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Abstract: An experimental procedure for characterizing the size-of-source effect (SSE) is proposed.
Such an effect is the cause of one of the main influence variables generating uncertainty in the
measurement, both in calibration and use, of direct reading radiation thermometers (RT). The
procedure and uncertainty calculation described in the paper are aligned in terms of metrological
traceability, with the requirements generally imposed to ensure the accuracy of measurements
in industry and science. Results of application and validation of this particular procedure with
equipment, including black body (BB) sources normally used in radiation thermometry calibration
laboratories in the industrial field, are shown.

Keywords: radiation thermometer; thermometry; industrial calibration; metrology; traceability;
blackbody; emissivity

1. Introduction

Radiation thermometry and qualitative or quantitative thermography (thermal imag-
ing) mainly between −50 ◦C and 500 ◦C have experienced a strong impulse in the last
decades. The newest technologies use low-cost, uncooled micro-bolometers in the FPA (fo-
cal plane array) or thermopiles. In the past, bolometers needed cryogenic cooling, usually
by a miniature Stirling cycle refrigerator or liquid nitrogen. In addition, the improvement
of FPA resolution has allowed up to 1280× 1024 pixels, extremely high for current thermog-
raphy systems, which in general have limited resolution due to the size required for single
detectors to integrate thermal radiation. Bolometers and thermopiles are thermal sensors
that measure object temperature as a function of changes in the sensor temperature itself.

Some of the most interesting applications of non-contact thermometry include food
industry, building maintenance and inspection, energy management, air conditioning, per-
formance of electric and electronic circuits, non-destructive thermal testing in aeronautics
and space, security and defense, etc. The equipment generally used to measure temperature
and/or to show a thermal image, operate in the bands (3 to 5) µm (MWIR or Medium
Wavelength Infrared) and (8 to 14) µm (LWIR or Long Wavelength Infrared). In general,
optimum spectral band choices for infrared imaging applications, can require the use of
LWIR for scenes with a very wide temperature range with the presence of both hot and
cold objects. Atmospheric absorption, object temperature, presence of smoke or moisture
in the atmosphere, etc., are factors that can directly affect the choice of spectral band.

Having reliable measurements requires ensuring metrological traceability to the In-
ternational System of Units (SI), [1,2]. All the calibrations constituting the chain that links
the current measurement with the practical realization of the unit (kelvin in tempera-
ture) contribute to the final uncertainty. In general, calibration laboratories are accredited
by accreditation bodies members of ILAC (International Laboratory Accreditation Coop-
eration) (https://ilac.org/ (accessed on 1 October 2022)), under the standard ISO/IEC
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17,025 [3], some of which in Europe are: ENAC (https://www.enac.es/ (accessed on
1 October 2022)) in Spain, DAkkS (https://www.dakks.de/en/home-en.html (accessed
on 1 October 2022)) in Germany, UKAS (https://www.ukas.com/ (accessed on 1 October
2022)) in United Kingdom, COFRAC (https://www.cofrac.fr/ (accessed on 1 October
2022)) in France, ACCREDIA (https://www.accredia.it/ (accessed on 1 October 2022)) in
Italy, SAS (https://www.sas.admin.ch/sas/en/home.html (accessed on 1 October 2022))
in Switzerland, etc. Accredited calibration laboratories act as a link between SI and end
users, namely industry, market, R&D centers, other calibration laboratories, etc. Currently
in Spain, for example, there are 21 laboratories accredited by ENAC to calibrate radiation
thermometers, thermal imagers and black body sources.

One of the most important influence variables that contributes to the uncertainty in
non-contact temperature measurement using RT is the size-of-source effect (SSE). This
means that radiation coming from points outside the theoretical target of the optical system
can reach the detector due to optical imperfections (aberrations, internal reflections, diffrac-
tion, etc.). Similarly, radiation within the field of view (FOV) may not reach the detector.
SSE is usually evaluated (direct method) by measuring RT signal focusing the optics on a
uniform radiation source, usually a high effective emissivity (εa) BB (cavity or extended
area) source, with interchangeable circular apertures of different diameter. Alternatively
(indirect method) SSE can be evaluated by measuring the radiation of the region outside
the target, which is in turn blocked with a small (ideally black) disk. However, the indirect
method is difficult to automate and requires more experimental effort [4], thus the direct
method is generally chosen by industrial calibration laboratories.

RTs calibrated using sources of certain aperture or diameter size cannot be used
(without making corrections) on targets of different sizes. On the other hand, metrological
characterization of BB (reference radiation sources for RT and TI calibration) is usually
carried out with a standard BB and a RT acting as a comparator. A necessary condition
to correctly transfer from the standard BB to the source to be calibrated is to know how
to correct RT readings when sources have different diameters or even when temperature
gradient around the apertures differs. As we will see, the corrections are linear with
wavelength, being greater in general, in low-cost commercial RT (not too sophisticated
optics) in the LWIR band.

In general, industrial calibration laboratories (accredited or not), in the field of radia-
tion thermometry, provide calibration results only for the aperture size of their own BBs
used as reference standards. Although the calibrations are correct for the strict measure-
ment conditions indicated in the calibration certificates, they are not sufficient or have
limited utility if, as usual, the end user utilizes the RT (in his laboratory or in an industrial
environment), focusing it on sources of different size.

