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Abstract: The subspace-based methods are effectively applied to classify sets of feature vectors by modelling them as
subspaces. However, their application to the field of non-cooperative target identification of flying aircraft is barely
seen in the literature. In these methods, setting the subspace dimensionality is always an issue. Here, it is
demonstrated that a modified mutual subspace method, which uses softweights to set the importance of each
subspace basis, is a promising classifier for identifying sets of range profiles coming from real in-flight targets with no
need to set the subspace dimensionality in advance. The assembly of a recognition database is also a challenging task.
In this study, this database comprises predicted range profiles coming from electromagnetic simulations. Even though
the predicted and actual profiles differ, the high recognition rates achieved reveal that the algorithm might be a good
candidate for its application in an operational target recognition system.
1 Introduction

Nowadays, with the secondary surveillance radar and the
identification friend of foe in the civil and military aviation
respectively, aircraft are able to recognise themselves upon a
question from an interrogator system (normally a ground station).
However, this cooperative identification procedure needs an active
response from the target and in case of failure, the illuminated
target might be classified erroneously or even pass unnoticed in
the airspace. Non-cooperative target identification (NCTI) systems
try to avoid these irregularities by acquiring the signature of the
illuminated target, even if it is not aware, and further check its
similarity with other pre-stored signatures. Since radar can operate
at long ranges and under conditions of poor visibility or high
noise, they were thought of as the best option to achieve NCTI
[1, 2]. With a sufficiently wide bandwidth they can achieve high
resolution in the collected data, providing target signatures with
enough information to infer their structure. Great effort has been
made along the years using high-resolution range profiles (HRRP)
as signatures for air target identification [3–9]. A HRRP is the
projection onto the radar line of sight of the radar energy scattered
back by the different parts of an aircraft, thus, under the same
measurement conditions, different aircraft will provide different
HRRP.

In the literature, different methods for recognition based on HRRP
have been applied such as: statistical modelling for HRRP data,
which has been used to describe the likelihood between HRRPs
[10], a noise-robust factor analysis model based on multitask
learning, developed in [11], or hidden Markov models, that have
been applied to radar target recognition in several studies [12, 13].
Feature selection methods and dimensionality reduction algorithms
are also frequently used in NCTI, including wavelet transformation
[14], algorithms based on a reconstruction model such as principal
component analysis (PCA) [4], the differential power spectrum
[15], linear discriminant functions [16], or singular value
decomposition (SVD) [17].

The concept of principal angles [18] between two linear subspaces
has been widely used for recognition and classification of sets of
images [19, 20]. However, the approach has been barely applied in
the frame of NCTI and thus, this possibility is explored in this
paper. Here, a subspace model based on the mutual subspace
method (MSM) is applied to matrices of consecutively collected
range profiles in order to determine the type of aircraft the radar is
illuminating.

The structure of the paper is as follows. Section 2 firstly introduces
the algorithm methodology and further describes the test and training
sets used in the experiments. Section 3 shows the results obtained
with the proposed method and a comparison with other similar
algorithms. Lastly, Section 4 presents the conclusions and future
work.
2 Methodology

2.1 Mutual subspace method

The conventional subspace method (CSM) [21] is a statistical pattern
recognition method where each class is represented by a subspace
and the belonging to a class, namely the similarity, is determined
by the angle between a vector g, representing a test sample, and
each subspace.

The MSM presented in [22], on the contrary, defines the similarity
by the angle between two subspaces where the bases of the
subspaces are calculated by the PCA. The relationship between
two subspaces, D and S, is then defined by their principal angles,
so called canonical angles, which are an extension of the angle
between two vectors. A graphical explanation of both methods can
be found in Fig. 1, where Fig. 1a shows how in CSM only one
angle (Θ1) is returned since the test sample is represented by one
vector, and Fig. 1b shows that MSM returns k canonical angles
corresponding to the k vectors that compose the smallest subspace.

