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Abstract: This paper follows up on the author’s recent paper “Entropy Production by 

Explicit Runge-Kutta schemes” [1], where a formula for the production of entropy by 

fully discrete schemes with explicit Runge-Kutta time integrators was presented. In this 

paper, the focus is on implicit Runge-Kutta schemes, for which the fully discrete 

numerical entropy evolution scheme is derived and tested. 

1. Introduction 

The purpose of this paper is to extend the work of [1], which computed the entropy 

produced by fully discrete numerical schemes with explicit Runge-Kutta (RK) 

integrators, to general RK (including implicit) schemes (see [2, 3] for an introduction to 

RK schemes with further references). The fully discrete schemes that will be analyzed 

must be understood as deriving from space and time discretization of general systems of 

conservation laws via the method of lines. The spatial discretization must be 

supplemented with a suitable time integrator, usually a Runge-Kutta scheme (see [4] for 

a recent review). While higher-order time integrators are usually explicit RK methods, 

implicit and semi-implicit RK schemes are also gaining relevance as viable candidates 

for the integration of time-dependent pde (see for example [5, 6] and the recent work by 

Jameson [7] and references therein). Despite their increased numerical cost, implicit RK 

methods offer superior stability properties, higher-order accuracy and relaxed CFL 

restrictions compared with explicit methods, and are ideally suited to the integration of 

stiff problems.  

Many physical systems of practical interest are equipped with at least one entropy 

function that is exactly conserved in smooth solutions but is dissipated across singularities 

such as shocks. At the numerical level, schemes that reproduce this behavior are called 

entropy stable and constitute an active area of research dating back to the works of Lax 

[8], Harten et al. [9] and Osher [10]. Entropy stability has proved instrumental in the 

analysis of numerical approximations of systems of conservation laws, particularly in 

several space dimensions, as it provides global stability estimates for numerical methods 

for multi-dimensional conservation laws (see [11] for a recent review with an extended 

set of references). The systematic construction of entropy stable schemes for systems of 

conservation laws was initiated by Tadmor [12] by blending entropy conservative fluxes 

with appropriate dissipation operators in order to achieve entropy stability. Following this 

path, high-order entropy conservative fluxes were developed in [13], while arbitrarily 

high-order entropy stable schemes were first developed in [14]. The stability analysis of 

Discontinuous Galerkin schemes was initially addressed in [15] using entropy 
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considerations (see [16, 17, 18, 19] for updated accounts and further references). Entropy 

stability considerations can also be used to guide the design of schemes based on 

summation-by-parts operators (see [20] and references therein). 

In recent times, entropy-stable schemes have risen to prominence [21, 22, 23] 

especially in the context of turbulent flow simulations using high-order methods [24]. 

While significant attention is usually paid to the entropy production properties of the 

spatial schemes, comparatively little effort has been devoted to the study of the entropy 

production of temporal schemes, which however can have a significant impact [25, 26]. 

Indeed, the spatial entropy production can be made negative with a suitable entropy stable 

scheme, but time integration schemes may still produce entropy. To attain fully discrete 

local entropy stability (the requirement that entropy should be dissipated within a time-

step at each node of the computational mesh), the spatial dissipation must dominate the 

temporal entropy production, which may require a suitable CFL condition (see e.g. [12]). 

Low-order, explicit RK schemes tend to produce (spurious) entropy, while higher-order 

schemes tend to dissipate it [27, 1]. The situation with implicit schemes is however less 

explored. Tadmor [12] (see also [28]) has shown that the Backward-Euler scheme 

dissipates entropy, while a generalized form of the Crank-Nicolson scheme introduced in 

[13] is entropy conservative1. For those cases, entropy stability of the fully discrete 

scheme is attained regardless of time-step size as long as the spatial scheme is entropy 

dissipative. In the general case, it will be shown that even implicit RK schemes generally 

produce entropy and, thus, entropy stability can only be guaranteed under a CFL bound.  

