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Abstract: This paper follows up on the author’s recent paper “Entropy Production by
Explicit Runge-Kutta schemes” [1], where a formula for the production of entropy by
fully discrete schemes with explicit Runge-Kutta time integrators was presented. In this
paper, the focus is on implicit Runge-Kutta schemes, for which the fully discrete
numerical entropy evolution scheme is derived and tested.

1. Introduction

The purpose of this paper is to extend the work of [1], which computed the entropy
produced by fully discrete numerical schemes with explicit Runge-Kutta (RK)
integrators, to general RK (including implicit) schemes (see [2, 3] for an introduction to
RK schemes with further references). The fully discrete schemes that will be analyzed
must be understood as deriving from space and time discretization of general systems of
conservation laws via the method of lines. The spatial discretization must be
supplemented with a suitable time integrator, usually a Runge-Kutta scheme (see [4] for
a recent review). While higher-order time integrators are usually explicit RK methods,
implicit and semi-implicit RK schemes are also gaining relevance as viable candidates
for the integration of time-dependent pde (see for example [5, 6] and the recent work by
Jameson [7] and references therein). Despite their increased numerical cost, implicit RK
methods offer superior stability properties, higher-order accuracy and relaxed CFL
restrictions compared with explicit methods, and are ideally suited to the integration of
stiff problems.

Many physical systems of practical interest are equipped with at least one entropy
function that is exactly conserved in smooth solutions but is dissipated across singularities
such as shocks. At the numerical level, schemes that reproduce this behavior are called
entropy stable and constitute an active area of research dating back to the works of Lax
[8], Harten et al. [9] and Osher [10]. Entropy stability has proved instrumental in the
analysis of numerical approximations of systems of conservation laws, particularly in
several space dimensions, as it provides global stability estimates for numerical methods
for multi-dimensional conservation laws (see [11] for a recent review with an extended
set of references). The systematic construction of entropy stable schemes for systems of
conservation laws was initiated by Tadmor [12] by blending entropy conservative fluxes
with appropriate dissipation operators in order to achieve entropy stability. Following this
path, high-order entropy conservative fluxes were developed in [13], while arbitrarily
high-order entropy stable schemes were first developed in [14]. The stability analysis of
Discontinuous Galerkin schemes was initially addressed in [15] using entropy
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considerations (see [16, 17, 18, 19] for updated accounts and further references). Entropy
stability considerations can also be used to guide the design of schemes based on
summation-by-parts operators (see [20] and references therein).

In recent times, entropy-stable schemes have risen to prominence [21, 22, 23]
especially in the context of turbulent flow simulations using high-order methods [24].
While significant attention is usually paid to the entropy production properties of the
spatial schemes, comparatively little effort has been devoted to the study of the entropy
production of temporal schemes, which however can have a significant impact [25, 26].
Indeed, the spatial entropy production can be made negative with a suitable entropy stable
scheme, but time integration schemes may still produce entropy. To attain fully discrete
local entropy stability (the requirement that entropy should be dissipated within a time-
step at each node of the computational mesh), the spatial dissipation must dominate the
temporal entropy production, which may require a suitable CFL condition (see e.g. [12]).
Low-order, explicit RK schemes tend to produce (spurious) entropy, while higher-order
schemes tend to dissipate it [27, 1]. The situation with implicit schemes is however less
explored. Tadmor [12] (see also [28]) has shown that the Backward-Euler scheme
dissipates entropy, while a generalized form of the Crank-Nicolson scheme introduced in
[13] is entropy conservativel. For those cases, entropy stability of the fully discrete
scheme is attained regardless of time-step size as long as the spatial scheme is entropy
dissipative. In the general case, it will be shown that even implicit RK schemes generally
produce entropy and, thus, entropy stability can only be guaranteed under a CFL bound.