Let XD = [x1, x2, . . . , xM ] [ <N×M be a matrix of feature
vectors, in our experiment a matrix of HRRP of dimension N ×M
(assuming N >M), with M being the total number of profiles and
N the number of samples. The set of profiles is modelled by the
subspace spanned by the principal basis vectors: by applying
eigen-decomposition to XDX

T
D and exploiting the eigenvectors

corresponding to the hd largest eigenvalues, the basis of the
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Fig. 1 Basic concepts of subspace methods

a Conventional subspace method (CSM)
b Mutual subspace method (MSM)

Fig. 2 Similarity concept between subspaces
subspace D is obtained as in (1)

XDX
T
D = VDLDV

T
D ⇒ V̂D [ <N×hd (1)

where VD [ <N×N is a matrix containing the eigenvectors,
LD = diag(l) [ <N×N is a diagonal matrix containing the
eigenvalues and V̂D [ <N×hd is the selected basis of the subspaceD.

As stated, the similarity measure between two subspaces D and S
is defined as their canonical angles (θk) [23]. These are obtained
recursively as

cos uk = max
u[D

max
v[S

uTv = uTk vk (2)

such that

‖u‖2 = ‖v‖2 = 1
uTui = 0 i = 1, . . . , k − 1
vTvi = 0 i = 1, . . . , k − 1

k = 1, . . . , min [hd , hs]

where [u1, . . . , uk ] and [v1, . . . , vk ] are called the canonical vectors
between subspaces D and S and hd and hs are the number of
eigenvectors taken as bases of the subspaces D and S respectively.

The canonical angles satisfy 0≤ θ1≤ θ2≤ · · · ≤ θk≤ π/2. If the
columns of V̂D [ <N×hd and V̂S [ <N×hs define orthonormal bases
for D and S respectively, then

cos uk = max
u[D

max
v[S

uTv = max
y[<hd

max
z[<hs

yT(V̂T
DV̂S)z (3)

considering ‖u‖2 = ‖v‖2 = ‖y‖2 = ‖z‖2 = 1. After the minimax
characterisation of singular values given in [24] (section 8.6.1), it
follows that YT(V̂T

DV̂S)Z = diag(s1, . . . , sk ), that is, the SVD of
V̂T
DV̂S . Thus, assuming hs < hd and applying SVD, then

V̂T
DV̂S = U ·Q · VT (4)

where

U = u1, . . . , uhd

[ ]
= V̂DY

V = v1, . . . , vhs

[ ]
= V̂ SZ

⎫⎬
⎭ canonical vectors

Q = diag( cos uk ) = diag(sk ) � singular values; k = 1, . . . , hs

The similarity measure can be defined as the largest singular value
σmax, as the mean of the obtained singular values, or as in here, as
the squared sum of the canonical angles’ cosines, that is, SDS = tr
(Θ2). The higher SDS, the higher the similarity between subspaces
D and S. In the case that two subspaces coincide completely with
each other, all canonical angles are zero and so their similarity will
be SDS = k, with k being the dimension of the smallest subspace
(k = hs). When the two subspaces separate, the similarity will get
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smaller and if the subspaces are orthogonal, it will become zero as
Fig. 2 depicts.

Selecting the dimensions (hd and hs) of the subspaces is crucial in
the classification performance. These dimensions are set taking into
account the eigenvalues in LD and LS respectively since they reveal
the information gathered by each eigenvector: the higher the
eigenvalue, the higher the amount of information of the target
contained in its associated eigenvector. According to this,
eigenvectors with high eigenvalues will belong to a dominant
subspace or signal subspace, containing information about the
target, and those with low eigenvalues will form the noise
subspace, containing unwanted and negligible information. If
subspace dimensionality is set to a high value, then too many
vectors will make up the signal subspace. This will cause the
subspaces to be noisy, making their separability more difficult and
thus, the recognition performance will be impoverished.
Unfortunately, there is no theoretical way to appropriately
determine the subspace dimensionality and users should tune it in
advance, normally by setting an energy threshold based on the
eigenvalues [4, 25].
2.2 Softweighting

In order to palliate the problem of subspace dimensionality,
Kobayashi [26] introduces the concept of softweighting for image
identification and proposes a generalised mutual subspace method
(gMSM). Contrary to [26] in which gMSM is applied to static
two-dimensional images for object classification, here this method
is used for identification of flying aircraft from range profiles. To
the authors knowledge, not only the method is used for the first
time in this paper with this purpose, but also a study of the
optimal selection of the softweighting parameter, which is critical
for the identification and has not been done before, is carried out.