The paper is organized as follows. Section 2 contains the heart of the developments of 

the paper. Section 2.1 derives the fully discrete entropy evolution equation for generic 

Runge-Kutta time integrators coupled to finite-volume spatial discretizations of systems 

of conservation laws in 1D. Sections 2.2 and 2.3 explore the consequences of the entropy 

evolution equation for local and global entropy stability, respectively, while section 2.4 

discusses several RK schemes in detail. Section 3 presents the results of numerical 

experiments involving entropy stable discretizations of the linear advection and the 

Burgers equation (with quadratic and logarithmic entropies) coupled to several RK 

schemes. For illustration purposes, the investigation focuses in particular on the two and 

three stage Gauss and Radau IIA schemes, as well as on two Singly-diagonal (SDIRK) 

schemes analyzed in [7]. Finally, Section 4 presents the conclusions. 

2. Entropy production of fully discrete schemes 

In this paper we will primarily consider systems of conservation laws in 1D of the 

form  

 
( )

0
U f U

t x

 
 

 
  (1) 

                                                           
1 In its original form, this generalized Crank-Nicolson scheme requires an intermediate temporal state that 

unfortunately does not generally have a closed form and requires quadrature. An explicit construction has 

been recently derived in [25]. 



where  1( , ) ( , ) (, ,, )N

T
U x t x t xU U t  is the vector of conservative variables and 

    1 ,( ) ,
T

Nf f U UfU   is the flux vector. We assume that the above system is 

endowed with an entropy pair ( ( ), ( ))U U  , where the entropy function   is convex and 

the entropy flux   satisfies the compatibility condition ( ) ( ) ( )U U UU f U U   (the 

subscript U denotes differentiation with respect to U). The entropy pair satisfies the 

following conservation equation [29, 30] 

 
( )

0
U

t x

  
 

 
  (2) 

where equality holds for smooth fields U. The left-hand side (LHS) of (2), which is non-

vanishing for discontinuous (weak) solutions (e.g., shocks), is the entropy production.  

2.1. Entropy evolution equation 

At the discrete level, entropy also evolves with time in a way that resembles (2). The 

precise numerical entropy evolution equation follows from the fully discretized version 

of (1), that we will assume to be approximated by a semi-discrete Finite Volume 

numerical scheme on a grid over the range 1,...,i n  as 

 1 1
2 2

0i
i i i

dU
x F F

dt  
      (3) 

where ix  is the length of cell i and 1
2

i
F


 are the numerical fluxes. Multiplying the left-

hand side (LHS) of (3) by the vector of entropy variables v ( )T

i U iU  and rearranging 

yields the semi-discrete numerical entropy scheme 

 1 1
2 2

i
i ii i

d
x

dt


 

       (4) 

where 

1 1 1 1
2 2 2 2

vT

i i i i
F

   
                                                    (5) 

is the numerical entropy flux and 

 1 1
2 2

1 1 1 1
2 2 2 2

1

2

v

i i i

T

i i i i
F

 

   

   

    

                                              (6) 

is the numerical entropy production. vT f     is the entropy potential verifying 

v( (v))f U   , while 1
2

1
12

( )i ii 
     and 1

2
1i ii 

     denote averaging and 

differencing across the face, respectively. The right-hand side (RHS) of (4) is the 

numerical entropy production of the spatial scheme, 
( )x

i iS  . 



For numerical computation, Eq. (4) is coupled to a time advancement scheme which 

will also produce (or dissipate) entropy in an amount ( )tS  that will depend on the type of 

scheme [12]. The previous paper [1] addressed this problem for explicit Runge-Kutta 

schemes, while now we will address the issue of general (i.e. implicit) Runge-Kutta 

schemes with Butcher’s Tableau [2] 

1c  11a   1sa  

    

sc  1sa   ssa  

 1b       sb  

which corresponds to the following time-advancement scheme 

 
1 (1) ( )

1

n n s

i i i s iU U b R b R        (7) 

where 1 1
2 2

( ) ( )k k k

i i i i
R F F

 
   are the numerical residuals, 1 1

2 2

( )( )k k

i i
F F U

 
  are the 

numerical fluxes, /i i it x    , where it  is the (possibly) spatially varying time-step, 

and the intermediate states ( )kU  are computed as 

 

(1) (1) ( )

11 1

( ) (1) ( )

1

n s

i i i s i

s n s

i i s i ss i

U U a R a R

U U a R a R

    

    

  (8) 

In order to obtain an expression for the entropy evolution of the above scheme, we 

multiply both sides of (7) on the left by 1 1 1(v ) v( ) ( )n T n T n

i i U iU U    . Using (4), the RHS 

can be cast as 

 