This paper presents an experimental procedure based on the direct method, simple and
easy to implement in the framework of industrial calibration laboratories. The particular
procedure is aligned with a mathematically simple approximation of the general SSE model.
It is based on the use of a well-characterized BB and a system or set of external elements de-
limiting the apertures, which can be cooled to minimize the effect of background radiation.
Uncertainty calculation of the basic magnitude characterizing SSE, which serves to calculate
a correction on the RT temperature reading between different source diameters, is exposed
in some detail. Finally, the procedure is illustrated, applying it to commercial equipment,
and is validated with a BB (different from that used to SSE characterization) working at
various temperatures and source sizes. The application of the procedure, adapted to the
particularities of each laboratory in terms of availability of equipment, methodology for
data acquisition, type of thermometers for contact temperature measurements, etc., would
allow significant improvements in the information contained in the calibration certificates,
making such information more useful to end users.

https://www.enac.es/
https://www.dakks.de/en/home-en.html
https://www.ukas.com/
https://www.cofrac.fr/
https://www.accredia.it/
https://www.sas.admin.ch/sas/en/home.html
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2. Materials and Methods
2.1. Basic Model for Calculation of SSE Corrections in RT Calibration and Use

In general, a direct-reading RT generates in its detector a signal S which is linear with
the radiance of the source. Assuming absolute temperature T in kelvin and emissivity (ε)
equal to 1 (blackbody source), in absence of SSE the signal is:

S(T) = g
∞∫

0

s(λ)Lb(λ, T)dλ ∼=
C

e
c2

AT+B − 1
≡ Ssh(T) (1)

In the second term of (1), s(λ) is the relative spectral responsivity of the thermometer,
g is a constant dependent on the geometrical, optical and electrical properties of the
thermometer and Lb(λ, T) is the spectral radiance of a blackbody at wavelength λ and
temperature T, given by Planck’s law.

The integral in (1) is well approximated by the Sakuma–Hattori (Ssh) interpolation
equation [5], which includes the effect of bandwidth, c2 is the second radiation constant
0.0014388 m·K and C is a proportionality constant. Being λx the so called temperature-
dependent extended effective wavelength, for most radiation thermometers it is well
approximated by a linear function of inverse temperature: λx = A + B/T, A and B being
specific parameters of each RT, depending on its spectral responsivity, i.e., detector, filter
and lens transmittance, waveband, etc.

If dt is the RT nominal target size (diameter) at a specified distance, during calibration
it is normally used a source with uniform temperature T and aperture diameter d > dt. If the
source temperature is high enough (in general it is considered t > 200 ◦C) the background ra-
diation effect, at typical laboratory temperature, tw ∼= 23 ◦C, can be assumed negligible [4,6]
and the measured signal ST,d reduces (with T and d as variables of interest) to:

ST,d = ξ(d)Ssh(T) (2)

The proportionality factor ξ(d) is independent of T and contains all the information
concerning the RT optical defects that give rise to SSE. Then, Ssh can be considered the
ideal signal-temperature relationship for the RT, i.e., in the absence of SSE or for an infinite
diameter source.

In this case, the quantity describing the effect in the direct method, is defined by:

σ(d) =
ST, d

ST,∞
=

ξ(d)
ξ(∞)

(3)

Using (3), σ(d)− σ(dt) represents the ratio between the signal from the outer ring to the
target corresponding to a source of diameter d and the maximum signal corresponding to a
source of infinite diameter. Usually, industrial RT manufacturers assume, for the definition
of nominal target size, signal levels of 90% (d90) or 95% (d95) of the maximum. However,
(though less common) they also specify the target size, as that corresponding to the optical
field of view (FOV), i.e., the size of the image of the field stop (normally the detector) by
the optical system [7]. It has been seen that, for direct reading RT of the type frequently
used in industrial applications, for source diameter (typically the maximum diameter d0
of a BB cavity source without external aperture plates), d0 ≥ 5d90, RT signal achieves the
maximum value and remains constant, i.e., S(d ≥ d0) ∼= S(∞) [8].

In calibration laboratories, SSE is usually measured using large aperture cavity BB
sources, with cylindrical or cylinder-conical geometry, always with high (∼=1) and uniform
(at the bottom cavity at least) effective emissivity εa. Additionally, BB temperatures are
high enough in relation with that of the external plates or elements delimiting the variable
apertures. These plates or machined pieces form a set with diameters dt ≤ d ≤ d0 and are
mounted at the front of the source.
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Characterizing SSE is a complementary task to the complete calibration work of RT.
The results of a calibration are usually given in terms of a fixed diameter source dc. In
order to facilitate the calculation of corrections to the RT reading, between the calibration
diameter dc and other different d, (3) is used to define the quantity:

σ∗(d, dc) = σ(d)− σ(dc) =
ST,d − ST,dc

ST,d0

(4)

In first approximation, it can be assumed σ(d) ∼= 1 and, with (4), it is easy to see that:

ξ(d) ∼= ξ(dc)(1 + σ∗(d, dc)) (5)

For an input signal S, direct reading RT shows a temperature value I (display indica-
tion), implicitly dependent on temperature and diameter (area in general) of the source,
I (T, d). Typically, this kind of RT is provided with an emissivity function εinstr selectable
between 0 and 1. This parameter is called instrumental emissivity adjustment and facilitate
the use of RT to measure temperature of surfaces different to perfect black bodies. In
general, I also depends on detector temperature Td and ambient temperature Tw [9]. In
normal laboratory ambient conditions, it can be assumed Td

∼= Tw when RT is not too close
to the BB aperture at high temperatures. Provided that there are no additional correction
factors aside from SSE, I can be obtained from:

Ssh(I(T, d)) = ξ(d)
εa

εinstr
Ssh(T) +

(εinstr − εa)

εinstr
Ssh(Tw) (6)

Both T and d are considered the main variables, while εa, εinstr and Tw are fixed
parameters. Typically, laboratory conditions allow simplify (6), by selecting εinstr = 1, and
by the use of a cavity BB with εa ∼= 1 at a temperature T much larger than Tw. Then, the
second summand in (6) can be neglected and the correction ∆I, when RT is used to measure
the temperature of a source with diameter different from that used in calibration dc, can be
obtained calculating Ssh(I(T, dc + ∆d))/Ssh(I(T, dc)). Considering, by definition, I(T, dc + ∆d)
= I + ∆I and d = dc + ∆d, by developing at the first order, we obtain:

∆I = σ∗(d, dc)
Ssh(I)

(dSsh/dT)(I)
(7)

With (1), we can finally calculate the correction to RT temperature reading I, as a
function of source diameters d:

CSSE = ∆I = σ∗(d, dc)
λx I2

c2

(
1− e

−c2
λx I

)
(8)

Figure 1 shows schematically the basic principles of SSE measurement.
In (8), λx depends on RT spectral responsivity (optics, filters and detector). Its value

can be calculated by means of direct calibration of RT against reference BB, using (1)
for fitting the parameters A, B and C, provided that RT internal signal, linear with the
radiance, may be accessible [10,11]. Nevertheless, in industrial direct-reading RT this is
not possible in general. For SSE characterization and uncertainty evaluation of this type of
instruments, it is still possible to assume rectangular spectral response in the waveband
∆λ = (λ2 − λ1) [12]. Then, it can be proved that A = λ0(1 − 6(ζ/λ0)2) and B = (c2/2)(ζ/λ0)2,
being λ0 = (λ1 + λ2)/2 and ζ = ∆λ/

√
12.

For non-uniform radiation sources, the mathematical model for calculating SSE correc-
tions is quite complex and difficult to solve in general. If the element delimiting aperture
(as in Figure 1) is very close to BB, cooling the stops could not be possible and, depending
on RT, radiation emitted by these elements, may not be negligible. The set formed with
the BB and the element defining aperture defines an effective (or apparent) diameter deff
considered as that of a uniform source producing the same signal in the RT [13]. The value
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deff depends on the particular RT and also on the temperature gradients existing in the
piece defining the aperture, including the front plate of the source.

Figure 1. Basic configuration for SSE measurement of a RT, with a BB cavity source of variable
aperture. Dashed gray arrows represent rays reaching the RT detector due SSE. Solid red and black
arrows represent rays reaching the detector, within the theoretical field of view (FOV).

2.2. Description of the Experimental Facility

The basic facility used in this research consists of a high effective emissivity BB cavity
source, a set of brass machined apertures of different diameters placed in front of the cavity
entrance and a system for cooling these pieces. The use of extended area or flat plate BB
sources are not recommended for this application. This is due to its worse uniformity and
low emissivity. In addition this quantity can also vary over time due to multiple reflections
between the BB surface and the elements used to generate the variable apertures. Then the
value εa of that type of systems can depend on aperture diameter. This is negative, because
the observed variations in RT readings can be due ether to SSE or εa. For cavity BBs with
high length to diameter ratios, εa is near 1 at the bottom and can be numerically calculated.
In this sense, it is very important to assure that radiation reaching RT comes only from the
cavity bottom, where the source is more (spatially) uniform in radiance and where surface
temperature is better defined and can be easily measured with contact probes. Bottom or
surface temperature has to be continuously recorded in order to correct RT readings for
variations due to a greater leak heat in form of convection when BB aperture increases [14].
The RT is placed in front of the aperture at a fixed distance, with its optical axis coinciding
with that of the cylinder-cone and always searching for the maximum signal. Target size dt
depends on the distance and it is usually specified by the manufacturer.

2.2.1. Reference BB

The BB used in this experimental procedure is a source designed and manufactured by
National Physical Laboratory NPL, UK, for INTA in 1993, based on a commercial GRANT
calibration bath, provided with an oxidized stainless steel cylindrical cavity, with surface
intrinsic emissivity ε = 0.85, for the spectral band between 0.9 µm and 14 µm. With length
347 mm and diameter 77 mm, the bottom cavity is grooved (as seen in Figure 1) in order
to increase internal reflections and therefore εa. The cavity is immersed in a silicone oil
isothermal bath with a PID temperature controller, enabling stability and uniformity better
than ±0.05 ◦C around the cavity, in the temperature range between 30 ◦C and 180 ◦C.
Figure 2 shows an opening at the front of the tank, where the cavity is attached, allowing
radiation towards the exterior.
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Figure 2. (a) BB used in this research as reference radiation source for SSE characterization; (b) De-
tailed scheme of the system, showing the bath, reference thermometers, cavity and support piece for
the apertures. Red arrows represent rays emitted and reflected by the BB internal surfaces.

BB and bath temperatures are measured with Platinum Resistance Thermometers
(PRT) of the type Pt100 (100 Ω nominal at 0 ◦C). The PRT that measures BB temperature is
placed in a thermo-well drilled at the rear of the cavity, as shown in Figure 2b. The other PRT
is immersed in the bath for checking of temperature uniformity. The metrological facility is
completed with a thermometric resistance bridge ASL model F700 and a 100 Ω standard
resistor TINSLEY model 5685A, at controlled temperature of 36 ◦C in air. PRTs, resistance
bridge and standard resistor are periodically calibrated, with metrological traceability to SI,
in accredited calibration laboratories that use the standard ISO/IEC 17025 [3], ensuring that
each contribution to the final uncertainty in SSE characterization is completely quantified.

For computing εa uniformity at the cavity bottom, we use a numerical model based
on backward ray-tracing and Monte Carlo method [15] for non-isothermal cavities. For
a given fixed geometry and intrinsic emissivity ε (together with its uncertainty), εa only
depends on the cavity longitudinal temperature gradient and aperture diameter. In order
to prevent excessive heating of the aperture supporting piece (Figure 2b), thus allowing its
external cooling, it has been moved towards the outside, focusing the RT on the aperture
perpendicular plane, as shown in Figure 1. Such configuration does not affect εa, because the
radiation from the piece towards the cavity bottom can be considered negligible compared
with that from the cavity at much higher temperature. On the other hand, we have
experimentally checked that, with the piece at that position, heat leaks due to convection
(and therefore cavity temperature) are less dependent on the aperture size. With this set-up,
the resulting cavity has 415 mm length, inner diameter 77 mm and maximum aperture
diameter 70 mm.