The paper is organized as follows. Section 2 contains the heart of the developments of
the paper. Section 2.1 derives the fully discrete entropy evolution equation for generic
Runge-Kutta time integrators coupled to finite-volume spatial discretizations of systems
of conservation laws in 1D. Sections 2.2 and 2.3 explore the consequences of the entropy
evolution equation for local and global entropy stability, respectively, while section 2.4
discusses several RK schemes in detail. Section 3 presents the results of numerical
experiments involving entropy stable discretizations of the linear advection and the
Burgers equation (with quadratic and logarithmic entropies) coupled to several RK
schemes. For illustration purposes, the investigation focuses in particular on the two and
three stage Gauss and Radau Il1A schemes, as well as on two Singly-diagonal (SDIRK)
schemes analyzed in [7]. Finally, Section 4 presents the conclusions.

2. Entropy production of fully discrete schemes

In this paper we will primarily consider systems of conservation laws in 1D of the
form
ou o) _ 0
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Y In its original form, this generalized Crank-Nicolson scheme requires an intermediate temporal state that
unfortunately does not generally have a closed form and requires quadrature. An explicit construction has
been recently derived in [25].



where U(x,t):(Ul(x,t),...,UN(x,t))T is the vector of conservative variables and

f(U):(f1 (U) fy (U))T is the flux vector. We assume that the above system is
endowed with an entropy pair (17(U),#(U)), where the entropy function 7 is convex and
the entropy flux ¢ satisfies the compatibility condition 7, (U)f,(U)=¢,U) (the

subscript U denotes differentiation with respect to U). The entropy pair satisfies the
following conservation equation [29, 30]

o1, 20V)
ot OX

where equality holds for smooth fields U. The left-hand side (LHS) of (2), which is non-
vanishing for discontinuous (weak) solutions (e.g., shocks), is the entropy production.

)

2.1. Entropy evolution equation

At the discrete level, entropy also evolves with time in a way that resembles (2). The
precise numerical entropy evolution equation follows from the fully discretized version
of (1), that we will assume to be approximated by a semi-discrete Finite Volume
numerical scheme on a grid over the range i =1,...,n as

AX; %+ F.-F.=0 3)

=2

where AX; is the length of cell i and F

i+l
2

are the numerical fluxes. Multiplying the left-

hand side (LHS) of (3) by the vector of entropy variables v{ =, (U,) and rearranging
yields the semi-discrete numerical entropy scheme

A =Dp  —d =TI, @)
dt 2 2
where
D, = \_/iTil Fi:rl - @iil ()
is the numerical entropy flux and
I, = E(HM +Hifl)
2 ‘ (6)
I, = AiilVT Fiil - AiilG)

is the numerical entropy production. ® =Vv' f —¢ is the entropy potential verifying

f(U(v))=V,0, while (7)”% =1(0,,,+0,) and Ai%(i) =0, , — 0. denote averaging and

i+1
differencing across the face, respectively. The right-hand side (RHS) of (4) is the
numerical entropy production of the spatial scheme, S =TT, .



For numerical computation, Eq. (4) is coupled to a time advancement scheme which
will also produce (or dissipate) entropy in an amount S® that will depend on the type of
scheme [12]. The previous paper [1] addressed this problem for explicit Runge-Kutta
schemes, while now we will address the issue of general (i.e. implicit) Runge-Kutta
schemes with Butcher’s Tableau [2]

G |ay - a
Cs a‘sl ass
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which corresponds to the following time-advancement scheme
ur-u'=-bR"Y—...—pR® (7

where RY =4 (Fif%—Fif%) are the numerical residuals, E;=Fii%(u‘k)) are the

numerical fluxes, 4 = At /Ax;, where At is the (possibly) spatially varying time-step,

and the intermediate states U are computed as

UP-U! =-a,RY —---a,R"
. ®)
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In order to obtain an expression for the entropy evolution of the above scheme, we
multiply both sides of (7) on the left by (V™)™ =v(U™)" =7, (U"™") . Using (4), the RHS
can be cast as

V) Y BRY ==Y, (W) RY =Y b (v ) RO =
k=1 k=1 k=1

_21 Zbk (Vi(k))T (Fif_l - Fii) - Zbk (Viml - Vi(k))T Ri(k) = (9)
k= 2 2 A
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where v = v(U ") . For the LHS, the following identity due to Tadmor [12]