In MSM algorithm, when setting the dimensionality of a subspace,
the eigenvalues take an important role: only the eigenvectors with
the highest eigenvalues will be considered as basis and the rest
will be discarded. The eigenvalues can be seen as if they had a
binary weight (1/0) that affects the eigenvectors. A weight of 1
means that the corresponding eigenvector is a basis of the
subspace and a weight of 0 means the opposite. That is, the
subspace dimensionality is set based on a binary decision.
Nevertheless, the eigenvalue per se does not take part in the
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identification algorithm, meaning that all the eigenvectors that have
been chosen as basis have the same relevance in the subspace
construction.

The concept of softweighting tries to avoid this binary decision,
that is, the selection of the subspace dimension is no longer
needed. Softweighting gives importance to all the eigenvectors, in
a way that all the eigenvectors will take part in the subspace but
they will be weighted by a transformed value of their
corresponding eigenvalues. This transformed value is called the
softweight. According to (1), if LD = diag(l) are the eigenvalues
of matrix XDX

T
D in descending order, the design of the softweights

is done in consonance with these eigenvalues. Let
V = diag(v) [ <N×N be a diagonal matrix of softweights such that:

v = wm(l) = min
l

lm
, 1

[ ]
(5)

where wm is the mth eigenvalue in l. This softweighting evaluates the
importance of each eigenvector as a basis in the subspace by the
variance relative to lm. The m first values of the diagonal matrix
Ω will be the unity and the rest will be proportionally decreasing
with the mth eigenvalue. Fig. 3 illustrates the resulting softweights
of a matrix of eigenvalues when m is set to 4 and to 1. As seen, in
the dashed line, the first 4 values are equal to unity, while the rest
slowly decrease proportionally to the 4th eigenvalue. On the
contrary, the dotted line shows the decreasing tendency of the
softweights in relation to the first eigenvalue.

By adding the softweights to (3), the importance of each
eigenvector as a basis of the subspace is set. Then, the gMSM is
defined as

cos uk = max
yTV−2

D y=1;
max

zTV−2
S z=1

yT(VT
DV S)z

⇔ max
y′Ty′=1;

max
z′Tz′=1

y′T(VDV
T
DV SVS)z

′
(6)

where y = VDy
′, z = VSz

′ and VD and V S are the eigenvectors as in
(1). Eventually, the generalised canonical angles that define the
similarity measure are computed by applying SVD to
VDV

T
DV SVS , that is

VDV
T
DV SVS = U ′ ·Q · V ′T ⇒ SDS = tr(Q2) (7)

As in MSM, the algorithm identifies the aircraft as the one with the
highest similarity.
Fig. 3 Softweighting of eigenvalues
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2.3 Datasets

In this study, we call test set to the input of our identification system
and training set to the database of potential targets used to find the
closest match (the output).

The test set comprises actual measurements coming from a civil
aircraft measurement campaign, ORFEO, that took place in the
Netherlands during 1995 using the FELSTAR radar (a stepped
frequency S-Band radar with a bandwidth of 452.2 MHz and a
nominal resolution of 0.33 m) at TNO-FEL [27]. Signatures of
several targets of opportunity were acquired and information about
their estimated flightpaths along with their identification was
provided by a secondary radar. According to ORFEO
specifications, the estimated aspect angles had at the most, an error
of 5°, and since FELSTAR used a velocity-tolerant waveform, no
velocity compensation was needed after the collection of profiles.
The profiles have been amplitude normalised such that their total
energy equals unity, and Hamming windowed, to reduce sidelobes
that can obscure small returns at a cost of a poorer resolution. In
this work, six aircraft models are considered: the Boeing 747-400,
the Airbus A310, the Boeing B767-300, the McDonnell Douglas
MD80, the Fokker 28, and the Fokker 100.

