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Abstract 

 

An experimental and theoretical study is presented on the problem of droplet 

breakup exposed to a continuously accelerating flow generated by an incoming 

aerodynamics surface. Droplet breakup experiments were carried out in a 

rotating arm facility. Droplet diameters were of the order of 1 mm. The 

maximum velocity of the airfoils located at the end of the rotating arm was 90 

m/s. Droplet deformation was computed using a phenomenological model 

developed previously by the authors. The dynamics of this deformation was 

coupled to an instability model based on the growth of Rayleigh-Taylor waves at 

the droplet surface. It was found that, within the experimental uncertainty, 

breakup occurs when the instability wavelength approaches the droplet 

hydraulic diameter assuming that it flattens and deforms as an oblate spheroid. 

This fact allowed for the generation of a theoretical closed-form droplet 

deformation and breakup model that predicts the onset of breakup with 
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discrepancies of about ±10 % when compared to the experimental results.  

Finally, as an application case, this closed-form model is used to simulate an 

actual situation in which the objective is to investigate whether a series of 

droplets that are approached by an airfoil either impact on its surface, or break 

prior to collision, or break without colliding, or pass through undamaged.   
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1. Introduction 

 

The study of droplet deformation and breakup has implications that pertain to 

the realm of basic Fluid Mechanics and, also, to a very wide spectrum of 

industrial applications. This could be the reason why experimental, numerical, 

and theoretical articles on the subject are continuously published in the 

specialized literature. Specifically, these articles could be broadly classified as 

those that address the deformation process only, or the breakup process only, 

or both at the same time. 

 

Regarding the methodologies actually being used, the number of Computational 

Fluid Dynamics related articles has increased significantly over the past few 

years. The reason is that recent advances in the numerical modelling of 

multiphase flows are significant; and this has been translated into a growing 

interest on the basic physics modelling of droplet related phenomena. On the 
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side of engineering applications, phenomenological models are still much in use 

because they provide a considerable amount of information at an affordable 

computational cost. And this is important for industrial design and 

manufacturing purposes.  

 

In the specific area of aeronautics applications, the study of droplet deformation 

and breakup is important because, in one way or another, it leads to the 

fundamental problem of assessing aerodynamic performance under adverse 

meteorological conditions. Aeronautics flows of interest differ very much from 

similar flows in other industries. The reason is that in the droplet reference 

frame, the incoming flow continuously accelerates as the aerodynamics surface 

(a wing, for example) approaches. This is in contrast with most of other studies 

in which the incoming flow, as seen from the droplet reference frame, has 

constant velocity. In practice, this means that experimental facilities dealing with 

droplet deformation and breakup for aeronautics applications need to be very 

specific. Typically, rotating arm-like facilities are used for this purpose. 

Descriptions of this type of facilities could be found in the publications of Garcia-

Magariño et al [1], Sor et al [2], and Veras-Alba et al [3]. 

 

As mentioned above, the development of a droplet breakup model is important 

in aeronautics applications because it helps to quantify aerodynamic 

performance degradation in adverse climate conditions. An extensive review of 

these effects could be found in the article by Cao et al [4]. More specifically, the 

experiments performed by Hansman and Craig [5] have shown that rain with a 

water content of 30 gr/m3 may degrade the aerodynamic performance of a 
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NACA 64-210 profile by a factor of 15%. Then, it is of interest to develop 

models that depending on the governing parameters, allow for the prediction of 

droplet trajectories and eventual breakup of droplets in the vicinity of airfoils. 

The fact, already mentioned, that the incoming flow, as seen from the droplet 

reference of frame, is unsteady precludes, in this case, the use of 

dimensionless numbers (such as, for example, the Weber number) that are 

meant to describe steady phenomena. 

  

The work described in this study deals with the sequential coupling of a droplet 

deformation model to a droplet breakup model. In this sense, the present study 

follows the seminal work of Joseph et al [6]. In that article, the authors started 

with the classical Rayleigh-Taylor instability model and ended up with a criterion 

that linked the growth rate of instability waves to a droplet breakup criterion in 

the case of constant incoming velocity. Two important aspects that have to do 

with the developments to be described in the following sections are: a) in their 

study, Joseph et al [6] did not account for droplet global deformation, and b) 

they choose the limiting instability wavelength as the droplet diameter. The 

comparison between theoretical predictions and experiments was very good, 

and the authors concluded that the dynamics of breakup is basically controlled 

by droplet acceleration. A quite different theoretical approach was followed later 

by Sher and Sher [7]. These two authors proposed an analytical criterion for 

droplet breakup based on an energy balance that included surface and 

dissipation energies. Wang et al [8] considered a droplet deformation model and 

assumed that droplet breakup occurs when the deformation length reaches 

some threshold value. In this light, a droplet deformation and breakup model 
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based on the virtual work principle has been presented recently by Sichani and 

Emani [9]. Considering flows generated by airfoils, Garcia-Magariño et al [10] 

have proposed a semi-empirical droplet breakup criterion that accounts for the 

time derivative of the flow velocity as seen from the droplet reference frame. 

Finally, it is important to mention the study presented by Park et al [11]. This 

was, basically, an experimental study on droplet breakup but a significant part 

of the data was based on the measured droplet dimensionless acceleration 

coefficient. Finally, when searching for generic reviews of droplet breakup 

models, the interested reader is directed to the works of Bhandarkar et al [12] 

and Theofanous and Li [13].  