(Vin+l)T (U in+1 _Uin) — 77in+1 _ 77in + Bin+% (10)
is used, where
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Combining (9) and (10) yields
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which can be arranged as
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If the matrix A, =a; is invertible?, Eq. (8) can be used to write R" in terms of

U —U" to cast (13) as

'+ A Zb( ' CDik_%):
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This is our main result, from which the entropy produced by the fully discrete scheme
(7) can be computed. The bottom row of (14) is the local entropy production of the fully

discrete scheme (denoted as S;), which can be separated into spatial S™ and temporal

S parts.

The Backward-Euler scheme

rank(A)=s, we can invert (7) in the least-squares sense as R =—(A'A)'ATAU,, (where
AU, =(U®-U/,..., Ui(s)—Ui”)T and R =(R'---,R®)"), so in (14) we should replace A™ with
(ATAA



We can check (14) with a known example such as the Backward-Euler (BE) scheme

Uin+l _Uin _ /,L (Fn+1 I::Il) (15)

i+3

which corresponds to (7) with s = 1 and a, =b, =1. The entropy production of this
scheme has been computed by Tadmor [12] as

+ﬂi (q)n+l_q)n+l) — n+2 +2~’| Hin+1 (16)

i+3 I

(where Tadmor’s notation has been adapted to ours) which does coincide with (14) for s
=1and a, =b =1. The RHS of (16) is the local entropy production of the BE scheme.

The temporal entropy production S® :—Bi”*% is semidefinite-negative, which implies

that, for entropy stable spatial schemes® (for which IT, <0), the Backward-Euler scheme
is entropy dissipative.

In the general case, the sign of the temporal entropy production is harder to analyze,
and we will find that, in general, implicit RK schemes may produce entropy. In order to
proceed further, it is advisable to cast (14) in an alternative form more amenable to

subsequent analysis. Multiplying both sides of (7) on the left by (v!)" and proceeding as
above, only that this time a different Tadmor’s identity is used on the LHS,

(Vin )T (U in+1 _Uin) _ 77in+1 _ 77in o E_"*% (17)

where
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yields
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where in the bottom row the following notation AUiT=(Ui(1)—Ui“,...,Ui(S)—U.”),

AV] =(v® =V],..,v? —v]') and B =diag(b,,....b,) has been introduced.

F

i+t T

3 An entropy conservative scheme is one for which the numerical flux verifies Av =A®, , and thus
2

i+1

the entropy production IT, , = 0. In the scalar case, the entropy conservative flux is unique for each choice
2

of entropy function and can be computed as Ifi+l =A@, , /Av, . As explained in [12], entropy stable

schemes can be constructed by coupling an entropy conservative scheme to a suitable diffusion operator.



Eq. (19) is the final form of the entropy production. It is identical to Eq. (14), but it is
written in a form that facilitates subsequent analysis. This is clearly appreciated in the
symmetric case (systems (1) with symmetric Jacobians f,, which includes the scalar

case), where a quadratic entropy function 7=1U"U can be chosen. With this choice,

HV)=@,)" =1, v=n,=U and EM? :%(U "™ _U")?, and thus the entropy
evolution equation (19) can be written as

77in+l _nin +ﬂ"| ibk ((D:(+; _Q):il): _lAUTQAU +12,| ibk (H:(Jr; +Hik7;) (20)
= 2 2 2 2 o : ’

where the temporal entropy production is now a quadratic form with matrix
Q=BA'+ATB-ATbb'A™".

2.2. Conditions for local entropy stability

For those systems that possess an entropy function, a desirable property of any
numerical approximation is that the corresponding numerical entropy scheme correctly
reproduces the physical entropy conservation law. This means, at the very least, that the
scheme should dissipate entropy (using conventions such that the entropy function is
essentially the negative of the physical entropy and thus decreases in physically allowed
processes). This property can be guaranteed, usually under a suitable CFL restriction, if
the spatial scheme is entropy stable [11] and the time integration scheme dissipates
entropy or produces at most a controllable amount of unphysical entropy. CFL bounds of
this sort can be straightforwardly —though somewhat tediously— derived as in [12, 1].

