Sánchez-Andrea et al., 2011; 
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García-Moyano et al., 2012). The IPB subsurface is not an isolated case since it has 

been shown that the majority of underground locations, although with exceptions 

(Moser et al., 2005; Dong et al., 2014b), show a high degree of biodiversity (Lau et 

al., 2014; Nyyssönen et al., 2014; Probst et al., 2014a; Ino et al., 2016) (Appendix 

1). 

Among the techniques used for the characterization of the IPB subsurface 

biosphere, FISH techniques stand out. As discussed throughout this work, FISH is 

the only technique, so far, that allows to analyze the distribution of microbial 

biodiversity at a micrometer scale (Moter and Göbel, 2000), which can become 

especially relevant in heterogeneous environments such as the subsurface. Thus, 

we have been able to verify that phyla such as Proteobacteria or Actinobacteria, 

which showed to be very numerous by means of NGS techniques (Puente-Sánchez, 

2016), are widely distributed in the IPB subsurface. On the contrary, thanks to 

CARD-FISH analysis reported in this work, it has been possible to verify that 

members of other phyla, with much less evidences for their presence using other 

techniques, could play a more important role than it can be expected due to its 

high level of distribution along borehole BH10. For instance members of the 

Archaea domain or the Chloreflexi and Planctomycetales phyla detected by 

fluorescence in situ hybridization all along BH10 column. 

On the other hand, the metabolic cooperation between species seems to be crucial 

for life in underground environments, since it allows maximizing the energy 

obtaining by microorganisms (Morris et al., 2013). Thanks to the analyzes carried 

out by CARD-FISH, it has been possible to verify that the majority of the colonies 

observed could be formed by more than one type of microorganism, as indicated 
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by the existence of a greater quantity of microorganisms detected by general DNA 

staining in relation to the number of microorganisms detected with specific 

probes. Actually, the presence of several different microorganisms has been also 

detected in the analysis of individual colonies isolated from enrichment cultures 

(T. Leandro, personal communication). This observation suggests that obligatory 

collaborations have been established in the IPB subsurface, which has made 

difficult to isolate a greater number of microorganisms in this project. By means of 

double hybridizations, we have also been able to determine some of the microbial 

interactions that are taking place in the IPB subsurface. Among the associations 

detected, the interaction between members of the iron and the sulfur cycle stand 

out. Although we cannot determine the nature of the association between bacteria 

and archaea until a deeper study is made, the association between Acidovorax, 

Acidiphillium, Sulfobacillus and SRB induces to consider a metabolic collaboration 

thanks to which the iron and the sulfur cycles are functionally active and 

interconnected in the ecosystem. 

The co-localization of Acidovorax with Fe3+ and pyrite, along BH10, strongly 

suggests that this microorganism is one of those responsible for the dissolution of 

this mineral in the IPB subsurface, releasing both Fe2+ and S2O32-. In addition, the 

presence of acetate and nitrate throughout the entire column suggests that the 

activity of this microorganism is not limited by the lack of nutrients. The reduced 

Fe generated can be oxidized again by Acidovorax, re-generating the main pyrite 

oxidant. However Acidiphillium and Sulfobacillus can also benefit from Fe3+, which 

can use it as an electron acceptor (Küsel et al., 1999; Johnson and Bridge, 2002; 

Justice et al., 2014). On the other hand, the sulfur species present in these 
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microniches will depend mainly on the local pH. At pH close to neutrality, it has 

been observed that the reservoir of sulfoxy intermediates product of the pyrite 

dissolution is higher than at acidic pH (Bonnissel-Gissinger et al., 1998). In the 

presence of an oxidizing agent, such as Fe3+ or NO2
- produced by Acidovorax, S2O32- 

can be further oxidized to S4O62-, which is quite stable at pH less than 7 

(Nordstrom, 1982). S4O62- could be used by Sulfobacillus as an electron donor 

coupling it to the reduction of Fe3+ (Bridge and Johnson, 1998), producing SO42-, 

which will be used as an electron acceptor by the SRBs (Barton and Tomei, 1995). 

Although this described cooperation is completely theoretical, the metabolic 

collaboration between these species could be essential for their performance in the 

IPB subsurface. In fact, it has been observed the presence of iron oxidizers and 

reducers as well as sulfur oxidizers and reducers at the same depth along the BH10 

column, although not sharing the same microniche. However, the interconnection 

of microniches by flowing water and the presence of biofilms, which can 

interconnect different clusters of cells (Escudero et al., 2018), could facilitate the 

flow of soluble electron donors and acceptors between different microorganisms. 