On the contrary, the training set, that is, the recognition database,
is populated with predicted profiles, so called synthetic HRRPs.
They have been obtained with the RCS-prediction code FASCRO
[28], which uses high-frequency techniques (Physical Optics, PO,
and Physical Theory of Diffraction (PTD)) to obtain the synthetic
profiles of a certain target model at specified aspect angles.
Table 1 shows the dimensions of the targets used in the experiments.

When obtaining the synthetic profiles with FASCRO, it must be
noted that all electromagnetic effects that occur in a real scenario
are not considered since it makes use of high frequency
techniques. Moreover, the aircraft models have been developed
considering every aircraft as perfect electric conductors with no
protruding elements. However, since signatures of aircraft from
other nations may not be available because their participation in
measurement campaigns is unlikely, the use of predicted profiles
as database has been opted. Besides, RCS-prediction codes allow
the creation of a wide database of targets in any aspect angle just
by designing their CAD models, hence, the construction and
update of the database is inexpensive in contrast to measurement
campaigns. Thus, as noted, due to the fact that simulations do not
take into account all the electromagnetic effects that occur in a real
environment, and along with CAD models not being exact replicas
of real aircraft, the obtained synthetic signatures may be too ideal.

In this regard, Fig. 4 shows the differences found between the
measured profile of a B767 at a certain aspect angle and
the synthetic one obtained with FASCRO of the same aircraft with
the same orientation. Note that the image has been zoomed in
order to better appreciate these differences. Apart from the ideal
scenario in which profiles are predicted, it should be remembered
that the estimated aspect angles at which the real aircraft have
been measured had an error of 5° at the most, so, even though the
predictions have been run under the same aspect angles and, since
profiles are very sensitive to it, this error may cause additional
difference between actual and simulated profiles. It can also be
noticed in the figure that despite both sets of profiles have been
amplitude normalised, their amplitudes differ. Additionally, the
measured HRRPs are noisier between peaks which also affect the
amplitude normalisation.
Table 1 Synthetic aircraft dimensions

Class Length, m Wingspan, m Height, m

B747 70.66 64.44 16.79
B767 54.22 47.52 14.77
A310 46.66 43.90 12.74
MD80 45.10 32.80 7.43
F100 35.53 28.08 6.58
F028 29.61 25.07 6.62
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Fig. 5 Described trajectories

Fig. 4 Difference between actual and synthetic range profiles
To validate the algorithm, HRRPs are grouped in frames. Each
frame comprises sequences of profiles collected sequentially
during the ORFEO measurement campaign, time-shift
compensated [29] and with a variation in azimuth of 2.5°. A total
number of 235 frames are extracted from the trajectories depicted
in Fig. 5, where nose-on aspect angles correspond approximately
to (θ = 90°, α = 0°). From these trajectories, 39 frames correspond
to an A310, 42 to a B747, 43 to an F100, 34 to a B767, 38 to an
F28, and 39 to an MD80. Even if the test set is not too large, the
results will allow us to decide whether the algorithm is worthwhile
to continue the research.
3 Experimental results

As stated, and in contrast to MSM, there is no need to set the
subspace dimensionality in gMSM, however, it does exist the
question about which value of m is best for the softweighting.
Note that the higher the m is, the more eigenvectors are treated
with a softweight of 1. This implies, on the one hand that the
gMSM gets equivalent to MSM with large dimension of subspaces
if m is very high; on the other hand, and highly related to the
former statement, with a high value of m, eigenvectors
representing the noise subspace will be probably considered as
part of the signal subspace; this can cause the similarity between
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 186–191
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subspaces to be very close for all aircraft classes, thus, recognition
performance can be negatively affected.