We have already seen that the Backward-Euler scheme is unconditionally entropy
stable for any entropy function when coupled to entropy stable spatial schemes. In the
general case, entropy stability must be analyzed by looking at the total entropy production
of the scheme, which for a generic RK-s scheme is given by Eq. (19). The fully discrete
scheme is (locally) entropy stable provided that S, <0. The last term of the bottom row
(the entropy production of the spatial scheme) is negative provided that b, >0 and that

the numerical flux is entropy stable. This latter condition can be guaranteed by choosing
the following flux [12]

R (21)

where Ifi+l is an entropy conservative flux, which we write in viscosity form as
2

Fyz =3(FUL)+FU;)-Q.uA14,v), and D, are symmetric, positive-definite

i+1/2 7 2
dissipation matrices. With that choice, the entropy production of the spatial scheme is
semi-negative definite

%Zbk (s, 1, ) = —%Zbk ((4,.,v) DY, VO +(A,_ V) DYA, V) <0 (22)
k=1 k=1



In the symmetric case with quadratic entropy, the temporal entropy dissipation can be
written as —3 AU'QAU (Eq. (20)), so if the matrix Q =BA™+ A"B—A"bb" A™ is non-
negative definite, the fully discrete scheme is entropy stable regardless of the CFL
number. The conditions b, >0 and Q non-negative definite imply that the method is

algebraically stable* [2, 31, 32] which in turn entails AN-, BN-, A- and B-stability [32]
[33]. Hence, algebraically stable RK schemes are also locally quadratic-entropy stable.
This result follows trivially from the fact that, for the square entropy function, entropy
stability is equivalent to stability of the solution in the L> norm, which is itself equivalent
to algebraic stability [34].

Various well-known methods such as Gauss and Radau IIA, for example, are
algebraically stable ([2], Theorem 359C). The SDIRK methods that we will consider, on
the other hand, are not algebraically stable and, in fact, they can be shown to yield positive
temporal entropy production (see Fig. 3). Even the quadratic entropy stability of the
algebraically stable temporal schemes need not hold for more general entropies, as is seen
to be the case in Fig. 5.

Conditions for entropy stability for generic entropies can be derived as follows. We
start by seeking conditions for entropy stability of the temporal scheme. We can bound

Ei”*% in terms of the maximum condition number K of the mean inverse Hessians
A = [0 HGO V) + £ -V dE
and
A9 =7 HEEO +v) + £ -v)dé, (k=1...5)
(in such a way that K1, <H <Kl ) as (see [12], eq. (7.16))

K3

EM? <_‘ _K
2

L2
A”+7UiH =—-AUTATbbT AAU, (23)

Likewise, we have

—AV] BATAU, =—AUH'BA'AU, = —1AUT (H'BA?+ ATBH, H)AU,  (24)

where H.* =diag((H®)™,...,(H®)™). Combining (23) and (24), it follows that the
temporal scheme dissipates entropy provided that the matrix
K*Abb" A —H*BA™ — ATBH ™ is negative-semidefinite. Notice that in the quadratic
case the Hessians reduce to the identity matrix (with condition number K = 1) and the
above matrix is then identical to - Q.

4 A Runge-Kutta method is algebraically stable if the matrices B and M = BA+ A"B—bb" are both non-
negative definite ( [32], p. 275). If A is non-singular, then M and Q are congruent, Q = A" MA™, and thus
M is non-negative definite iff Q is.