   
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  (9) 

where ( ) ( )v v( )k k

i iU . For the LHS, the following identity due to Tadmor [12] 

 
1
21 1 1(v ) ( )

nn T n n n n

i i i i i iU U B 
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is used, where  
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Combining (9) and (10) yields  
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

   
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        (12) 

which can be arranged as 
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1
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

 
  (13) 

If the matrix 
ij ijA a  is invertible2, Eq. (8) can be used to write ( )k

iR  in terms of 

( )j n

i iU U  to cast (13) as 

 

 

1 1
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1
2

1 1
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( )( )

1

1
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1
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2
xt

s
n n k k
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k
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b

B b A U U b
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



 


  

 
  

    

      



 
   (14) 

This is our main result, from which the entropy produced by the fully discrete scheme 

(7) can be computed. The bottom row of (14) is the local entropy production of the fully 

discrete scheme (denoted as iS ), which can be separated into spatial 
( )x

iS  and temporal 

( )t

iS  parts.  

The Backward-Euler scheme 

                                                           

2If A is not invertible we can consider the enlarged matrix 
T

A
A

b

 
  
 

  (where 
1( ,..., )T

sb b b ). If 

rank( )A s , we can invert (7) in the least-squares sense as 
1( )T T

i iR A A A U   , (where 

 (1) ( ),...,
T

n s n

i i i i iU U U U U     and 1( , , )s T

i i iR R R ), so in (14) we should replace 1A  with 

1( ) .T TA A A  



We can check (14) with a known example such as the Backward-Euler (BE) scheme 

1 1
2 2

1 1 1( )n n n n

i i i i i
U U F F  

 
                                             (15) 

which corresponds to (7) with s = 1 and 11 1 1a b  . The entropy production of this 

scheme has been computed by Tadmor [12] as  

 
1
2

1 1
2 2

1 1 1 1( )
nn n n n n

i i i i i ii i
B   

   

 
          (16) 

(where Tadmor’s notation has been adapted to ours) which does coincide with (14) for s 

= 1 and 11 1 1a b  . The RHS of (16) is the local entropy production of the BE scheme. 

The temporal entropy production 
1
2( ) nt

i iS B


=  is semidefinite-negative, which implies 

that, for entropy stable spatial schemes3 (for which 0i  ), the Backward-Euler scheme 

is entropy dissipative. 

In the general case, the sign of the temporal entropy production is harder to analyze, 

and we will find that, in general, implicit RK schemes may produce entropy. In order to 

proceed further, it is advisable to cast (14) in an alternative form more amenable to 

subsequent analysis. Multiplying both sides of (7) on the left by (v )n T

i  and proceeding as 

above, only that this time a different Tadmor’s identity is used on the LHS, 

 
1
21 1(v ) ( )

nn T n n n n

i i i i i iU U E 
       (17) 

where  
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
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 (19) 

where in the bottom row the following notation  (1) ( ),...,T n s n

i i i i iU U U U U    , 

 (1) ( )v v v ,..., v vT n s n

i i i i i     and 1diag( ,..., )sB b b  has been introduced.   

                                                           
3 An entropy conservative scheme is one for which the numerical flux verifies 1 1 1

2 2 2

vT

i i i
F

  
    and thus 

the entropy production 1
2

0.
i

   In the scalar case, the entropy conservative flux is unique for each choice 

of entropy function and can be computed as 1 1 1
2 2 2

/ v
i i i

F
  
   . As explained in [12], entropy stable 

schemes can be constructed by coupling an entropy conservative scheme to a suitable diffusion operator. 



Eq. (19) is the final form of the entropy production. It is identical to Eq. (14), but it is 

written in a form that facilitates subsequent analysis. This is clearly appreciated in the 

symmetric case (systems (1) with symmetric Jacobians Uf , which includes the scalar 

case), where a quadratic entropy function 1
2

TU U   can be chosen. With this choice,

1(v) ( ) 1UUH    , v T

U U   and 
1
2 1 21

( )
2

n n n

i i iE U U
   , and thus the entropy 

evolution equation (19) can be written as 

   1 1 1 1
2 2 2 2

1

1 1

1 1

2 2

s s
n n k k T k k

i i i k i ki i i i
k k

b U Q U b   

   
 

                 (20) 

where the temporal entropy production is now a quadratic form with matrix 

1 1T T TQ BA A B A bb A      . 