 

Even though the present study, and those referenced above, are not CFD 

related, it is important to mention the CFD based works of Yang et al [16] and 

Kékesi et al [17]. In reference [16] the authors implemented a breakup criterion 

on their numerical solver based on the wavelength of the most unstable 

Rayleigh-Taylor wave and its comparison with the cross stream diameter of the 

flattened droplet. This, again, is conceptually similar to the approach followed by 

Joseph et al [6]. Reference [17] is interesting, also, because of the detailed 

discussion on the issue of droplet breakup characteristic times. 

 

Regarding the organization of the present article, the experimental facility is 

described first. Then, the deformation model, the breakup model, and the 

criterion that links them both are presented and discussed. Results are given 

next, and a practical application case is described for illustration purposes. 

Finally, conclusions are presented. 
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2. Description of the experimental setup 

 

The experimental part of this study was carried out using INTA’s rotating arm 

facility. The mechanical unit is made up of a structural frame, a DC electric 

motor and a rotating arm. The height of the structural frame is 1.15 m. The 

electric motor is placed inside with its axle set vertically, and it is connected to 

the rotating arm by means of a belt drive. The rotating arm, manufactured of 

aluminum with a streamlined cross section, has a length of 2.2 m from the 

rotation axis to the center of the Styrofoam airfoils that are placed at its end. A 

counterweight system is placed opposite to the rotating arm to balance the 

weight. Struts have been installed over the rotating arm and counterweight 

beams to improve its stiffness. A sketch of the experimental setup is shown in 

figure 1. The electric motor has a rated power of 5 kW that allows the arm to 

rotate at a maximum speed of 400 rpm for the largest airfoil models. Its 

rotational speed with an uncertainty of ± 1 m/s is controlled by means of an 

optical encoder. For the experimental campaigns in this study, three different 

airfoil speeds were used: 70 m/s, 80 m/s and 90 m/s. A sketch of the facility is 

presented in figure 1. An actual photograph of the system is shown in figure 2. 
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Figure 1. Sketch of the rotating arm facility. Top: view from above. Bottom: 

lateral view.  
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Figure 2. Actual picture of the facility.  

 

A self-similar symmetric bluff body shape was selected for the airfoil models. 

Two different airfoil models, M1 and M2, were actually used for the 

experimental campaigns. Their leading edge radius, chord, and thickness were 

0.103 m, 0.690 m and 0.276 m for model M1, and 0.070 m, 0.468 m and 0.187 

m for model M2.  A view of the airfoil's upper half cross-section is shown in 

figure 3. The airfoil dimensionless coordinates are specified in table 1.  

 

Figure 3. Upper half of the airfoil cross- section shape.  
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x/c   z/c   x/c   z/c 

0.000   0.000   0.274   0.200 

0.002   0.032   0.308   0.198 

0.006   0.041   0.344   0.192 

0.012   0.055   0.383   0.183 

0.020   0.072   0.423   0.171 

0.030   0.089   0.465   0.158 

0.042   0.105   0.510   0.143 

0.056   0.121   0.556   0.127 

0.072   0.136   0.604   0.110 

0.090   0.150   0.655   0.093 

0.110   0.162   0.707   0.076 

0.133   0.173   0.762   0.059 

0.157   0.183   0.818   0.044 

0.183   0.191   0.877   0.028 

0.211   0.196   0.937   0.014 

0.241   0.200   1.000   0.000 

 

Table 1. Airfoil dimensionless coordinates 

 

The air flow in the vicinity of the airfoil leading edge was characterized using the 

Particle Image Velocimetry (PIV) technique. The room was seeded with 

atomized olive oil droplets having a diameter of 1 µm. The flow was illuminated 

by two synchronized pulsed sheet lasers ND:Yag 190 mJ and recorded by a 

Power Plus 4MP camera.  Three different lenses were used depending on the 

field of view, a AF-S VR Micro Nikkor 105 mm f/2.8 G IF-ED Nano Crystal Coat, 

a AF Nikkor 80-200 mm f 2.8 D IF-ED, and a Nikkor 50 mm f/1.4. Vertical and 

horizontal planes containing the center line of the airfoil were used to define the 

interrogation windows. Image and laser pulses were synchronized with times 

between pulses in the range between 1.1 µs and 200 µs. The maximum 

displacement of the seeding particles between pulses was of the order of 3 mm. 
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This displacement is much smaller than the airfoil leading edge radius that is 

the characteristic length of the problem. More details about the experimental 

PIV procedure used to characterize the flow field could be found in references 

[1-2]. 