If the temporal scheme produces entropy, it is still possible to attain entropy stability
by compensating the temporal production with the spatial dissipation under a CFL
condition. This can be clearly seen in Fig. 4 for the SDIRK2 scheme ( [7] and section 3)
with quadratic entropy. CFL bounds of this sort have been derived by Tadmor [12], which
showed that the Forward-Euler scheme coupled to entropy stable spatial schemes is
locally entropy stable with a sufficiently small CFL value. The analysis has been extended
in [35] to prove the global entropy stability of the FE scheme coupled to higher-order
(TECNO) spatial schemes under a CFL bound and in [1] to explicit, higher-order RK
schemes. In the present case, a CFL condition for entropy stability can be derived in the
general case as follows. We start by bounding the temporal production as

£ < K?S\A”*uiuz =K73(A.>2 (RY-FY) 2

Since b, 20 we can bound the flux differences using Jensen’s inequality, yielding

2
k k

i+l

KS o
EM <2 (2)° b,
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Writing the flux differences in the above equation as

1 - -
R R = 181 -0 - DA, v + (B +01 + D), v |
(k=1...,s), where A,,v* =v¥ —v{ and the (symmetric) Jacobians B") are defined

in the mean value sense as F(U %) (v¥)) - FUM (v#)) =B% - (v —v{) ; we get

i+1 Vi1 i+3 i+1

”*l 3K3 2N (k) (k) 3 (k) (k) (k)
E ’ ( )Zbk |+1V ) ((Bl+1) +(Qi+1) +(Dl+l) )A|+1V
k=1
+Ha, V) (B + (@Y +(DM)°)a, v }

The remaining term can be bounded as
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In all, the temporal entropy production of the scheme obeys the following bound
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Using (25), the total entropy production (19) can be bounded as

s, < i“ D4 VA, 0 Z(A VOV EEA VY (26)
k=1
where Hfﬁ =-b fof GKJ,I(K b, ]((Blﬂkf) +((':)i‘+kf) +(D‘k)) ) It follows from

(26) that the RK-s scheme is entropy stable, S; <0, provided that 4, is sufficiently small

1
that =) <0, or
'ii

b, DX >6K A (
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j((Bffz) +@QWP+0YY) @D
(we obviously need b, >0) for all k. The above bound is actually not too sharp, as among

other things it assumes that Av; BA™AU, is maximally negative, which need not be the

case. We can confirm this idea with the Burgers equation with quadratic entropy and the
SDIRK2 scheme. Now K =1, v=U, Bi =1(U,,, +U,) and we pick the entropy stable

i+1

flux

F,Ef == (U|2+1+U|+1

U +U ) zu(UHl ) (28)

-U;) and D —2,u. Hence

i+1

(where x>0)insuchawaythat Q , =1 (U
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With the data of the example in section 3 we get, from (29)
22
min 4 < o A %0022
(557 +BA) max (5 (Ui +Up)* +3 Uy Uy + 442°)

while numerical testing (Fig. 4) indicates a 50x larger CFL bound for entropy stability (
1.0<4 . <1.5).

max

2.3. The linear symmetric case and stability

As we have just experienced, establishing general results about the sign of (14) or (19)
is hard, but a simplification can be obtained by considering the symmetric case with
entropy function 7=1U"U for the linear semidiscrete problem:

U =LU (30)
where the operator L is constant in time. We will assume that (30) corresponds to the
discretization of a scalar or symmetric problem such that it admits a quadratic entropy
function. The evolution equation for the global quadratic entropy (or, equivalently, the
energy) is

%(%UTU):UTUt =UTLU =2UT(L-"U +2UT(L+ LU =2UT(L+L")U (31)

We can thus identify UT(L+L")U/2=(U,(L+L")U)=2(U,LU) with the net
entropy production of the spatial scheme. Notice that if L is skew-symmetric, then the
scheme is (globally) entropy conservative, and if L is semi-negative (L + L <0) then the
scheme is (globally) entropy stable. Coupling (30) to a time-advancement scheme results
in a modified entropy balance equation. Taking into account that for quadratic entropies
v=U and E'" =1U™ -U")" (UM -U/"), the global entropy evolution equation (19)
reads

2

1 1 1
_Un+1TUn+l __UnTUn :_Un+1
ACARNCASEHCONCOES

2 1y .,
-5l

EHU nl_yn
2

? _ AUTBAAU +%ZbkAt<u O (L ™) =
- (32)

%AUT (ATbb" A" -BA - ATB)AU +%ZbkAt <u W (L+L")U <k>> -
k=1

—%AUTQAU +%ZbkAt <U ® (L+L"U <k>>

k=1

It is important to stress that (32) is actually valid for the energy variation of any linear
system. Only in the symmetric case it also represents the entropy evolution of the scheme.