Accordingly, m is recommended to be set to low values. In order
to clarify these assumptions, a study on the parameter m has been
carried out. Firstly, m has been chosen dynamically for the test
and training samples: if li is the ith eigenvalue out of N, m is
calculated (separately for test and training sets) according to a
threshold η (0≤ η ≤ 1), such that

argmin
m

∑m
i=1

li − h ·
∑N
i=1

li

∣∣∣∣∣
∣∣∣∣∣

( )
(8)

In Fig. 6a, the tendency of the recognition performance with the
variation of m depending on η is presented. Different thresholds
for test and training samples are set. Each curve in the figure
depicts the evolution of the recognition rate according to a fixed
threshold of the training set while varying the threshold of the test
set. In Fig. 6b the mean value of m obtained for the test and
training samples is depicted, that is, the equivalence between η
and m. As seen in Fig. 6b, higher η means higher m and as the
plot 6(a) shows, the recognition rates reach lower values with high
η than those obtained with a lower one, that is with lower m.
Consequently, and as already stated, m should be set to a low value.

As Fig. 6a depicts, with a value of η = 0.6 for the test samples and
η = 0.4 for the training samples, the recognition rate reaches the
highest value for this experiment (87.66%). On the other hand,
Fig. 6b shows that with η = 0.6, the mean value of m for the test
samples is close to 1 and with η = 0.4, is also practically 1 for the
training samples. This means that some test samples will obtain
better recognition results if m > 1 but normally with m = 1 the
recognition is correctly accomplished.

Under the assumption of low m and after the analysis of Fig. 6, it
seems fairly reasonable to set m = 1 in order to obtain good
recognition results. Thus, applying gMSM to the frames that form
the test set and setting m = 1 for the softweighting, the final
identification rates obtained are shown in Table 2. The Table
shows good recognition rates for all the aircraft in the test set,
although the F28 is the one with the lowest rate because it is very
similar to the F100 and it causes confusion when classifying some
test samples. In any case, the error rates for all the aircraft are
quite good (less than 20%) and globally, the average for all
aircraft is less than 15% and the global recognition rate achieved is
87.2%. As Fig. 6a showed, the best recognition rate obtained with
a dynamic value of m was higher than this one. Nevertheless, the
tuning of parameter m needs a high computational cost, thus, in
order to present a faster and more general algorithm with no need
to be tuned every time a new test/training sample is introduced, m
has eventually been set to a fixed value of unity.

In order to further assess the performance, the method is compared
to three different algorithms: the first one is the MSM already
described in Section 2.1; the second one is a subspace-based
method presented in [30] where SVD is used to define the
subspaces that will represent each target (with a threshold of 85%)
and the algorithm used for identification is also based on angle
between subspaces, although in this specific case, between a
vector and a subspace with a weighting element; lastly, another
subspace-based method presented in [4] is used for comparison,
the PCA-based minimum reconstruction error approximation,
where PCA is used to extract the feature subspace of a frame of
HRRPs (with a threshold of 99%) and then, the algorithm decides
the test sample class considering its minimum reconstruction error
in the feature subspaces. The reader is referred to the cited papers
for more information about the algorithms. Table 3 shows the
comparative recognition results obtained for the aforementioned
methods using the same test and training sets presented in this
paper. The parameters selected for each algorithm are equal to the
ones chosen in their respective references, that is for entry F2 in
the Table, the threshold parameter for the subspace design is set to
(η = 0.85)[30] and for entry F3 the threshold for the feature
subspace formation is set to (η = 0.99) as [4] states. In the case of
189



Fig. 6 Parametric study of softweights

a Recognition performance with dynamic softweights
b Mean m obtained according to η

Table 2 gMSM confusion matrix; m = 1

Class A310 B747 F100 B767 F028 MD80 % Success % Error

A310 36 0 0 2 1 0 92.3 7.7
B747 5 35 0 0 2 0 83.3 16.7
F100 0 0 37 0 5 1 86.0 14.0
B767 2 0 0 32 0 0 94.1 5.9
F028 0 0 6 0 31 1 81.6 18.4
MD80 2 0 1 2 0 34 87.2 12.8
avg. recog. rate 87.2 12.8
algorithm MSM the threshold is set to (η = 0.85) due to the
similarity between this algorithm and F2.