The cavity longitudinal temperature gradient has been measured by placing the
secondary PRT in several holes drilled through the bath upper cover (Figure 2a). On the
other hand, for measurement of the temperature gradient at the inner surface of the brass
piece connecting the cavity with the exterior, we have used a thermal imager. This piece is
the yellow one which is attached to the bath in Figure 2b.

For bottom temperature of 180 ◦C, gradient was measured and subsequently approxi-
mated by a profile with three linear segments: (I) 1 ◦C decreasing up to 337 mm from the
bottom, (II) 100 ◦C decreasing up to the beginning of the brass piece and (III) uniform,
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with average temperature of 79 ◦C, along the 68 mm of that piece. The profile is shown in
Figure 3a.

Figure 3. (a) Longitudinal temperature gradient measured at the BB cavity; (b) Radial profiles for the
effective emissivity in 8 µm and 14 µm, as a function of the distance from the center.

For non-isothermal cavity, εa has spectral dependence, therefore we have calculated its
value for the spectral band between 8 µm and 14 µm. The results are shown in Figure 3b.
The error bars represent the standard deviation proper of the simulation model and
the Monte Carlo method, (εa(1 − εa)/N)1/2 ∼= 1.4 · 10−5, N = 107 being the number of
trials computed.

The estimation of εa and thus the radial uniformity of the BB radiance temperature,
was carried out averaging the values showed in Figure 3b. The maximum variation was
calculated as half of the difference between the maximum at 14 µm and the minimum at
8 µm. The results were εa ± ∆εa = 0.9982± 1.4 · 10−4, ∆εa, in terms of radiance temperature,
represents 0.02 ◦C at 8 µm and 0.03 ◦C at 14 µm, when BB temperature is 180 ◦C. Taking
into account the expected uncertainties in the SSE corrections, the estimated temperature
radiance uniformity through the 70 mm aperture is considered very acceptable.

2.2.2. System of Interchangeable Apertures

In order to modify the size of source, a set of 12 interchangeable apertures (Figure 4a)
were designed and machined. They are made of brass and have diameters between 5 mm
and 60 mm. These can be easily inserted in the supporting piece, as shown in Figure 4b,
which can be in turn cooled by means of a copper coil wound around the piece, in good
thermal contact with it. The coil is then connected to a recirculating bath model LAUDA,
E200 Ecoline RE 204 (Figure 4d) and, in turn, the supporting piece is mounted in a structure
designed to allow its positioning in front of the BB entrance (Figure 4c).

With the system described, the apertures can be cooled up to 5 ◦C. It has been observed
that the time required to stabilize the temperature of the pieces defining apertures, after
each operation of piece changing is about 10 min. Then, to avoid errors due to a possible
drift of BB temperature (the effect of BB stability), continuous recording with the cavity
PRT is needed. The RT readings for each aperture, have to be corrected and standardized
to the temperature corresponding to the first aperture. We will come back to this in the
next section.
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Figure 4. (a) Interchangeable brass pieces defining the variable apertures; (b) Scheme of the apertures
cooling system. Orange arrows indicate the fitting of the brass pieces on the structure; (c) Structure
for positioning the apertures in front of BB; (d) Cooling recirculating bath.

2.3. Metrological Traceability

The reference standards: ratio resistance bridge (with its associated reference resistor)
and PRTs of BB are periodically calibrated and the corresponding uncertainty U (expanded
for a coverage factor k = 2 or coverage probability of 95%) is calculated and expressed
following the recommendations of the BIMP GUM guide [16]. The metrological trace-
ability is then assured and documented through calibration certificates emitted in the
framework of the Spanish national accreditation body (ENAC) (schedule of accreditation
nº No.16/LC10.007 [17]), or National Metrology Institutes (NMI). The RPTs are calibrated
by the method of comparison between 0 ◦C and 200 ◦C, with maximum expanded uncer-
tainty of 0.02 ◦C. The bridge is calibrated in ratio values between 0 and 4, with expanded
uncertainty of 8·10−7, whereas the uncertainty of the resistance of the standard resistor
(100 Ω nominal) is 1.4 ppm (k = 2).

2.4. Measurement Process, Model for Analysis of the Results and Uncertainty Calculation

Once the source and aperture temperatures are stabilized, a representative number
of RT readings I is taken in order to obtain average and standard deviation (measure of
dispersion or repeatability). The reproducibility of the procedure is evaluated by taking
a second series of measurements, refocusing and realigning the RT on the aperture of
minor diameter (d1), always searching for the maximum signal. It is advisable to select
d1 large enough (and of course > dt) because small errors in target centering can lead to
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dispersion in the results and thus, to an increasing of uncertainty in SSE characterization
for small sources.

With the pairs obtained experimentally {di, Ii}, being dt < di ≤ d0, we calculate σi*(di,
dc) with (1) and (4), being ST,d = Ssh(I), defining C = 1, and with λx(A, B) function of the
RT bandwidth. The corresponding corrections between arbitrary diameters dy and dz are
calculated with σ*(dy, dz) = σ*(dy, dc) − σ*(dz, dc). For data fitting, we have proposed a
reference function σSSE(d), that represents adequately the general behavior observed in
most commercial direct-reading RT. The fitting function must fulfil σSSE(dc) = 0 and σSSE(d)
→ constant, when d→ ∞. Taking this in mind, we have opted by a function dependent of
three free parameters (a, b1, b2):

σSSE(d) = a(1− eb1(dc−d)+b2(dc−d)2
) (9)

If, as it is expected, d0 is large enough, in general it holds a ∼= σ*(d0, dc) and the
calculation of b1 and b2 reduces to a least squares fitting of the set {di, log(1 − σi*/a)} to the
function (linear in the parameters): b1(dc − d) + b2(dc − d)2.