2.2. Conditions for local entropy stability 

For those systems that possess an entropy function, a desirable property of any 

numerical approximation is that the corresponding numerical entropy scheme correctly 

reproduces the physical entropy conservation law. This means, at the very least, that the 

scheme should dissipate entropy (using conventions such that the entropy function is 

essentially the negative of the physical entropy and thus decreases in physically allowed 

processes). This property can be guaranteed, usually under a suitable CFL restriction, if 

the spatial scheme is entropy stable [11] and the time integration scheme dissipates 

entropy or produces at most a controllable amount of unphysical entropy. CFL bounds of 

this sort can be straightforwardly –though somewhat tediously– derived as in [12, 1].   

We have already seen that the Backward-Euler scheme is unconditionally entropy 

stable for any entropy function when coupled to entropy stable spatial schemes. In the 

general case, entropy stability must be analyzed by looking at the total entropy production 

of the scheme, which for a generic RK-s scheme is given by Eq. (19). The fully discrete 

scheme is (locally) entropy stable provided that 0iS  . The last term of the bottom row 

(the entropy production of the spatial scheme) is negative provided that 0kb   and that 

the numerical flux is entropy stable. This latter condition can be guaranteed by choosing 

the following flux [12] 

1 1 1 1
2 2 2 2

1
v

2i i i i
F F D

   
       (21) 

where 1
2

i
F


 is an entropy conservative flux, which we write in viscosity form as 

1
1/2 1 1/2 1/22

( ( ) ( ) v)i i i i iF F U F U Q       , and 1
2

i
D


 are symmetric, positive-definite 

dissipation matrices. With that choice, the entropy production of the spatial scheme is 

semi-negative definite 

   1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1
( v ) v +( v ) v 0

2 4

s s
k k k T k k k T k k

k ki i i i i i i i
k k

b b D D
       

 

           (22) 



In the symmetric case with quadratic entropy, the temporal entropy dissipation can be 

written as 1
2

TU Q U    (Eq. (20)), so if the matrix 1 1T T TQ BA A B A bb A       is non-

negative definite, the fully discrete scheme is entropy stable regardless of the CFL 

number. The conditions 0kb   and Q non-negative definite imply that the method is 

algebraically stable4 [2, 31, 32] which in turn entails AN-, BN-, A- and B-stability [32] 

[33]. Hence, algebraically stable RK schemes are also locally quadratic-entropy stable. 

This result follows trivially from the fact that, for the square entropy function, entropy 

stability is equivalent to stability of the solution in the L2 norm, which is itself equivalent 

to algebraic stability [34].  

Various well-known methods such as Gauss and Radau IIA, for example, are 

algebraically stable ( [2], Theorem 359C). The SDIRK methods that we will consider, on 

the other hand, are not algebraically stable and, in fact, they can be shown to yield positive 

temporal entropy production (see Fig. 3). Even the quadratic entropy stability of the 

algebraically stable temporal schemes need not hold for more general entropies, as is seen 

to be the case in Fig. 5.  

Conditions for entropy stability for generic entropies can be derived as follows. We 

start by seeking conditions for entropy stability of the temporal scheme. We can bound 
1
2

n

iE


 in terms of the maximum condition number K of the mean inverse Hessians  

1
2
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1 11

21/2
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    , ( 1,...,k s ) 

(in such a way that 
1

N NK I H KI   ) as (see [12], eq. (7.16)) 
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3 32
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Likewise, we have 
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where 
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i i iH H H   . Combining (23) and (24), it follows that the 

temporal scheme dissipates entropy provided that the matrix 
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i iK A bb A H BA A BH        is negative-semidefinite. Notice that in the quadratic 

case the Hessians reduce to the identity matrix (with condition number K = 1) and the 

above matrix is then identical to Q .  

                                                           
4 A Runge-Kutta method is algebraically stable if the matrices B and 

T TM BA A B bb    are both non-

negative definite ( [32], p. 275). If A is non-singular, then M and Q are congruent, 1TQ A MA  , and thus 

M is non-negative definite iff Q is. 