 

A mono-disperse droplet generator TSI MDG-10 was installed above the 

rotating plane of the arm so a train of droplets could fall into the path of the 

airfoil.  Droplets were generated by applying a instability (by means of a 

piezoelectric actuator) to a water jet. The size of the droplets thus generated 

was controlled by changing the ratio between the flow rate and the harmonic 

disturbance frequency.  In this way, droplets were generated with diameters in 

the range between 0.4 mm and 1.3 mm. The deformation and motion of the 

droplets were recorded with a high speed camera Photron SA-5 working at 

75,000 frames per second with a maximum resolution of 192 x 312 pixels. The 

camera was equipped with a combination of a 200 m Nikkor lens and a 2x 

teleconverter.  A 2000 W xenon backlight was used to increase the contrast 

between the droplets and the background. The image system setup was 

calibrated using an AP-G100 grid indexing pattern. A correlation of 14.20 

px/mm was found.  Images were post-processed using the Photron FASTCAM 

software. The method proposed by Otsu [18] was used to translate the grey 

scale images to binary ones. Then, the binary images were used to compute 

the centroids of droplets which, in turn, were used to track trajectories. The 

normalized second central moments of the images were used to find ellipses 

whose minor and major axes fitted the droplet. The method uncertainty, was 

derived from volume conservation considerations. More details could be found 
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in reference [19]. Relative distances between the droplets and the incoming 

airfoil were also tracked. 

 

3. Droplet deformation and breakup models 

 

This section is divided into two subsections. First the deformation model is 

described. This deformation model is, basically, apart from some minor 

modifications, the one described by the authors in reference [2]. The model is 

summarized here for the sake of completion. The second subsection addresses 

the formulation of the breakup model and how the deformation and breakup 

models are coupled together. 

 

3.1 Deformation model 

 

The following sketch, see figure 4, describes the situation that is accounted for 

by the model.  
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Figure 4. Sketch showing the basic model setup  

 

The experimentally verified hypothesis on which the deformation model is 

based are as follow: 

 

 The model is valid only in the region close to the airfoil stagnation line. 

This means that the model does not account for shear effects in the flow 

field; i.e.: the flow is considered to be one dimensional. 

 

 The model is made up of two equations of motion for the droplet motion 

dynamics plus another one the droplet deformation. 

 

 The droplet deforms (flattens) as an oblate spheroid. 

 

 Air velocity is much larger than droplet velocity.  
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 Droplet unsteady drag is made up of two terms: a steady term plus an 

unsteady one that depends on air velocity time gradients. 

 

 Droplet deformation rates depend on external pressure force and surface 

tension effects only; i.e: viscous effects are considered to be negligible. 

 

Dimensionless model equations are: 

 

𝑑2𝜂

𝑑𝜏2
= 𝛱1𝕍𝑠𝑥

2 𝛼2 [(𝐶𝐷𝑠𝑝ℎ𝑒𝑟𝑒

(𝑅𝑑/𝑎 )3

∙ 𝐶𝐷𝑑𝑖𝑠𝑘

1−(𝑅𝑑/𝑎)3

 ) + (𝛱2

1

𝛼2𝕍𝑠𝑥
2

𝑑𝕍𝑠𝑥

𝑑𝜏
)] 

(1) 

 

 

𝑑2𝜁

𝑑𝜏2
= −𝛱1𝛼2𝕍𝑠𝑥𝕍𝑠𝑦 (𝐶𝐷𝑠𝑝ℎ𝑒𝑟𝑒

(𝑅𝑑/𝑎)3

∙ 𝐶𝐷𝑑𝑖𝑠𝑘

1−(𝑅𝑑/𝑎)3

 ) + 𝛱3 
(2) 

 

 

𝑑2𝛼

𝑑𝜏2
= −𝛱4𝔽(𝛼) +

16

3
𝛱1𝐶𝑝𝕍𝑠𝑥

2  (3) 

 

Equation (1) is the droplet equation of motion along the x axis. Equation (2) is 

the equation of motion along the y axis. Equation (3) is the droplet deformation 

equation. Dimensionless variables and functions are defined as follows: 

 

𝜂 =
𝑥

𝑅𝑑
, 𝜁 =

𝑦

𝑅𝑑
, 𝛼 =

𝑎

𝑅𝑑
, 𝜏 =

𝑡𝑈𝑚

𝑅𝑐
 

(4) 
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𝕍𝑠𝑥 =
𝑉𝑠𝑥

𝑈𝑚
, 𝕍𝑠𝑦 =

𝑉𝑠𝑦

𝑈𝑚
, 𝔸𝑑 =

𝐴𝑑

𝑅𝑑
2 , 𝔽(𝛼) =

𝐹(𝑎)

𝑅𝑑
 (5) 

 

Where 𝑥, 𝑦 and 𝑡 are the spatial coordinates and time respectively, 𝑎 is the 

largest semiaxis of the oblate spheroid (see figure 4). 𝑈𝑚 is the velocity of the 

incoming airfoil. 𝑅𝑑 and 𝑅𝑐 are the initial droplet radius and airfoil leading edge 

radius respectively. 𝑉𝑠𝑥 and 𝑉𝑠𝑦 are the x and y components of the slip velocity, 

(air velocity minus droplet velocity). Whenever air velocity is much larger than 

droplet velocity, 𝑉𝑠𝑥 and 𝑉𝑠𝑦 can be approximated by the air velocity components 

relative to the droplet. 𝐴𝑑 is the droplet surface area and 𝐹(𝑎) is 𝑑𝐴𝑑/𝑑𝑎, that is 

an analytical function. In particular, for an oblate spheroid, the dimensionless 

surface area 𝔸𝑑 is defined as: 

 

𝔸𝑑 =
𝐴𝑑

𝑅𝑑
2 = 2𝜋𝛼2 +

𝜋

𝛼(𝛼6 − 1)1/2
ln

1 + 𝑒

1 − 𝑒
 

(6) 