The uncertainty calculation of the RT reading I, due to all the significant influence
quantities or variables affecting the temperature measurement with this kind of instru-
ments [7], is a complex task that exceeds the general objectives and aims of this paper. In
this work, we only consider the uncertainty u(σ*) and how it propagates to the uncertainty
of the correction ∆I, that has to be applied to the indication I. As usual, we follow the
methodology given in GUM guide [16], for calculation, propagation and expression of
standard u and expanded U = 2u (or for k = 2) uncertainty.

The measurement model function for σ* is given in Equation (4). It depends on five
influence quantities {xk}k=1, . . . ,5: diameters d and dc, RT reading I for source diameter
d, reading Ic for the calibration diameter dc and I0 for the maximum diameter d0. The
mathematical model bases on the validity of (5) independently of d0, so this quantity is not
an influence variable for the uncertainty. The five characteristic variables of the model are
independent (no correlation or negligible) and therefore, the standard uncertainty can be
written as:

u(σ∗) =

√√√√ 5

∑
k=1

(
∂σ∗

∂xk

)2
u2(xk) (10)

With some algebra, it can be seen that the contribution of readings is:(
∂σ∗
∂I

)2
u2(I) +

(
∂σ∗
∂Ic

)2
u2(Ic) +

(
∂σ∗
∂I0

)2
u2(I0)

=
(
(1 + Ssh(I0))

c2
λx I0

2

)2(
u2(I) + u2(Ic) + σ∗2u2(I0)

) (11)

and the contribution of diameters, using (9) is:(
∂σ∗
∂d

)2
u2(d) +

(
∂σ∗
∂dc

)2
u2(dc)

= ((σ∗ − a)(b1 + 2b2(dc − d)))2(u2(d) + u2(dc)
) (12)

As standard uncertainty of each RT reading, we have taken the maximum value among
the resolution (usually the numerical temperature value showed in the display) and the
short-term temperature stability of the BB (given by the PRTs). In the case of resolution,
we consider a type B estimation of uncertainty, as recommended in GUM [16], assuming
rectangular probability distribution function, taking half of the last significant digit (r)
divided by

√
3. For the stability we use, as usual, the experimental standard deviation of

the mean (ESDM, s). If the BB temperature drifts (long term stability), the drift is corrected
standardizing the current reading Ii with the difference with respect to the one obtained
using the first aperture, i.e., Ii → Ii + (t1 − ti).
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It is defined u1(Ii) = max{r/
√

12; si/
√

n}, being si the ESDM for n readings taken
with diameter di. The influence in the uncertainty of the approximation (5), is quanti-
fied with a contribution obtained from the difference between the correction measured
Ci

med = (Ii − Ic) and the correction calculated by means of (8). The contribution, writ-
ten as a standard uncertainty component, is defined by u2(Ii) =

∣∣Ci
med − Ci

cal
∣∣/√3. The

reproducibility of the procedure is also taken into account. We consider the difference
between two measurements series, the second one corresponding to a new RT realign-
ing and refocusing, as was explained in Section 2.4. Thus, the contribution is defined by
u3(Ii) =

∣∣Ii
series1 − Ii

series2
∣∣/√12, where explicitly we assume that the current indication

Ii is the average between that of the two series. Combining the three components, we
have finally:

u2(Ii) =

(
max{ r√

12
;

si√
n
}
)2

+


∣∣∣Cmed

i − Ccal
i

∣∣∣
√

3

2

+

(∣∣Iseries1
i − Iseries2

i )
∣∣

√
12

)2

(13)

The uncertainty of the correction between two arbitrary diameters (within the range
between d1 and d0) is calculated with (8). For that purpose, we consider it necessary to add
another uncertainty factor to (10) uextra, which quantifies the quality of the fit. It is common,
being conservative, to take the maximum residual considered as the absolute limit of a
rectangular distribution function, i.e., uextra = max{|σi* − σSSE(di)|}/

√
3.

3. Results

The procedure described in this work has been applied to typical direct-reading
RT used commonly in industrial applications, either in a laboratory environment or in
industrial facilities. In general, these thermometers are equipped with thermal sensors (of
the thermopile type) and work in the bandwidth 8 µm to 14 µm for temperature measuring
in the range between −50 ◦C and 1000 ◦C. RTs of this type are routinely used and/or
calibrated and certified in calibration laboratories and also used in industrial applications.
They are used not only for temperature measuring but also as transfer standards (or
comparators) in calibration of BB sources (of the cavity type or extended area) against
reference or primary sources. The RTs we are selected are shown in Figure 5.

Figure 5. Commercial direct reading RTs used in this research. (a) Model IRCON UX40P; (b) Model
FLUKE 574CF; (c) Model LAND C300; (d) C300 during measurements.
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The main technical specifications and measurement conditions are summarized in
Table 1:

Table 1. Specific technical characteristics, determining the basic measurement conditions.

IRCON, UX40P LAND, C300 FLUKE, 574CF

Focus distance, mm 700 (focusable) 500 (focusable) 300 (fixed)
εinstr 1.00 1.00 1.00

dt, mm 17.5 9 6
∆λ, µm (8 a 14) (8 a 13) (8 a 14)

Resolution r, ◦C 0.1 0.1 0.1

The RTs were mounted into opto-mechanical mounts in front of the BB aperture, as
shown in Figure 5d. BB temperature was set to 180 ◦C and the cooling system was adjusted
to maintain the brass pieces defining apertures at 5 ◦C, avoiding water vapor condensation
with the aid of a permanent flow of dry N2 on the pieces. Considering such source and
aperture temperatures, the influence on the RTs of thermal radiation from the outer surface
of the BB aperture is not very significant. This means that source effective diameters deff
(depending on the particular RT and aperture used in each case) can be considered as that
of the aperture d.