Notice that if b, >0 and Q =BA™ + ATB— A "bb" A™ is non-negative definite (and thus

the method is algebraically stable) then the method is strongly stable (U™ ’ ~Jur “<0

) for general semi-negative operators L obeying L+LT<0.

2.4. Examples

In order to check the above formulas and to pave the way for subsequent numerical
testing, we now review several examples of RK schemes and compute their
corresponding entropy evolution equations.

(@) The diagonally implicit (DIRK) s-stage scheme with tableau

by by
b+b, b: by
1 by b, ... bs
| bl bZ bs

(and bb,---b, #0) corresponds to s consecutive (and independent) Backward-Euler
steps. Since

L 0 0 0
o 0 0
At=| 0 & & 0
0 0 TRy B

the entropy production for this scheme is, from (14),

n =+ 4 2 b, (CDL —CDL) =
=) 2 2

B S ANV VO U U0+ 24, D, (I, )=

k=1 -1 2 g
—ZS: ) ZS:b (Hk +I1¢ )

i | k j+1 ji—L1

k=1 2 & 2 :

(where —B™ =5 —p* P — (v (UM -UX ™)), which corresponds simply to s

copies of the single-step Backward-Euler entropy production term (16), as expected.
(b) Crank-Nicolson (Trapezoidal scheme)

Uin+1 :Uin _% Rin _% Rin+1 =Uin _ ﬁi”*%

This is a 2-stage Runge-Kutta scheme with tableau
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Notice that since A is not invertible and A has rank 1, eq. (14) or (19) cannot be used
here. An entropy evolution equation can be still obtained by combining (10) and (17):

77in+l _nin _1 (Ein% _ Bin+%) n (vin%)T AU in+% _ % (Ein% _ Bin%) _ (vin%)T ﬁ_n%

2 i

(1) quadratic entropy: V,"? =v(U"?) =0 =v."*? and E""* —B""? =0. Hence,

77i|’1+l _ 77in — _(Vin+§ )T ﬁinJrE
(2) quadratic entropy + linear fluxes: additionally to the above, R" =R (U"?) and thus

A= =~ RO ) =4, (A0 T
(the temporal scheme is entropy conservative in this case).
(3) general case
77in+1 . 77in _ %<Ein+§ . Bin%) . (vin%)T ﬁim% _
%(Ein+5 _ Bin+§) —%((V:HI)T Rin+l+(vin )T Rin) +%(Vin+l_vin )T (Rin+l _ Rin) —
~3AON - O]+ O 07 )+ AT I 4TI 4117 ) + (B -B)
+% (Vin+1_ Vin )T (Rin+l _ Rin)
or, rearranging,
nt—n' +%/1(<Di”:%l — (Di”_;l + CDi”% - cDi”_%) -

LA+ TP, +T10) + 3 (1 - B + 3 A0V - v)) (RM-RY)

Si(x) Si(t)

(c) Generalized Crank-Nicolson (Tadmor [12])
UM =U"-R (U®E"?))

1/2
where ¥"* = j v(U"™ + AU™2&)dE . This s not a RK scheme, but it is included here

-2
for completeness. Now, since

U™ -nU") =

ynt ynt 1/2
j 1, dU = j v (U)dU { j V(O™ + AU EYDE [AU™E = (8"F)T AU ™
un un

-1/2

it turns out that the discrete entropy evolution equation is simply



A" = = @ AU =A@ TTR L) =-A (a0 (@) -1, @)

and thus the temporal scheme does not produce entropy. This scheme is identical to
Crank-Nicolson in the symmetric case (with quadratic entropy) and linear fluxes (cf. case
(b.3) above).