Indeed, the great majority of microorganisms detected in the IPBSL project are 

able to use as energy source the metabolic products of co-inhabitants of the IPB 

subsurface, thus maintaining the main biogeochemical cycles (Figure 50).  
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Figure 50. Putative biogeochemical cycles operating in the IPB subsurface. In blue, 
nitrogen cycle: in red, iron cycle; in green, sulfur cycle; in orange, carbon cycle. Close 
arrows indicate reactions carried out by microbial metabolism; open arrows indicate 
chemical reactions. Microbial representatives of each metabolism, detected in the IPB 
subsurface by the array of techniques applied in the IPBSL project, are indicated. 
*Based on MARTE project data. 
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The iron cycle can be sustained by iron oxidizers, both direct (Acidovorax?) and 

indirect through the generation of reactive nitrogen species (Carlson et al., 2013) 

by members of the genera Acidovorax (Klueglein and Kappler, 2013), 

Tessaracoccus (Puente-Sánchez et al., 2014a), Rhizobium (Daniel et al., 1982) or 

Pseudomonas (Li et al., 2017) among others, and iron-reducing microorganisms, 

such as Acidiphillium (Johnson and Bridge, 2002), Sulfobacillus (Bridge and 

Johnson, 1998) or Acidithiobacillus (Osorio et al., 2013). The activity of denitrifying 

microorganisms would produce reduced nitrogen compounds such as NO2
- which, 

together with NH4+ produced by dissimilatory nitrate reduction to ammonium and 

released by decomposer microorganisms, can be used by the ANAMMOX bacteria, 

generating N2. On the other hand, the decomposer microorganisms, that is to say 

fermenters, such as Clostridium (Udaondo et al., 2017), and anaerobic respirators, 

produce CO2 and H2. Both compounds can be used by acetogenic microorganisms 

as Acetobacterium (Müller, 2003) or methanogenic archaea such as 

Methanobacterium (Zinder, 1993) or Methanocella (Sakai et al., 2011) generating 

CH4. Although in the BH10 column no microorganisms have been identified 

capable of carrying out anaerobic methane oxidation, this metabolism has been 

detected in enrichment cultures. However, in the MARTE project it was detected 

the presence of archaea ANME2c (Puente-Sánchez, 2016), which could support the 

anaerobic consumption of CH4 in the IPB subsurface, generating CO2. The CO2, in 

addition, can be fixed by quimiolithoautotrophic microorganisms such as At. 

ferrooxidans or Acidimicrobium (Am) ferrooxidans (Hedrich and Johnson, 2013). 

The organic matter produced by these microorganisms can be degraded again by 

fermenting microorganisms or by anaerobic respiration, thus closing the carbon 
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cycle. Finally, the sulfur cycle can be maintained by oxidizing bacteria of reduced 

sulfur compounds such as At. ferrooxidans (Hedrich and Johnson, 2013) or 

Sulfobacillus (Bridge and Johnson, 1998), which couple the reduction of Fe3+ to the 

oxidation of S0 or S4O62- respectively, and SRB such as Desulfovibrio (Barton, 2013) 

o Desulfosporosinus (Pester et al., 2012). 

If we consider that cooperation between species is essential for life in 

underground environments, it would imply that the presence of certain 

microorganisms (or metabolisms) influences the survival of other microorganisms 

and, consequently, their distribution. 

Furthermore, the biodiversity distribution in the subsurface depends on the 

energy sources and the physical-chemical characteristics of a given location. The 

underground environments, being so heterogeneous, are characterized by the 

possible presence of innumerable different microniches, whose characteristics will 

be determined both by geohydrology and geochemistry. Thus, the more porous 

areas or the presence of faults and fractures will allow a greater space for life as 

well as a greater flow of water (Fredrickson et al., 1997a; Pedersen, 2000) and, 

therefore, a greater interconnection of microniches. The IPB subsurface is not an 

exception, since the largest colonies of microorganisms have been detected in 

depths where fault zones were located. On the contrary, if the porosity is low, the 

interconnection of microniches diminishes, being able to originate independent 

and auto-sufficient environments. On the other hand, if we consider that energy 

sources are endogenous, that is, independent of the surface, minerals would be the 

main sources of primary energy in the system. Thus, the mineralogy of the system 

will determine the available electron donors and acceptors and, therefore, the type 
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of metabolism that can take place in each of these microniches (Rempfert et al., 

2017). In fact, the microorganism-mineral interaction is one of the key questions 

that still need to be resolved to understand the functioning of life in the subsurface, 

since some studies have shown that, effectively, the type of mineral directly 

influences the biodiversity of an underground system (Jones and Bennett, 2014). 