The results for σ*, expressed as a percentage of the maximum reading (with
d0 = 60 mm), are shown in Figure 6, considering calibration diameter dc = 30 mm. Figure 7
represents the correction, as a function of source temperature, to be applied to RT read-
ings between diameter 50 mm and diameter 30 mm. In terms of uncertainty, we have
assumed for U(di) a value of 0.5 mm (expanded uncertainty for k = 2). The error bars
in Figure 6, represent the expanded uncertainty U(σ*), obtained applying the model
described above.

Figure 6. Values for σ* expressed in %, as a function of aperture diameter, for the three RTs analyzed.
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Figure 7. Corrections for SSE, to be applied to the three RT, as a function of temperature, between
source diameters 30 mm and 50 mm.

4. Discussion

The results obtained serve to illustrate the application of the procedure to various RT
models. It is evident from Figures 6 and 7 that SSE correction is very significant when it
is compared with calibration uncertainties. Considering the three models analyzed, the
uncertainties vary between 1.5 ◦C and 2.0 ◦C (expanded for k = 2) from 300 ◦C to 900 ◦C.
As mentioned above, it is clear that SSE can be a very significant and primary source of
uncertainty, either in calibration or use.

The lower uncertainty U(σ*) of model C300, when it compared with that of the others,
is mainly due to a lower contribution by effect of diameter indetermination. As can be seen
in (12), this influence factor in uncertainty strongly depends on the correction CSSE. Due to
its technical characteristics, model C300 is also used in calibration laboratories (generally
of the secondary type), acting principally as a comparator, for calibrating BB sources of
all types against primary BB. It has better quality optics and less (a priori) imperfections,
resulting in SSE. However, this cannot be taken as a general conclusion. In the course of
calibration works, we have found that certain low-cost industrial RT, apparently with a low
or limited metrological level, perform better in terms of SSE than others considered to be of
higher quality.

In order to validate the procedure developed in this work, we have proposed the use
of a high temperature BB source equipped with four apertures plates of diameters: 20 mm,
30 mm, 40 mm and 50 mm. Therefore, we have tried to prove if (within the uncertainty),
the calculated SSE corrections are compatible with RT readings for temperatures and source
different from that used to characterize this effect. To this end, we have used a BB cavity
source specified for the temperature range between 150 ◦C and 1100 ◦C. The cavity is of
the cylinder-conical type and is made of SiC (silicon carbide), a ceramic material with a
high intrinsic emissivity. With a length of 300 mm, diameter 50 mm and apex cone angle
120◦, its effective emissivity εa was numerically calculated [18], resulting εa = 0.998 for
the bandwidth 8 µm to 14 µm. The cavity is installed in a three-zone furnace (model
LAND/CARBOLITE, LandCal P1200B) equipped with two standard type R thermocouples
(calibrated with expanded uncertainty U(t90) = 0.6 ◦C), for measuring cone apex tempera-
ture and longitudinal gradient. The BB source P1200B and aperture plates are shown in
Figure 8.
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Figure 8. BB source and apertures plates used to validate the SSE characterization procedure.

To validate the procedure, we have used the model C300 due to its lower uncertainty.
This fact allows the calculation of a more representative compatibility index (En) for the
two series of values (calculated and measured). The quantity En measure the compatibility
and is the standard figure of merit in inter-comparison exercises in metrology [19]. It is
defined as:

En =
|v1 − v2|√

U2(v1) + U2(v2)
(14)

where v1 and v2 are the values of the quantities to compare, U(v1) and U(v2) being the
corresponding expanded uncertainties for a given coverage factor k (usually 2). In general,
provided En ≤ 1, the compatibility between the values is fulfilled.

The results for source temperatures 300 ◦C, 500 ◦C, 700 ◦C and 900 ◦C are shown in
Table 2. For each BB temperature and each pair of apertures, the correction CSSE (8) is
shown, together with its uncertainty USSE, and the difference ∆RT between the RT readings
considering both apertures, also with its uncertainty URT. Such uncertainties were calcu-
lated considering specific influence factors, arising from the use of the high temperature BB
as the uniformity and stability of the radiance temperature, display resolution of the C300
thermometer, reproducibility of the measurement procedure, etc.

Table 2. Results for the compatibility of the procedure for calculating SSE corrections, with the RT
model C300 and the BB of Figure 8.

Apertures
(Diameter), mm CSSE, ◦C USSE, ◦C ∆RT, ◦C URT, ◦C En

300 ◦C
30→ 20 −1.0 0.2 −1.1

0.4
0.1

30→ 40 0.4 0.1 0.4 0.1
30→ 50 0.6 0.1 0.6 0.1

500 ◦C
30→ 20 −1.8 0.3 −1.9

0.7
0.2

30→ 40 0.7 0.2 0.6 0.1
30→ 50 1.0 0.2 0.8 0.3

700 ◦C
30→ 20 −2.5 0.4 −2.4

1.1
0.1

30→ 40 1.0 0.4 0.9 0.1
30→ 50 1.5 0.4 1.3 0.2

900 ◦C
30→ 20 −3.4 0.6 −4.4

1.8
0.5

30→ 40 1.4 0.5 1.6 0.1
30→ 50 2.0 0.5 1.9 0.1
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With the mentioned criterion En ≤ 1, all the measurements are compatible within the
calculated uncertainty and under experimental conditions which can be reproduced in
an industrial calibration laboratory framework. As stated above, the model assumes that
radiation coming from the surface exterior to the apertures is negligible, which is possible
when the temperature of the brass pieces is very low compared to that of the source. At
5 ◦C and 180 ◦C respectively, we found the described set-up suitable for this purpose.

Effecive Apertures in Calibration and Comparison of RT

As mentioned in Section 2.1, if the temperature of the piece delimiting the aperture is
high, it is not possible to neglect the effect on the RT signal of radiation coming from the
piece. In that case, it is common to consider a virtual source with effective diameter deff and
the same uniform temperature as the BB and producing the same signal in the RT as the
real source. Figure 9 schematizes this concept.