 

 

𝑒 =
(𝛼6 − 1)1/2

𝛼3
 (7) 

 

The dimensionless parameters that appear in equations (1), (2) and (3) are, 

𝛱1 = [
3

8

𝜌𝑎𝑖𝑟

𝜌𝑑
(

𝑅𝑐

𝑅𝑑
)

2

] 
(8) 
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𝛱2 =
𝑘𝑅𝑑

𝑅𝑐
 

(9) 

 

 

𝛱3 =
𝑔𝑅𝑐

𝑈𝑚
2

(
𝑅𝑐

𝑅𝑑
) 

(10) 

 

 

𝛱4 =
16

3𝜋

𝜎

𝜌𝑑
(

𝑅𝑐

𝑈𝑚𝑅𝑑
)

2 1

𝑅𝑑
 (11) 

 

where 𝜌𝑎𝑖𝑟 and 𝜌𝑑 are the air and water density respectively. 𝑔 is the gravity 

constant, and 𝜎 the water surface tension. 𝑘 is an experimental calibration 

coefficient that was found to be constant (equal to 9) that multiplies the 

unsteady drag term in equations (1) . 𝐶𝑑𝑠𝑝ℎ𝑒𝑟𝑒
 and 𝐶𝑑𝑑𝑖𝑠𝑘

 are the steady drag of 

the sphere and disk respectively that are used to interpolate the steady drag 

term of the droplet. The initial conditions needed to integrate equations (1), (2) 

and (3) are: 

 

𝜂(0) = 0, (
𝑑𝜂

𝑑𝜏
)

𝜏=0
= 0 

(12) 

 

 

𝜁(0) = 0, (
𝑑𝜁

𝑑𝜏
)

𝜏=0
=  

𝑅𝑐

𝑅𝑑

𝑉0

𝑈𝑚
 

(13) 

 

𝛼(0) = 1, (
𝑑𝛼

𝑑𝜏
)

𝜏=0
= 0 (14) 
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Integration of equations (1), (2), and (3), together with the initial conditions (12), 

(13) and (14), yields the (x, y) trajectories of the droplet and its deformation. 

Mass conservation of the deformed droplet after the initial spherical shape 

implies that deformation is described using just one parameter "𝑎" (see figure 

4). Air velocity has been obtained first using Particle Image Velocimetry (PIV) 

technique in the room where the rotating arm was placed. This was done 

because accurate air flow characterization is crucial as it affects critically the 

droplet acceleration which, in turn, governs droplet breakup (as it will be 

described in the next subsection). However, for the practical resolution and 

analysis of equations (1), (2) and (3), it is far more practical to have an 

analytical description of the flow field along the stagnation streamline. The fact 

that the selected airfoil shape was rather blunt (typical of control surfaces in 

modern aircraft) suggested that the stagnation streamline could be assimilated 

to the potential flow past a cylinder with an appropriate coefficient; and this was 

indeed the case. In particular, it was found that the following analytical 

expression for the stagnation streamline flow closely matches the air flow 

actually being measured: 

 

𝑉𝑠 = 𝑈𝑚

𝑅𝑐
𝑛

(𝑅𝑐 +  𝑟0 − 𝑈𝑚𝑡)𝑛
 

(15) 

 

Where 𝑛 = 1.8 (𝑛 = 2 in the case of the potential flow around a circular 

cylinder).  𝑟0 is the initial distance from the droplet to the airfoil leading edge. 

Figure 5 shows the comparison between the PIV experimentally measured 
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airflow profile along the stagnation streamline, the results are obtained by 

performing a 2D numerical inviscid flow simulation using Fluent, and the profile 

obtained using the approximate relation (15). 

 

 

 

Figure 5. Incoming flow characterization. Blue line: PIV measurement, black 

line: numerical simulation, red line: approximate relation (15). 

 

 

3.2 Breakup model and coupling to the deformation model 

 

Joseph et al [6] performed a stability analysis on the problem of a heavy fluid 

with a flat surface that falls into a lighter fluid. Basically, they assumed that a 

disturbance on the flat surface grows as 𝑒𝑥𝑝 (𝑛𝑡) and found out that: 

 

𝑛 = [
𝜅𝑔(𝜌2 − 𝜌1)

𝜌1 + 𝜌2
]

1/2

 (16) 

x/r0 
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Where subscripts “2” and “1” stand for the heavier and lighter fluid respectively, 

𝜅 = 2𝜋/𝜆 is the wave number, and 𝜆 is the wave length. If surface tension is 

included into the analysis, it is found that the critical wave number, 𝜅𝑐, and 

wavelength, 𝜆𝑐, are as follows: 

 

𝜅𝑐 = [
𝜌2 𝑎𝑐

𝜎
]

1/2

=
2𝜋

𝜆𝑐
 (17) 

 

Where 𝑎𝑐 is the acceleration of the heavy fluid into the light fluid. If 𝜆 <  𝜆𝑐 the 

heavy fluid is stable. Now, Joseph et al [6] made an important assumption. In 

particular, when dealing with droplets, they assumed that 𝜆𝑐 is the droplet 

diameter 𝐷𝑑 so that if 𝐷𝑑 < 𝜆𝑐 the droplet is stable (no breakup occurs). Notice, 

also, that the analysis of Joseph et al [6] did no account for droplet deformation 

and considered a constant velocity incoming flow. 