(d) 4" order, 2-stage Gauss scheme [2] with Tableau

1_ 3 1 1_B

2 6 4 4 6

1,8 | 1,48 1

2T% | 71 z
1 1
2 2

Since

-1 _ 3 -3+2\3
A _(32J§ 3 )

n+% 1 1) T £1,(2) n\T 3 -3+2J§) Ui(l) _Uin ﬂf. : k k
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It can be checked that Q = 0 for this method [32]. Hence, in the symmetric case with
quadratic entropy the above evolution equation reduces to

1 1 1, 1, &
ZUMTUM-ZUNTUN A DY (D DK ) =24 Y (T, +1ITF
2( B 2( )Y 2 ';( i+3 '_E) 4 'z( i+3 "5)

Thus, the s = 2 Gauss temporal scheme does not produce entropy in this case and,
when coupled to entropy stable spatial operators, the resulting fully discrete scheme is
quadratic entropy stable (and also strongly stable for general linear semi-negative
operators). Furthermore, these results hold for all Gauss methods, which have Q =0 [32].

(e) 3" order, 2-stage Radau IlA scheme [2] with Tableau
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symmetric case is

l n+1\T N+l 1 n\Tyn 2 k k
SUIYTUP =S UD)U] 4 Db (@, -0, )=
2 2 k=L ?

9

4

-3

4

=3 U_(l) —y" 2
11 ]( I(2) In + 1ﬂ’l bk (H:<+l +H:<—l)
4 U _Ui 2 k=1 2 2

Since Q is positive-semidefinite, the s = 2 Radau 1A method coupled to entropy stable
spatial schemes is locally entropy stable and also strongly stable for general linear semi-
negative operators. Furthermore, the above (entropy) stability remarks hold for all Radau
I1A methods, which are algebraically stable (and thus have positive-semidefinite Q).

(P -UY U -Ui")T)(

3. Numerical experiments

In this section, we will use the above formulas to compute the entropy production in
two simple numerical test cases. Temporal integration is performed with the Backward-
Euler and two-stage Gauss and Radau 11A schemes described in Section 2, as well as with
the 6'-order, 3-stage, A-stable Gauss scheme with tableau

1_15 5 2_15 5 _ A5
2 10 36 9 15 36 30
1 5 A5 2 5 _ 15
2 36 30 9 36 24
1,5 | 5 5 2, 15 5
2+10 36+30 9+15 36
5 8 5
18 18 18

the 5'"-order, 3-stage, L-stable Radau 1A scheme with tableau

4-6 88-7/6 296-169/6 —2+3J6
10 360 1800 225
4+6 296+169+/6 88+7/6 —2-3J6
10 1800 360 225
1 16—6 16+/6 1

36 36 9
16-6 16+/6 1
36 36 9

and the 2" and 3"-order 2-stage and 3-stage L-stable SDIRK schemes [7] with tableaux
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(SDIRK3), where 1 = 0.4358665215 .
As our first test case, we consider the advection equation
U, =u, (33)

in —1< x <1 with periodic boundary conditions and initial condition:
u(x,0) =sin(xzx) (34)
With these choices, any (smooth) entropy function 7 is globally constant,
%j_llndx =0. We focus on the quadratic entropy 7 =1u? for which fln(t, X)dx :% A

simple, entropy stable, spatial discretization is obtained by coupling the entropy
conservative scheme Ifile(D”l/AvH to the first-order dissipation operator

d. ., =—u(v,,,—V;), with x>0 [36]. Accordingly, eq. (33) is discretized on a uniform
mesh with the following quadratic-entropy-stable scheme

f' 1 ji—L1
u, (x;,t) :# (35)

where

1+5

which reduces to the simple first-order upwind difference du; /dt = (u

u=1/2.
Fig. 1 shows a convergence study of the global error in the quadratic entropy

Lt X)dx— 2
'[_177(!)() X_E

(36) with p =0 and n =400 cells in space. The results show that (1) the methods achieve
their design order and (2) for a fixed time-step size, the errors decrease with the order p
of the scheme.

i1~ U;)/ Ax when

at t =2 for several RK schemes for the linear advection problem (33)-
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Fig. 1 Linear advection at t = 2 with quadratic-entropy conservative scheme. Convergence of error
in global entropy for various RK schemes.