In the IPB subsurface, as discussed, this issue acquires even greater relevance 

since the origin of the Río Tinto characteristics is attributed to the microorganism-

metal sulfide interaction (Fernández-Remolar et al., 2008a; Fernández-Remolar et 

al., 2008b). As shown in the incubation experiments of native subsurface samples, 

the high iron concentration of the Río Tinto is, as predicted, the direct consequence 

of microbial metabolism. Yet, a thorough analysis is needed to determine which 

iron-containing minerals are dissolving in these microcosms. 

Nevertheless, since pyrite is the main mineral of the IPB (Tornos, 2006), its 

dissolution in the subsurface could explain the high concentration of iron in the Río 

Tinto. Although the dissolution of metal sulfides was originally attributed 

exclusively to the biological iron oxidation in the aerobic or microaerobic zones of 

the IPB subsurface (Fernández-Remolar et al., 2008b), the role of indirect iron 

oxidation mediated by nitrate-reducing microorganisms, such as Acidovorax, in 

anaerobic and neutral conditions cannot be ignored. In fact, the Raman-FISH 

analyzes that have been carried out on native subsurface samples from the IPB, 

showed that the distribution of Acidovorax seems to be associated with the 

presence of pyrite. We estimate that the Acidovorax-mineral interaction, by 

increasing the pyrite dissolution rate and, therefore, the availability of iron, could 

satisfy a high demand for it (Klueglein and Kappler, 2013), either as a nutrient or 
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as an electron donor, by Acidovorax. The observation of a greater number of 

microorganisms attaching to pyrite in the absence of an iron source in solution 

would support this hypothesis. 

As shown, the production of Fe3+ with nitrite enhances the dissolution of pyrite. 

Therefore, any microorganism producing reactive nitrogen species is, in principle, 

a candidate for dissolving metal sulfides, as indicated by the ability of T. 

lapidicaptus to oxidize Fe2+ and the co-localization of both along the BH10 column. 

The fact that 30% of microorganisms that inhabit the IPB subsurface can carry out 

the reduction of nitrate allow to suggest that they play a role in the generation of 

high concentrations of Fe in the anaerobic bioreactor and the source of the Fe 

detected in the Tinto basin. In addition, the dissolution of pyrite through nitrate-

reducing microorganisms, resulting in the generation of iron, sulfur and reduced 

nitrogen species, as well as the presence of microorganisms in the BH10 column 

whose metabolisms are based on the oxidation or reduction of these compounds, 

imply an interconnection of the nitrogen, iron, sulfur and carbon cycles in the IPB 

subsurface through biolixivation processes (Figure 50). 

Despite the numerous open questions that remains, thanks to the IPBSL project we 

started to understand how the underground ecosystem of the IPB operates. The 

joint effort of an interdisciplinary team as well as the use of different 

complementary techniques has been essential for this purpose. Within the 

techniques used in the subsurface studies, fluorescence microscopy, especially 

FISH, has proven to be a powerful tool to be considered.  
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7. Conclusions 

1. To facilitate the recognition of authentic fluorescent signals in the study of 

microorganisms associated with solid mineral substrates, it is advisable to use 

additional DNA stains and the use of lambda mode available in confocal laser 

scanning microscopes. 

2. Three new specific probes have been designed to detect, by fluorescent in 

situ hybridization, members of the genera Tessaracoccus (TESS681 and 

Tlap1449) and Rhizobium (RHI124), which optimal percentage of formamide are 

50%, 10% and 50% respectively. 

3. The bacteria domain is the most distributed along the BH10 column, 

highlighting the phyla Proteobacteria, Actinobacteria and Firmicutes. Of these 

phyla, in turn, highlight the large distribution of the genera Acidovorax, 

Tessaracoccus and Sulfobacillus. 

4. Other phyla very distributed along BH10 column are Chloroflexi and 

Planctomycetes, as well as the Archaea domain, whose distribution along the IPB 

subsurface suggests an important role of these microorganisms in the ecosystem. 

5. The co-localization of bacteria and archaea as well as the co-localization of 

microorganisms related to iron and sulfur metabolisms have been detected along 

borehole BH10. These interactions suggest the existence of an iron cycle and a 

sulfur cycle operating at the microniche level in the IPB subsurface. 
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6. The coexistence of microorganisms in multi-species biofilms seems to be a 

generalized lifestyle in the IPB subsurface, regardless of the depth or porosity 

that the system presents. 

7. The presence of biofilms and the hybridizations carried out with FISH probes 

indicate that most of the microorganisms in the system are metabolically active. 