 

Now, two main hypothesis are made in the present work: 

 

 The droplet acceleration in equation (17) is computed from the droplet 

trajectory and deformation model, equation (1-3). 

 

 The critical wavelength in equation (17) that signals the onset of breakup 

is the hydraulic diameter of the deformed droplet. 

 

The hydraulic diameter of a droplet is defined as: 
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𝜙𝑑 = 6 
𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝐴𝑑𝑟𝑜𝑝𝑙𝑒𝑡
 (18) 

 

Where Vdroplet and Adroplet are the droplet volume and surface area respectively. 

Since the volume of the deforming droplet remains constant until breakup, it is 

possible to define it as a function of the initial radius: 

 

𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = 4/3𝜋𝑅𝑑
3 (19) 

 

Combining equations (18) and (19), the hydraulic diameter is written as: 

  

 

𝜙𝑑 = 6 
4/3𝜋𝑅𝑑

𝐴𝑑/𝑅𝑑
2 =

8𝜋𝑅𝑑

𝔸𝑑
 (20) 

 

 

This hydraulic diameter is taken as the critical wavelength that defines the onset 

of instability (breakup) of the deformed droplet. 𝔸𝑑 is the dimensionless surface 

area of an oblate spheroid previously defined in equations (6-7). Naming 𝔸𝑑
∗  as 

the 𝔸𝑑 value at the onset of instability and replacing it in relation (17) the 

following relation is obtained: 

 

8𝜋𝑅𝑑

𝔸𝑑
∗ = 2𝜋 (

𝜎

𝜌𝑑   �̈�∗
)

1/2

 (21) 
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Where  �̈�∗  is the droplet horizontal acceleration at the instant of breakup. 

Rendering relation (21) dimensionless using the scaling described in (4-5) the 

outcome is: 

 

24

(3𝜋)1/2

𝜂∗̈1/2 

𝔸𝑑
∗

1

𝛱4
1/2

= 1 (22) 

 

This relation (22) is the breakup criterion actually proposed in this study. Also 

Π4 is the dimensionless parameter defined in relation (11). Then, the procedure 

to predict the onset of breakup is as follows: 

 

 Droplet trajectory and deformation equations (1-3) are solved in time 

starting with initial conditions (12-14). 

 

 Ψ (see relation (23)) is continuously monitored during integration of the 

dynamics equations. 

 

24

(3𝜋)1/2

�̈�1/2 

𝔸𝑑

1

𝛱4
1/2

= Ψ (23) 

 

 The onset of breakup is defined at the instant when Ψ = 1. This instant 

defines �̈�∗ and 𝛼∗ that are the droplet acceleration and droplet 

deformation at onset of breakup. 
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Notice that, from an experimental standpoint, the onset of breakup is defined as 

the instant in which the deformed droplet deviates from the oblate spheroid 

shape. This is illustrated in figure 6 where a frame is presented in which the 

protrusion around the droplet meridian marks the departure from the oblate 

spheroid shape. 

 

 

 

Figure 6. Actual photograph of the instant (departure from oblate spheroid 

shape) that is considered as the onset of droplet breakup. 

 

For large deformations, the droplet hydraulic diameter defined in relation (20) 

acquires a limiting closed form that simplifies the analysis. This is shown in 

Appendix A where a simpler form of the breakup criterion (22) is developed in 

the limit of large deformations. 

 

4. Results  
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The breakup model formulated in equation (22) has been tested in a series of 

42 experimental test where the onset of breakup was targeted. Two airfoil 

leading edge radius: 0.103 m, and 0.070 m, three airfoil velocities: 91 m/s, 81 

m/s, and 71 m/s, and seven droplet radius: ranging from about 300 µm to 600 

µm, were considered.  This makes a total number of 2 x 3 x 7 = 42 cases. The 

results are presented in Table 3 where the experimentally measured Ψ value for 

each case is shown. Remember that, according to the breakup analytical 

criterion (22), Ψ should be 1 at the onset of breakup. Then experimental values 

of Ψ different than 1 in table 3 give a direct indication of the discrepancies 

between experimental and theoretical results.   

 

 

 

 

 

 

 

 

 

 

Case Rc (m) Um (m/s) Rd (µm) Ψ Case Rc (m) Um (m/s) Rd (µm) Ψ 

1 0.103 91 597 1.10 22 0.070 91 567 1.18 

2 0.103 91 550 1.11 23 0.070 91 558 1.10 

3 0.103 91 525 1.10 24 0.070 91 522 1.14 

4 0.103 91 450 1.00 25 0.070 91 451 1.06 

5 0.103 91 396 0.98 26 0.070 91 403 1.03 

6 0.103 91 359 0.95 27 0.070 91 347 1.02 

7 0.103 91 302 0.88 28 0.070 91 303 0.95 
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8 0.103 81 580 1.10 29 0.070 81 606 1.20 

9 0.103 81 549 1.04 30 0.070 81 522 1.13 

10 0.103 81 485 1.04 31 0.070 81 507 1.20 

11 0.103 81 450 1.03 32 0.070 81 450 1.09 

12 0.103 81 427 1.03 33 0.070 81 397 1.05 

13 0.103 81 348 0.94 34 0.070 81 347 1.04 

14 0.103 81 300 0.93 35 0.070 81 296 0.94 

15 0.103 71 580 1.05 36 0.070 71 614 1.11 

16 0.103 71 551 1.06 37 0.070 71 553 1.16 

17 0.103 71 504 1.00 38 0.070 71 514 1.12 

18 0.103 71 447 0.99 39 0.070 71 444 1.07 

19 0.103 71 402 0.97 40 0.070 71 410 1.08 

20 0.103 71 357 0.92 41 0.070 71 347 1.01 

21 0.103 71 304 0.88 42 0.070 71 331 1.00 

 

 

Table 3. Measured Ψ values at the onset of the droplet breakup. The theoretical 

model predicts Ψ = 1.  