If the temporal scheme produces entropy, it is still possible to attain entropy stability 

by compensating the temporal production with the spatial dissipation under a CFL 

condition. This can be clearly seen in Fig. 4 for the SDIRK2 scheme ( [7] and section 3) 

with quadratic entropy. CFL bounds of this sort have been derived by Tadmor [12], which 

showed that the Forward-Euler scheme coupled to entropy stable spatial schemes is 

locally entropy stable with a sufficiently small CFL value. The analysis has been extended 

in [35] to prove the global entropy stability of the FE scheme coupled to higher-order 

(TECNO) spatial schemes under a CFL bound and in [1] to explicit, higher-order RK 

schemes. In the present case, a CFL condition for entropy stability can be derived in the 

general case as follows. We start by bounding the temporal production as  
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Writing the flux differences in the above equation as 
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The remaining term can be bounded as 



1 1
2 2

1 ( ) ( ) 1 ( )

1

2
( ) ( ) 1 ( ) ( ) ( )

1 1 1 1 1

2
2 ( ) ( ) 2

1 1

v v v ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

s
T T T k n T k k

i i i i i i k i i i i

k

s s s s N
j T k k j T k

k kj i i i k kj i i i

k j k j

N s
k k

i ii i i
k

BA U BR BR b U U H R

b A R H R K b A R R K BA R

K BA F F K BA F









 

 





    

  
 

          

     

 



  



 

 

1 1
2 2

1 1 1 1 1
2 2 2 2 2

1 1 1 1 1
2 2 2 2 2

2
( ) ( )

1

2 ( ) ( ) 2 ( ) 2 ( ) 2 ( )

1

( ) ( ) 2 ( ) 2 ( ) 2 ( )

3
( ) ( v ) ( ) ( ) ( ) v

2

     +( v ) ( ) ( ) ( ) v

s
k k

i
k

s
k T k k k k

i i i i i i
k

k T k k k k

i i i i i

F

K BA B Q D

B Q D






    


    

 


   




    







 

In all, the temporal entropy production of the scheme obeys the following bound 
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Using (25), the total entropy production (19) can be bounded as 
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(we obviously need 0kb  ) for all k. The above bound is actually not too sharp, as among 

other things it assumes that 
1vT

i iBA U   is maximally negative, which need not be the 

case. We can confirm this idea with the Burgers equation with quadratic entropy and the 

SDIRK2 scheme. Now 1K  , v U , 1
2

1
12

( )i ii
B U U

   and we pick the entropy stable 

flux 

1
2

2 2

1 1 1

1
( ) ( )

6

ES

i i i i i ii
F U U U U U U  

             (28) 

(where 0  ) in such a way that  1
2

1
16

( )i ii
Q U U

   and 1
2

2
i

D 

 . Hence 



   

2 2
2

2 2 22 2 1 1
1 14 4 36

min
3 max ( ) ( ) 4

i

i i i iBA U U U U









 


    

           (29) 

With the data of the example in section 3 we get, from (29)  
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while numerical testing (Fig. 4) indicates a 50× larger CFL bound for entropy stability (

max1.0 1.5  ).  

2.3. The linear symmetric case and stability 

As we have just experienced, establishing general results about the sign of (14) or (19) 

is hard, but a simplification can be obtained by considering the symmetric case with 

entropy function 1
2

TU U   for the linear semidiscrete problem: 

 tU LU   (30) 

where the operator L is constant in time. We will assume that (30) corresponds to the 

discretization of a scalar or symmetric problem such that it admits a quadratic entropy 

function. The evolution equation for the global quadratic entropy (or, equivalently, the 

energy) is 
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We can thus identify ( ) / 2 ,( ) 2 ,T T TU L L U U L L U U LU     with the net 

entropy production of the spatial scheme. Notice that if L is skew-symmetric, then the 

scheme is (globally) entropy conservative, and if L is semi-negative ( 0TL L  ) then the 

scheme is (globally) entropy stable. Coupling (30) to a time-advancement scheme results 

in a modified entropy balance equation. Taking into account that for quadratic entropies 
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  (32) 

It is important to stress that (32) is actually valid for the energy variation of any linear 

system. Only in the symmetric case it also represents the entropy evolution of the scheme.  