8. For the detection of intact biofilms and the amplification of the fluorescent 

signal of the probe, we propose the application of DOPE-FISH probes together 

with the hybridization buffer developed to carry out geneFISH. 

9. The origin of the high concentration of iron in the Rio Tinto basin is due to 

the metabolic activity of microorganisms that inhabit the IPB subsurface. 

10. Both T. lapidicaptus and Acidovorax are able to oxidize iron through the 

production of reactive nitrogen species. Both microorganisms, in addition, are 

carrying out the oxidation of iron in the IPB subsurface. 

11. Acidovorax BoFeN1 is able to promote the dissolution of pyrite by the 

oxidation of Fe2+ and its adhesion to the mineral at neutral pH. 

12. The set of data obtained supports the hypothesis that all denitrifying 

microorganisms have the capacity to promote the dissolution of metallic sulfides 

in the IPB susburface. 

13. The correlation of fluorescence microscopy and confocal Raman 

microscopy can be used for the in situ study of the distribution of 

microorganisms according to the mineralogy of the system. In the IPB 
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subsurface, Acidovorax is preferentially attached to pyrite, which seems to 

determine its distribution along the BH10 column. 

14. The use of confocal Raman microscopy has allowed to analyze the surface 

variations of the native pyrite of the IPB subsurface, which can be associated with 

the presence of Acidovorax. 

15. A geomicrobiological model of the IPB subsurface ecosystem has been 

proposed, highlighting the biogeochemical cycles of iron, sulfur, nitrogen and 

carbon. In this model, microorganisms form a metabolic network through which 

they can maximize their energy production through the use of the metabolism 

products of co-inhabitants of the system. 
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6. Conclusiones 

1. Para facilitar el reconocimiento de auténticas señales fluorescentes en el 

estudio de microorganismos asociados a sustratos sólidos minerales, es 

recomendable el uso de tinciones adicionales de DNA y el uso del modo lambda 

disponible en microscopios de barrido laser confocal.  

2. Se han diseñado tres nuevas sondas específicas para detectar mediante 

hibridación in situ fluorescente a miembros de los géneros Tessaracoccus 

(TESS681 y Tlap1449) y Rhizobium (RHI124), cuyos porcentajes óptimos de 

formamida son 50%, 10% y 50% respectivamente.  

3. El dominio Bacteria es el más distribuido a lo largo de la columna BH10, 

destacando los phyla Proteobacteria, Actinobacteria y Firmicutes. De estos phyla, 

a su vez, destaca la gran distribución de los géneros Acidovorax, Tessaracoccus y 

Sulfobacillus.  

4. Otros phyla muy distribuidos en la columna son Chloroflexi y 

Planctomycetes, así como el dominio Archaea, cuya gran distribución a lo largo 

del subsuelo de la FPI sugiere un papel importante en el ecosistema por parte de 

estos microorganismos. 

5. Se ha detectado a lo largo de la columna BH10 la co-localización de 

bacterias y arqueas así como la co-localización de microorganismos relacionados 

con un metabolismo del hierro y el azufre. Éstas interacciones sugieren la 
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existencia de un ciclo del hierro y un ciclo del azufre operativos a nivel de 

micronicho en el subsuelo de la FPI. 

6. La coexistencia de microorganismos en biopelículas multi-especie parece 

ser un estilo de vida bastante generalizado en el subsuelo de la FPI, 

independientemente de la profundidad o porosidad que presenta el sistema. 

7. La presencia de biopelículas así como las hibridaciones realizadas con 

sondas de FISH indican que muchos de los microorganismos del sistema se 

encuentran metabólicamente activos.  

8. Para la detección de biopelículas intactas y la amplificación de la señal 

fluorescente de la sonda, proponemos la aplicación de sondas DOPE-FISH junto 

con el tampón de hibridación desarrollado para llevar a cabo el genFISH.  

9. El origen de la alta concentración de hierro en la cuenca del Río Tinto se 

debe a la actividad metabólica de microorganismos que habitan en el subsuelo de 

la FPI. 

10. Tanto T. lapidicaptus como Acidovorax son capaces de oxidar hierro a 

través de la producción de especies reactivas de nitrógeno. Ambos 

microorganismos, además, están llevando a cabo la oxidación de hierro en el 

subsuelo de la FPI. 

11.  Acidovorax BoFeN1 es capaz de promover la disolución de la pirita 

mediante la oxidación de Fe2+ y su adhesión al mineral a pH neutro.  
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12. El conjunto de datos obtenidos apoya la hipótesis de que todos los 

microorganismos desnitrificantes poseen la capacidad de promover la disolución 

de los sulfuros metálicos en el subsuelo de la FPI.  