An analysis of Table 3 shows that the gMSM with a value of m = 1
results in the highest average recognition rate (87.2%). The most
basic method, since it does not add any weighting element and
simply computes the angle between two subspaces, the MSM,
returns the poorest results, an average recognition rate of 80%, as
well as algorithm F2, related somehow to MSM but with
additional weighting elements. The approach F3 outperforms F2
and MSM in approximately 6 percentage points, yet it does not
reach the highest recognition rate, although it is only 1.1
percentage points lower.

Results have shown that gMSM method with a fixed value of
parameter m = 1 achieves good recognition results compared to
other algorithms, thus, it can be said that this method is
appropriate for NCTI purposes. Remember the lack of
resemblance between test and training sets: while synthetic profiles
are ‘clear’ signatures of aircraft because they have been predicted
with CAD models and under ideal conditions, actual profiles
undergo the effects of noise and other unwanted information.
Moreover, synthetic profiles are obtained under the assumption of
trajectories being the ones followed by the measured aircraft,
Table 3 Average recognition rates for different algorithms

Class gMSM
(m = 1) %

MSM
(η = 0.85) %

F2 [30]
(η = 0.85) %

F3 [4]
(η = 0.99) %

A310 92.3 89.7 92.3 94.1
B747 83.3 73.8 90.5 78.2
F100 86.0 72.1 72.1 79.8
B767 94.1 91.2 76.5 96.6
F028 81.6 81.6 78.9 68.8
MD80 87.2 74.4 69.2 94.4
avg. recog. rate 87.2 80.0 80.0 86.1
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nevertheless, the aspect angles under which the actual targets are
seen are just estimations; this fact adds more dissimilarities
between actual and synthetic profiles, but on the other hand, it
adds robustness to the algorithm since recognition rates are over
87%. Thus, considering the dissimilarities between profiles
presented in this study and the high recognition rates obtained, the
method can be considered as promising for NCTI purposes with
HRRP.
4 Conclusions

In this study a methodology for HRRP target recognition based on
the MSM is shown. It has been proven that, in comparison to
other methods, the introduction of weighting elements in the
metrics returns higher recognition rates. Thus, by introducing
softweighting, the gMSM assigns the importance of each basis in
the subspace; target recognition is achieved according to the angle
between these softweighted-subspaces with no need to previously
set the subspace dimension unlike the original MSM. For the first
time, gMSM has been proven to be a successful method to
classify flying aircraft by means of a database of synthetic profiles.
With the softweighting, an increase in the identification rates has
been accomplished comparing with other methods. Moreover, the
study of the evolution of the classification rates with the selection
of parameter m to define the softweights, has shown that a fixed
value of m = 1 is enough to obtain good results, nevertheless,
should these results be further improved, a dynamic value for m
must be set.

As noted, using a synthetic recognition database for the
identification of actual measurements has been found to be
problematic due to the dissimilarities between signatures. The
input, which is measured under actual conditions, is affected by
noise and other unwanted effects, while the synthetic profiles are
the ideal signatures of aircraft replicas. These synthetic profiles
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 186–191
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have been run considering their aspect angles as being the same as
the actual measured profiles, nevertheless, these angles are mere
predictions that may have an error up to 5°. This implies that the
algorithm is valid even if the true aspect of the input differs in a
few degrees from the aspect of the profiles stored in the database.
Despite all these differences, the results obtained with the
softweighting method are encouraging to further validate the
algorithm accuracy and robustness with wider datasets.
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