 

When analysing the data provided in Table 3, the following aspects could be 

noticed: 

 

 The average measured value of Ψ for cases from 1 to 21 (Rc = 0.103 m) 

is 1.01, its standard deviation is 0.071, and the maximum and minimum 

Ψ values are 1.11 and 0.88 respectively. Then, it could be said that 

measured and predicted values of  Ψ  agree closely. 

 

 The average Ψ value of cases from 22 to 42 (Rc = 0.070 m) is 1.08 and 

its standard deviation is 0.075. The maximum and minimum Ψ values are 

1.20 and 0.94 respectively. These figures show larger discrepancies than 

the previous ones (cases 1 to 21). The reason could be that the airfoil in 
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cases 1 to 21 has a leading edge radius of 0.103 m, while in cases 22 to 

42 the leading edge radius was 0.070 m. That is: the smaller the airfoil 

leading edge radius the smaller the region around the stagnation 

streamline where the flow could be considered one-dimensional, thereby 

weakening the consistency of the model hypothesis. That is: it is 

reasonable to expect that smaller airfoil leading edge radius lead to 

larger dicrepancies.  

 

 Within the measurements uncertainty, the breakup model accuracy is not 

affected by the velocity of the incoming airfoil, i.e: it is not affected by 

scale changes in the continuously accelerated flow that impinges on the 

droplet. This means that the drag term that has been implemented in the 

droplet trajectory equations (made up of a steady term plus an unsteady 

one) reasonably models the actual drag effects. 

 

 Typically, the largest discrepancies between model and experimental 

results occur when the largest droplets are considered. In this regard, it 

was observed that the larger droplets emitted from the droplet generator 

had a slight tendency to deviate from the perfect spherical form. Also, 

some of them were undergoing small shape oscillations as they were 

falling down through the air and approached the measurement window in 

the airfoil path. Typically, these droplets had a tendency to break at a 

time when this deformation was, still, not the one predicted by the model. 

Given the form of equation (26), this translates into a breakup value of Ψ 

larger than 1. 
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The next question to be addressed is the repeatability of the results. To this 

end, case 2 (the largest airfoil leading edge radius, the highest velocity, and a 

large droplet) was repeated 9 times. Also case 42 (the smallest airfoil, at the 

lowest velocity, with the smallest droplet) was repeated 13 times. The results 

obtained are presented in Table 4. It is to be noticed that these test could not be 

repeated exactly with regard to the initial droplet radius. The reason is that it is 

not possible to control the droplet generator in such a way so as to produce 

exactly similar droplets. In the original Case 2 the droplet radius was 550 µm. In 

the repeatability tests, droplet sizes ranged from 526 µm up to 560 µm. In the 

original case 42, the droplet radius was 331 µm. In the repeatability tests, 

droplet radius varied between 330 µm and 359 µm.  

 

 

 

 

 

 

 

 

Case Rc (m) Um (m/s) Rd (µm) Ψ Case Rc (m) Um (m/s) Rd (µm) Ψ 

2A 0.103 91 546 1.10 42A 0.070 71 359 1.05 

2B 0.103 91 534 1.06 42B 0.070 71 336 0.96 

2C 0.103 91 526 1.08 42C 0.070 71 333 0.95 

2D 0.103 91 560 1.12 42D 0.070 71 335 0.98 

2E 0.103 91 546 1.10 42E 0.070 71 335 0.87 

2F 0.103 91 546 1.06 42F 0.070 71 342 0.99 

2G 0.103 91 532 1.04 42G 0.070 71 357 1.00 
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2H 0.103 91 536 1.12 42H 0.070 71 347 1.01 

2I 0.103 91 560 1.09 42I 0.070 71 340 0.96 

     42J 0.070 71 339 1.00 

     42K 0.070 71 337 0.85 

     42L 0.070 71 330 1.00 

     42M 0.070 71 342 1.00 

 

 

Table 4. Results of the repeatability tests 

 

The following aspects could be observed in Table 4: 

 

 In Cases 2A to 2I, the average Ψ at the breakup was 1.09, the standard 

deviation was 0.028, and the maximum and minimum values were 1.12 

and 1.04. So, basically, all repeatability test fit in a band of ± 3% around 

their mean. 

 

 In Cases 42A to 42M, the average Ψ at the breakup was 0.98, the 

standard deviation was 0.056 and the maximum and minimum values 

were 1.05 and 0.85. So the repeatability test fit in a band of about ± 13% 

around their mean. Again, this larger band could be caused by the fact 

that Cases 42A to 42M are further away from the model hypothesis that 

cases 2A to 2I. 