13. La correlación de la microscopía de fluorescencia y la microscopía Raman 

confocal puede ser utilizado para el estudio in situ de la distribución de 

microorganismos en función de la mineralogía del sistema. En el subsuelo de la 

FPI, Acidovorax se encuentra preferentemente adherido a pirita, la cual parece 

determinar su distribución a lo largo de la columna BH10.  

14. El uso de la microscopía Raman confocal ha permitido analizar las 

variaciones de la superficie de la pirita nativa del subsuelo de la FPI, las cuales 

pueden asociarse a la presencia de Acidovorax.  

15. Se ha establecido de un modelo geomicrobiológico del ecosistema del 

subsuelo de la FPI en el que destacan los ciclos biogeoquímicos del hierro, azufre, 

nitrógeno y carbono. En este modelo, los microorganismos forman una red 

metabólica gracias a la cual pueden maximizar su obtención de energía mediante 

el uso de los productos del metabolismo de co-habitantes del sistema. 
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Appendix 2. Mineral composition of borehole BH10 

 

Depth Minerals Percentage (%) Depth Minerals Percentage (%)

Quartz, syn 77 Quartz/jasper 61,6

Muscovite 7,7 Dolomite 19,2

Clinochlore-ferroan 15,4 Mg-calcite 13,7

Muscovite 10,6 Ankerite/siderite 5,5

Quartz 61,7 Quartz 85

Jacobsite 17 Dolomite 5

Pyrite 10,6 Siderite 10

Quartz 88,6 Quartz 86,2

Illite 11,4 Clinochlore-ferroan 13,8

Quartz 88,6 Quartz 84

Illite 11,11 Ca-albite, ordered 2

Quartz 73 Clinochlore-ferroan 14

Pyrite 8,3 Quartz 71

Clinoclhore ferroan 18,75 Illite 8,8

Clinoclore 15,25 Clinochlore-ferroan 20

Pyrite 8,5 Quartz 83,3

Quartz 76,3 Illite 8,3

Quartz 74,5 Titanomagnetite 8,3

Pyrite 8,5 Pyrite 10,2

Clinoclhore ferroan 17,1 Clinochlore-ferroan 15,3

Quartz 67,3 Titanomagnetite 4

Pyrite 4,8 Quartz 51

Illite 27,8 Illite 10,2

Quartz 67,3 quartz 71,4

Illite 27,8 clinochloro 21,5

Pyrite 4,8 Illite 7,14

Pyrite 71,4 Quartz 68,8

Muscovite 28,6 Cookeite-la borian 4,3

Muscovite 7,14 Muscovite 5,4

Quartz/jaspe 78,5 Illite 21,5

Clinocholore ferroan 14,3 Quartz 61,15

Pyrite 17 Titanomagnetite 3,18

Quartz 75,5 Muscovite 10,19

Jacobsite 3,8 Dolomite 19

Illite 3,8 Quartz 82

Quartz 81 Pyrite 6,55

Clinoclhore 18,18 Illite 11,5

Jacobsite 3 Quartz 76,5

Muscovite 7 Dolomite 11,22

Quartz 90 Illite 12,24

Quartz 88,8 Jaspe 66

Titanomagnetite 7,4 Cubanite 5,8

Muscovite 3,7 Pyrite 4,4

Quartz 92,4 Illite 23,5

Jacobsite 3,36 Quartz 66

Muscovite 4,2 Illite 23,5

Quartz 83,3 Pyrite 4,4

Albite, ordered 16,6 Cubanite 5,8

Hematite 10,4 ankerite 18,3

Clinochlore ferroan 12,5 Pyrite 1,3

Quartz/jasper 62,5 Quartz 79,3

Albite 14,6 muscovite 1,3

Clinochlore ferroan 8,3 Quartz 62

Quartz/jasper 83,3 Calcite 31

Vermiculite 8,3 Dolomite 7

Chamosite 12,5

Quartz 76,4

Illite 11

568.6 m

607.6 m

612.94 m

Mineral composition of BH10borehole

492.6 m

496.8 m

519.1 m

538.4 m

544 m

433.32 m

450.3 m

468.8 m

477.45 m

487.2 m

414 m

415.3 m 

420 m

426.15  m

266.3 m

392.9 m

411.9 m

413.3 m

139.4 m

284 m

355.7 m

294.65 m

304.9 m

311.1 m

336.5 m

352.65 m

353.12 m

206.6 m

228.67 m

90 m

103.5 m

121.8 m

130.8 m
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