Notice that if 0kb   and 1 1T T TQ BA A B A bb A       is non-negative definite (and thus 

the method is algebraically stable) then the method is strongly stable (
2 2

1 0n nU U  

) for general semi-negative operators L obeying L+LT ≤ 0.  

2.4. Examples 

In order to check the above formulas and to pave the way for subsequent numerical 

testing, we now review several examples of RK schemes and compute their 

corresponding entropy evolution equations.  

 

(a) The diagonally implicit (DIRK) s-stage scheme with tableau 

 

 

 

 

(and 1 2 0sb b b  ) corresponds to s consecutive (and independent) Backward-Euler 

steps. Since  
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the entropy production for this scheme is, from (14),  
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(where 
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copies of the single-step Backward-Euler entropy production term (16), as expected.  

(b) Crank-Nicolson (Trapezoidal scheme) 
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This is a 2-stage Runge-Kutta scheme with tableau 
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Notice that since A is not invertible and A  has rank 1, eq. (14) or (19)  cannot be used 

here. An entropy evolution equation can be still obtained by combining (10) and (17): 
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(the temporal scheme is entropy conservative in this case). 

(3) general case 
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or, rearranging, 
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(c) Generalized Crank-Nicolson (Tadmor [12]) 
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it turns out that the discrete entropy evolution equation is simply  

0 0 0 

1 1/2  1/2 

   1/2 1/2 



 
1 1 1 1 1 1
2 2 2 2 2 21 (v ) (v ) ( (v )) (v ) (v )

n n n n n nn n T T

i i i i i i i iU t R U  
                

and thus the temporal scheme does not produce entropy. This scheme is identical to 

Crank-Nicolson in the symmetric case (with quadratic entropy) and linear fluxes (cf. case 

(b.3) above).  

(d) 4th order, 2-stage Gauss scheme [2] with Tableau 
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It can be checked that Q = 0 for this method [32]. Hence, in the symmetric case with 

quadratic entropy the above evolution equation reduces to 
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Thus, the s = 2 Gauss temporal scheme does not produce entropy in this case and, 

when coupled to entropy stable spatial operators, the resulting fully discrete scheme is 

quadratic entropy stable (and also strongly stable for general linear semi-negative 

operators). Furthermore, these results hold for all Gauss methods, which have Q = 0 [32]. 

(e) 3th order, 2-stage Radau IIA scheme [2] with Tableau 
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Since Q is positive-semidefinite, the s = 2 Radau IIA method coupled to entropy stable 

spatial schemes is locally entropy stable and also strongly stable for general linear semi-

negative operators. Furthermore, the above (entropy) stability remarks hold for all Radau 

IIA methods, which are algebraically stable (and thus have positive-semidefinite Q). 

3. Numerical experiments 

In this section, we will use the above formulas to compute the entropy production in 

two simple numerical test cases. Temporal integration is performed with the Backward-

Euler and two-stage Gauss and Radau IIA schemes described in Section 2, as well as with 

the 6th-order, 3-stage, A-stable Gauss scheme with tableau 
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and the 2nd and 3rd-order 2-stage and 3-stage L-stable SDIRK schemes [7] with tableaux 
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(SDIRK2) and 

 

 

 

 

(SDIRK3), where 0.4358665215  . 

As our first test case, we consider the advection equation 

 t xu u   (33) 

in 1 1x    with periodic boundary conditions and initial condition: 

 ( ,0) sin( )u x x   (34) 
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which reduces to the simple first-order upwind difference 
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Fig. 1 shows a convergence study of the global error in the quadratic entropy 
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their design order and (2) for a fixed time-step size, the errors decrease with the order p 
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Fig. 1 Linear advection at t = 2 with quadratic-entropy conservative scheme. Convergence of error 

in global entropy for various RK schemes. 

For the next example we consider the inviscid Burgers equation  
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which results in a right-moving shock with speed 1s  . We will compute the numerical 

solution of the above test case with the quadratic-entropy stable spatial scheme (28) as 

well as with the scheme  
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(which is entropy stable for the logarithmic entropy log( )U    if 0  ).   

Fig. 2 shows the total local quadratic and logarithmic entropy production Si at t = 3. 