 

Comparison of results for case 2 in table 3 are presented in figures 7 and 8 

respectively. In particular, figure 7 shows the comparison between the 

measured and predicted evolution of “” (droplet shape) as a function of the 

dimensionless time “”. The serrated form of the experimentally measured “” 
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evolution has to do with the method (already described) to translate a pattern of 

pixeled grey shading into an equivalent spheroid shape. Figure 8 shows the 

comparison between measured and predicted evolution of the droplet trajectory. 

Both comparisons shown in figures 7 and 8 show a reasonable agreement 

between experiments and models. The same type of comparison is presented 

in figures 9 and 10 for case 42. In this case, the local discrepancies are larger 

but the global comparison in terms of the value of Ψ at the onset of breakup is 

still reasonable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Comparison between measured and predicted “” values of the 
 

 deforming droplet as a function on dimensionless time “ for case 2 
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Figure 8. Comparison between measured and predicted “” values of the 
 

 deforming droplet as a function on dimensionless time “ for case 2 
 

 

 
 

Figure 9. Counterpart of figure 7 for case 42 
 

 



29 
 

 
 

Figure 10. Counterpart of figure 8 for case 42 
 

 

 

5. Application case 

 

The application case presented hereafter characterizes the breakup pattern of a 

series of water droplets placed at different horizontal positions away from the 

incoming airfoil. These initial positions are defined by a new dimensionless 

parameter 5 : 

𝛱5 =
𝑟0

𝑅𝑐
 

(24) 

 

 

Where 𝑟0 is the initial horizontal distance between the droplet and the airfoil 

leading edge. Regarding the vertical direction, all droplets are placed initially at 

a distance of 0.1 Rc above the stagnation streamline. Computation is carried out 

either until the droplet falls at a distance of 0.1 Rc below the stagnation 

streamline, or breaks, or is hit by the airfoil. Figure 11 illustrates the basic 

configuration chosen for this application case.  
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Figure 11. Sketch of the configuration chosen for the application case- 

 

To keep the illustration lighter, only a few droplets have been plotted in figure 

11. However, the number of actually computed droplets was 100 per case. The 

residence time tr of a droplet inside the ± 0.1 Rc vertical region is  

tr = 0.2 Rc / Ut , where Ut is the free fall terminal velocity of the droplet (it is 

assumed that droplets reach the computational region at their free fall terminal 

velocity). Integration of the model is carried out from t = 0 up to t = tr unless the 

droplet reaches breakup conditions, or the airfoil touches the droplet. That is, 

the following situations may occur during integration:   

   

 Situation 1: The residence time tr of the droplet in the ± 0.1 Rc vertical 

region is larger than the time needed for the airfoil to reach the droplet.  

In this case, the droplet impacts the airfoil in the shape of an oblate 

spheroid.  
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 Situation 2: The droplet breaks before it is hit by the airfoil. However, 

assuming that the centroid of the secondary droplets distribution moves 

with the same velocity of the original droplet, the airfoil reaches the cloud 

of secondary droplets before it leaves the ± 0.1 Rc integration region. In 

this case, a cloud of secondary droplets impacts the airfoil.    

 

 

 Situation 3: The droplet breaks before reaching the residence time tr and 

leaves the ± 0.1 Rc integration region without been hit by the airfoil.  

  

 Situation 4: The droplet enters and leaves the ± 0.1 Rc integration region 

without either breaking or being hit by the airfoil. 

 

Figure 12 shows the outcome of three different cases: droplets having an initial 

radius 0.5 mm being approached by an airfoil with Rc = 0.103 m at three 

different velocities: 100 m/s, 90 m/s, and 80 m/s. The 5 parameter 

(dimensionless initial distance between droplet and airfoil) was varied between 

0 and 8.  
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Figure 12. Predicted droplet situations for three different airfoils velocities as a 

function on parameter 5 

 

It could be observed that the proposed method allows for a quantitative 

prediction of the fraction of droplets that go through one of the four above 

described situations. For the droplets size and airfoil velocities being considered 

in this application case, it is found that most of the falling droplets located within 

a distance of approximately 6 leading edge airfoil radius reach breakup 

condition and impact the airfoil afterwards. The method could easily be adapted 

to the case where a certain distribution of droplet sizes is used instead of a 

series of droplets of the same size. The computed fraction of droplets that 

impact the airfoil (either as a deformed oblate spheroid or as a cloud of 

secondary droplets) could be used to estimate the deterioration of the airfoil 

aerodynamics performance.      

 

6. Conclusions 

5 
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A droplet trajectory and deformation model has been coupled to a droplet 

breakup model. The objective has been to predict the onset of droplet breakup 

when an incoming airfoil is approaching. The breakup model is based on an 

instability analysis that computes the characteristic parameters associated to 

the growth of disturbances. The main hypothesis that has been made in the 

model is that the critical wavelength that signals the onset of droplet breakup is 

the hydraulic diameter of the deformed droplet (assuming that it deforms as an 

oblate spheroid). This has led to a single analytical relation that is monitored 

during time integration of the trajectory and deformation droplet dynamics 

equations. When this relation reaches a certain value, the droplet is assumed to 

be in breakup conditions. 