Figure 9. Schematic definition of a virtual or effective source, as a function of geometric aperture d,
BB temperature TBB and external contour of diameter dE at uniform temperature TE.

A relatively simple setup, which can occur frequently in the RT calibration applications,
is when a uniform average temperature TE can be assumed for the outer region, of diameter
dE, and a temperature T << TBB (no thermal radiation from the external surface), as shown
in the figure.

Then, deff depends on the variables dE, d, TBB, TE and also on the specific characteristics
of the RT in regard to its SSE corrections, evaluated as explained above.

The general model for extended and non-uniform sources, with arbitrary temperature
gradients is complex [4]. However, with the previous hypothesis, it can be proved that
deff can be calculated as implicit solution of an equation that can be easily experimentally
implemented, being:

σ∗a,b1,b2

(
de f f

)
= σ∗a,b1,b2

(d) +

[
ec2/(λx ·IBB) − 1
ec2/(λx ·IE) − 1

](
σ∗a,b1,b2

(dE)− σ∗a,b1,b2
(d)
)

(15)

where (for εinstr = 1) IBB is the RT indication when focused on the BB aperture center, IE
is a spatial average when focused on the outer surface (assuming some temperature non-
uniformity) and σ*, as we saw above, explicitly depends on diameter and parameters a,
b1 and b2 characterizing the SSE of the particular RT. With σ* obtained under standard
conditions (with a uniform BB source and no thermal radiation from the surroundings), deff
can be calculated from (15), either analytically or numerically.
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One of the circumstances where correction for SSE is essential occurs in the course of
inter-laboratory comparison exercises, where the accredited calibration laboratories have
to periodically participate. This type of activity is essential, within the requirements of
standard 17025 [3], for assuring the validity of the measurement results. In order to compare
calibrations of RT performed in several laboratories, the results have to be standardized
to equal source diameter. Generally, it is the diameter used by the laboratory acting as
reference. This laboratory usually characterizes the RT SSE at standard conditions and
calculates corrections for each temperature, as a function of the diameters provided by the
participants, who rarely give effective apertures. It would be a significant improvement if
the laboratories would also report the readings when the RT is focused on certain points
of a well-defined region of the aperture surroundings, for example, for various diameters
greater than that of the aperture. The reference laboratory would then have information to
assign effective diameters to each participant, thus lowering the uncertainty corresponding
to the size of source indetermination. As we have said, this influence factor strongly
contributes to the uncertainty, mainly at high temperatures.

5. Conclusions

The procedure described has proven to be valid for its application to commercial RTs,
allowing industrial calibration laboratories to have a useful tool to improve the quality
and applicability of the results included in the calibration certificates they issue. It only
requires having a sufficiently uniform and well characterized radiation source and a set of
interchangeable elements to define variable apertures. The main advantage of this proposal
is that it allows the use of low temperature BB (<200 ◦C). Generally, BBs of this type have
larger apertures, and they are more uniform in radiance temperature than the BB designed
for higher temperatures. As stated above, the results improve if the elements defining
apertures can be cooled to minimize the effect of background radiation.

Making corrections to RT readings due to SSE is essential for calibrating BB when
the RT is used as a comparator and the reference and calibrated sources have different
aperture sizes. On the other hand, for applications where environmental conditions (or
setup) in calibration, differ from that in use, the implementation of the method is more
complicated or generates more uncertainty, since in general there no well-defined size of
source. The common approach is to search for measurement configurations where the
source can be considered infinite in size, avoiding focusing the RT on regions with strong
temperature gradients.

As an example of the importance of making SSE corrections when calibration uncer-
tainties in radiation thermometry are taking into account, we can consider an accredited
calibration laboratory (say CLab1) with accredited CMC (Calibration and Measurement
Capabilities) of ±2 ◦C (k = 2) at 500 ◦C in the waveband (8 to 14) µm. Let CLab0 the
reference laboratory (higher metrological level in the traceability chain from SI) from which
CLab1 obtain its metrological traceability in radiation thermometry. If CLab1 uses a RT to
calibrate his 50 mm BB source, but this RT has been calibrated by CLab0 with a standard
30 mm BB, then (from Table 2) a correction of 1 ◦C has to be applied for a correct use of the
calibration certificate given by CLab0. Then the correction cannot be considered negligible,
being 50% of the CMC.

SSE in thermal imaging systems is generally insufficiently studied. Although in some
aspects it is a phenomenon similar to that of RTs, there are significant differences. In
addition to the effect of radiation deviating from its theoretical path due to imperfections
in the optics, internal reflections, diffraction, etc., there is an essential contribution due to
thermal and electrical interference between neighboring pixels [20]. The increasing use
of equipment of this type in the industrial framework, due to the obvious advantage of
thermal image (in addition to the temperature measurements), makes it essential that the
calibration laboratories responsible for ensuring metrological traceability of the measure-
ments have a particular methodology to evaluate SSE also in TI systems, especially that of
the quantitative type.
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In calibration work, TI are usually considered simply as RT with a target size calculated
based on a certain selected pixel group in the focal plane array (FPA). It is necessary to
study more in-depth the relationship between the classical SSE (originally defined for
RT), and the specific parameters or figures of merit associated with TI, such as the point
spread function (PSF) [21,22]. The problem, especially in the LWIR region, is to generate a
point thermal source, avoiding thermal radiation from the region around that source. For
classical qualitative TI, where the quality of thermal images is much more important than
the accuracy of the temperature values shown, standardized tests are used to determine
the minimum resolvable temperature difference (MRTD) based on the spatial and thermal
frequency of a slit pattern. Such tests are generally considered pass/fail tests and are
not used for calibration or calculation of correction factors, as required by quantitative
applications. Since technological developments and industrial and scientific applications
are increasingly directed towards quantitative thermography, it will be necessary to develop
specific procedures that incorporate classic techniques typical of RT to the standardized
procedures typical of qualitative TI.