We see that with the chosen value of the CFL number /t x     all schemes are entropy 

stable. The separate contribution of the temporal scheme to the entropy production is 

examined in Fig. 3 (for the quadratic entropy) and Fig. 5 (for the logarithmic entropy). In 

the quadratic case, all schemes dissipate entropy (the Gauss schemes even being entropy-

conservative) excepting the SDIRK schemes, which are seen to actually produce 

significant amounts of entropy at some locations, which must be compensated by the 

entropy dissipation of the spatial scheme in order to attain entropy stability. This is 

confirmed in Fig. 4 , which plots the total (quadratic) entropy production of the SDIRK2 
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scheme for different values of the CFL number /t x    , showing that beyond a certain 

value of   the fully discrete scheme becomes entropy unstable.  

Finally, Fig. 5 shows that in the logarithmic case, all schemes (excepting the BE 

scheme, which we already know to be unconditionally entropy stable), produce entropy. 

We also note from Fig. 3 and Fig. 5 that the order of each method is directly correlated 

with the size of the temporal entropy production: for a method of order p, the maximum 

value of the temporal entropy production is roughly of size ~10-2p. On the other hand, the 

integrated temporal entropy production ( )tS dx  is shown to converge as 1pt   in Fig. 6.  

 
Fig. 2 Burgers equation. Moving shock at t = 3. Total (local) entropy production for the quadratic 

(left) and logarithmic (right) entropy stable schemes. 
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Fig. 3 Burgers equation. Moving shock at t = 3. Local temporal entropy production for the quadratic 

entropy stable scheme. 
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Fig. 4 Burgers equation. Moving shock at t = 3. Total entropy production for the SDIRK2 scheme for 

the quadratic entropy stable scheme with different time-steps. 

 

X
0.9 0.95 1 1.05

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

CFL = 0.1

CFL = 1.0

CFL = 1.5

CFL = 1.6666

X
2.4 2.6 2.8 3 3.2 3.4

-0.0005

-0.00045

-0.0004

-0.00035

-0.0003

-0.00025

-0.0002

-0.00015

-0.0001

-5E-05

0

BE

S
(t)

X
2.4 2.6 2.8 3 3.2

-8E-10

-6E-10

-4E-10

-2E-10

0

Gauss (2)

S
(t)

X
2.4 2.6 2.8 3 3.2

-3E-13

-2E-13

-1E-13

0

1E-13

2E-13

Gauss (3)

S
(t)

X
2.4 2.6 2.8 3 3.2

-2E-07

-1.5E-07

-1E-07

-5E-08

0

5E-08

Radau IIA (2)

S
(t)



 
Fig. 5 Burgers equation. Moving shock at t = 3. Local temporal entropy production at t =3 for the 

logarithmic entropy stable scheme.  

 

 
Fig. 6 Burgers equation. Moving shock at t = 3. Convergence study of the integrated temporal entropy 

production for various RK schemes. Left: quadratic entropy. Right: logarithmic entropy.  
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4. Conclusions 

In this paper, we have derived the exact entropy evolution equation for fully discrete 

schemes arising from the finite-volume discretization of systems of conservation laws 

coupled to generic Runge-Kutta time integrators. The main results are summarized in 

Eqs. (13), (14) and (19). Using these representations, the conditions under which the fully 

discrete scheme is (locally) entropy stable have been examined, resulting in the general 

case in a CFL bound (27) which is however not particularly sharp.  

In the particular case of the quadratic entropy function, which is relevant in the scalar 

case or for systems of conservation laws with symmetric flux Jacobians, algebraically 

stable RK schemes are stable in the L2 norm and are thus locally temporally entropy 

stable. This latter result does not hold for more general entropies (as clearly shown in 

numerical testing), and it turns out that in the general case even fully implicit RK schemes 

produce entropy (two notable exceptions being the backward-Euler and the modified 

Crank-Nicolson schemes, which are unconditionally entropy stable –resp. entropy 

conservative–  for any entropy.)   

Finally, several, well-known implicit RK schemes have been examined. Gauss and 

Radau IIA methods are unconditionally quadratic-entropy stable, the former being 

actually quadratic entropy-conservative, while the examined SDIRK schemes produce 

entropy even in the quadratic case. All those assertions have been verified with numerical 

testing in both linear (advection of a sine wave) and non-linear (inviscid Burgers 

equation) cases. 
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