 

The theoretical model predictions have been tested experimentally under a 

variety of conditions in a rotating arm facility. In particular, two airfoil leading 

edge radius: 0.103 m, and 0.070 m, three airfoil velocities: 91 m/s, 81 m/s, and 

71 m/s, and seven different droplet radiuses: ranging from about 300 µm to 600 

µm, were considered. For the airfoil with the largest leading edge radius (closer 

to the model hypothesis) it was found that experimental and model 

discrepancies in the breakup parameter were of the order of ± 10 %. For the 

airfoil with the smaller leading edge radius (thereby further away from the 

hypothesis of the model) discrepancies were of the order of ± 20 %. Uncertainty 

of the experimental setup was estimated to be of the order of ± 10 %.  

Repeatability tests were carried out for some representative cases and it was 

found that, depending on the case, repeated cases fitted within a band of the 
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order of ± 3 % to ± 13 % around their mean.  

 

All this means that the proposed model could be used with reasonable 

confidence when trying to predict what situation is to be encountered by an 

airfoil that approaches a distribution of droplets (for instance, in the fashion of 

falling rain). This has been illustrated by presenting an example in which the 

model predicts what is the fraction of droplets that go through one of the 

following situations: 1) the spheroidal droplet impacts the airfoil, 2) the droplet 

breaks up and the ensuing cloud of secondary droplets impact the airfoil 

afterwards, 3) the droplet breaks up but it is not impinged by the airfoil, and 4) 

the droplet neither breaks nor it is impinged by the airfoil. Note that situations 1 

and 2 have a significant influence on the aerodynamics behaviour of the airfoil. 

 

Because of the reasonable agreement that has been found between the 

theoretical model and the experiments, it could be worth to evolve the model to 

account for droplets that are not necessarily restricted to be around the airfoil 

stagnation streamline region. In this case, it would be necessary to account for 

the shear in the incoming airflow which might lead to rotation of the droplets. 

This would, possibly, require the introduction of another droplet equation for the 

rotation dynamics and some changes in the breakup model. If this is to be 

achieved, it would be possible predict airfoil aerodynamics performance under 

rain conditions accounting for the whole region around the airfoil.    
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Appendix A. Breakup criterion in the limiting case of large deformations 

 

For a sphere, equation (18) is simplified as: 𝜙𝑑 = 6 (4/3𝜋 𝑅𝑑
3)/(4𝜋𝑅𝑑

2) = 2 𝑅𝑑. 

The dimensional surface area of an oblate spheroid is: 

 

𝐴𝑑 = 𝜋 (2𝑎2 +
𝑏2

𝑒
ln (

1 + 𝑒

1 − 𝑒
)) (A.1) 

 

where: 

 

𝑒 = (1 − (
𝑏

𝑎
)

2

)

1/2

  (A.2) 

 

In the limit 𝑏 → 0, the second term of the equation A.1 behaves as: 

 

lim
𝑏→0

  𝜋 
𝑏2

𝑒
 ln (

1 + 𝑒

1 − 𝑒
) → 0 ∙ ∞ (A.3) 
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This needs to be resolved. Renaming 𝑒 = (1 − 𝜖)1/2 and applying L’Hôpital 

method to the limit A.3, it is found that: 

 

lim
𝑏→0

𝜋 
𝑏2

𝑒
 ln (

1 + 𝑒

1 − 𝑒
)

= lim
𝜖→0

𝜋𝑎2  
𝜖2

(1 − 𝜖)1/2
 ln (

1 + (1 − 𝜖)1/2

1 − (1 − 𝜖)1/2
) → 0 

(A.4) 

 

So to the first order approximation, 

 

𝐴𝑑~ 2𝜋𝑎2 (A.5) 

 

That means: 

 

𝜙𝑑~ 
4/3𝜋𝑎2𝑏

2𝜋𝑎2
= 4𝑏 (A.6) 

 

That is, the critical wavelength that defines the onset of instability (breakup) of 

the deformed droplet for highly deformed droplets is 4𝑏 (four times the shortest 

diameter of the oblate spheroid). Naming as 𝑏∗ the 𝑏 value that defines the 

onset of instabilities and replacing it in relation (17) a new relation is obtained: 

 

4𝑏∗ = 2𝜋 (
𝜎

𝜌𝑑 �̈�
∗
)

1/2

 (A.7) 
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By means of using the scaling described in (4-5) the relation (A.7) is rendered 

dimensionless and expressed as: 

 

23

31/2𝜋3/2

𝜂∗̈1/2 

𝛼∗2

1

𝛱4
1/2

= 1 (A.8) 

 

In the experiments, the right hand side of relation (A.8) at breakup onset is not 

“1” but some figure Ψ that differs from “1”.  
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31/2𝜋3/2

𝜂∗̈1/2 

𝛼∗2

1

𝛱4
1/2

= Ψ (A.9) 

 

This relation (A.8) is the simplified breakup criterion for large deformations when 

a >> b. This simplified criterion has, also, been applied to the 42 cases 

presented in table 3. In general, it has been found that theoretical relation (A.8) 

tends to anticipate the onset of experimental breakup. In the case of the larger 

airfoil leading edge radius, Ψ varied between 0.98 and 1.18 (as compared to  

Ψ=1), while in the case of the smaller leading edge radius, Ψ varied between 

0.97 and 1.35.       
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