Finally, the method described for the calculation of effective diameters, can be a
useful tool for the improvement of results, either in RT calibration or in inter-comparison
exercises. Although the model described is quite simple, it implies an improvement when
the background temperature of the BB cannot be completely neglected.
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6. Pušnik, I.; Grgić, G.; Drnovšek, J. System for the determination of the size-of-source effect of radiation thermometers with the
direct reading of temperature. Meas. Sci. Technol. 2006, 17, 1330–1336. [CrossRef]

7. Nutter, G.D. Radiation Thermometers: Design Principles and Operating Characteristics. In Theory and Practice of Radiation
Thermometry; Dewitt, D.P., Nutter, G.D., Eds.; Wiley Interscience: New York, NY, USA, 1988; pp. 231–337.

8. Cywiak, D.; Cárdenas-García, D.; Rodriguez-Arteaga, H. Influence of Size of Source Effect on Accuracy of LWIR Radiation
Thermometers. Metrol. Meas. Syst. 2016, 23, 661–667. [CrossRef]

9. Saunders, P. Calibration and use of low-temperature direct-reading radiation thermometers. Meas. Sci. Technol. 2009, 20, 025104.
[CrossRef]

http://doi.org/10.1088/0026-1394/46/1/008
http://doi.org/10.1007/s10765-008-0385-1
http://doi.org/10.1088/0957-0233/17/6/007
http://doi.org/10.1515/mms-2016-0050
http://doi.org/10.1088/0957-0233/20/2/025104


Sensors 2022, 22, 8284 17 of 17

10. Sakuma, F.; Hattori, S. Establishing a practical temperature standard by using a narrow-band radiation thermometer with a
silicon detector. In Temperature: Its Measurement and Control in Science and Industry; Schooley, J.F., Ed.; AIP Conference Proceedings:
New York, NY, USA, 1982; Volume 5, pp. 421–427.

11. Saunders, P. General interpolation equations for the calibration of radiation thermometers. Metrologia 1997, 34, 201–210. [CrossRef]
12. Saunders, P.; White, D.R. Physical basis of interpolation equations for radiation thermometry. Metrologia 2003, 40, 195–203.

[CrossRef]
13. Bloembergen, P.; Duan, Y.; Bosma, R.; Yuan, Z. The characterization of radiation thermometers subject to the size-of-source effect.

In Proceedings of the TEMPMEKO 1996, 6th International Symposium on Temperature and Thermal Measurements in Industry
and Science, Torino, Italy, 10–12 September 1996.

14. Jimeno-Largo, P.; Yamada, Y.; Bloembergen, P.; Villamañan, M.A.; Machin, G. Numerical analysis of the temperature drop
across the cavity wall of high temperature fixed points for radiation thermometry. In Proceedings of the TEMPMEKO 2004, 9th
International Symposium on Temperature and Thermal Measurements in Industry and Science, Zagreb, Croatia, 21–25 June 2004.

15. De Lucas, J. A Simple Geometrical Model for Calculation of the Effective Emissivity in Blackbody Cylindrical Cavities. Int. J.
Thermophys. 2015, 36, 267–282. [CrossRef]

16. BIPM; IEC; IFCC; ISO; IUPAC; IUPAP; OIML; BIPM Joint Committee for Guides in Metrology. Evaluation of Measurement Data
Guide to the Expression of Uncertainty in Measurement JCGM 100:2008 (GUM 1995 with Minor Corrections), 1st ed.; BIPM: Sèvres,
France, 2008.

17. Entidad Nacional de Acreditación (ENAC). Accreditation No.16/LC10.007, Rev. 17, Date 15/01/2021. Available online: http:
//www.enac.es (accessed on 20 July 2022).

18. De Lucas, J.; Segovia, J. Uncertainty calculation of the effective emissivity of cylinder-conical blackbody cavities. Metrologia 2016,
53, 61–75. [CrossRef]

19. ISO 13528:2015; ISO, Technical Committee ISO/TC 69/SC 6 Measurement Methods and Results, Statistical Methods for Use in Pro-
ficiency Testing by Interlaboratory Comparison. Aug/2015 Corrected Oct/2016; International Organization for Standardization:
Geneva, Switzerland, 2016.

20. McMillan, J.L.; Whittam, A.; Rokosz, M.; Simpson, R.C. Towards quantitative small-scale thermal imaging. Measurement 2008,
117, 429–434. [CrossRef]

21. Saunders, P.; Edgar, H. Size-of-source effect correction for a thermal imaging radiation thermometer. High Temp.-High Press. 1999,
31, 283–292. [CrossRef]

22. Chrzanowski, K.; Fischer, J.; Matyszkiel, R. Testing and evaluation of thermal cameras for absolute temperature measurement.
Opt. Eng. 2000, 39, 2535–2544. [CrossRef]

http://doi.org/10.1088/0026-1394/34/3/1
http://doi.org/10.1088/0026-1394/40/4/309
http://doi.org/10.1007/s10765-014-1757-3
http://www.enac.es
http://www.enac.es
http://doi.org/10.1088/0026-1394/53/1/61
http://doi.org/10.1016/j.measurement.2017.12.023
http://doi.org/10.1068/htrt166
http://doi.org/10.1117/1.1287832

	Introduction 
	Materials and Methods 
	Basic Model for Calculation of SSE Corrections in RT Calibration and Use 
	Description of the Experimental Facility 
	Reference BB 
	System of Interchangeable Apertures 

	Metrological Traceability 
	Measurement Process, Model for Analysis of the Results and Uncertainty Calculation 

	Results 
	Discussion 
	Conclusions 
	References