For the next example we consider the inviscid Burgers equation

oU 10U?
— = =0
ot 2 oX
with initial data
15 <0
ux0)=° =0
05 (x>0)

which results in a right-moving shock with speed s=1. We will compute the numerical
solution of the above test case with the quadratic-entropy stable spatial scheme (28) as
well as with the scheme
1 u.-U
FES =~U. U - i+1 i 37
i+ lu U U ( )

i% 2 i+171
(which is entropy stable for the logarithmic entropy 7 =—log(U) if #>0).

Fig. 2 shows the total local quadratic and logarithmic entropy production S; at t = 3.
We see that with the chosen value of the CFL number A = At/ Ax all schemes are entropy
stable. The separate contribution of the temporal scheme to the entropy production is
examined in Fig. 3 (for the quadratic entropy) and Fig. 5 (for the logarithmic entropy). In
the quadratic case, all schemes dissipate entropy (the Gauss schemes even being entropy-
conservative) excepting the SDIRK schemes, which are seen to actually produce
significant amounts of entropy at some locations, which must be compensated by the
entropy dissipation of the spatial scheme in order to attain entropy stability. This is
confirmed in Fig. 4 , which plots the total (quadratic) entropy production of the SDIRK2



scheme for different values of the CFL number 1 = At/ Ax, showing that beyond a certain
value of A the fully discrete scheme becomes entropy unstable.

Finally, Fig. 5 shows that in the logarithmic case, all schemes (excepting the BE
scheme, which we already know to be unconditionally entropy stable), produce entropy.
We also note from Fig. 3 and Fig. 5 that the order of each method is directly correlated
with the size of the temporal entropy production: for a method of order p, the maximum
value of the temporal entropy production is roughly of size ~10-%. On the other hand, the

integrated temporal entropy production IS(‘)dx is shown to converge as At"" in Fig. 6.
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Fig. 2 Burgers equation. Moving shock at t = 3. Total (local) entropy production for the quadratic
(left) and logarithmic (right) entropy stable schemes.
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Fig. 3 Burgers equation. Moving shock at t = 3. Local temporal entropy production for the quadratic

entropy stable scheme.
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Fig. 4 Burgers equation. Moving shock at t = 3. Total entropy production for the SDIRK2 scheme for
the quadratic entropy stable scheme with different time-steps.
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4. Conclusions

In this paper, we have derived the exact entropy evolution equation for fully discrete
schemes arising from the finite-volume discretization of systems of conservation laws
coupled to generic Runge-Kutta time integrators. The main results are summarized in
Egs. (13), (14) and (19). Using these representations, the conditions under which the fully
discrete scheme is (locally) entropy stable have been examined, resulting in the general
case in a CFL bound (27) which is however not particularly sharp.

In the particular case of the quadratic entropy function, which is relevant in the scalar
case or for systems of conservation laws with symmetric flux Jacobians, algebraically
stable RK schemes are stable in the L> norm and are thus locally temporally entropy
stable. This latter result does not hold for more general entropies (as clearly shown in
numerical testing), and it turns out that in the general case even fully implicit RK schemes
produce entropy (two notable exceptions being the backward-Euler and the modified
Crank-Nicolson schemes, which are unconditionally entropy stable —resp. entropy
conservative— for any entropy.)

Finally, several, well-known implicit RK schemes have been examined. Gauss and
Radau IIA methods are unconditionally quadratic-entropy stable, the former being
actually quadratic entropy-conservative, while the examined SDIRK schemes produce
entropy even in the quadratic case. All those assertions have been verified with numerical
testing in both linear (advection of a sine wave) and non-linear (inviscid Burgers
equation) cases.
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