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Thermodynamic evolution theorem for chemical reactions
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The production, exchange, and balance of entropy characterize the thermodynamics of open nonequilibrium
systems, ranging from chemical reactions, cells, ecological systems, and Earth-like planets to stars. We general-
ize the Glansdorff-Prigogine general evolution criterion to constrain the entropy balance in volumetric open-flow
chemical reaction systems. We derive a thermodynamic inequality governing the joint evolution of both the
internal microreversible reactions and the matter fluxes that the system exchanges with its environment, as
exemplified by the distribution of the entropy productions and exchanges over the chemical reaction pathways.
We validate this evolution theorem and discuss the physical significance of this pathwise partitioning of the
dissipation, for an autocatalytic model capable of spontaneous mirror symmetry breaking.
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I. INTRODUCTION

Far from equilibrium systems make up for most of the
applied and natural processes and the formation of structural
order in energy dissipative systems [1–3]. Irreversible pro-
cesses are constrained by the second law of thermodynamics
and give rise to the emergence of structure and symmetry
breaking in a plethora of dissipative systems in the physical
and natural sciences [4,5]. Examples include plasma physics,
where large-scale dissipative structures can augment their
impedance and support high-temperature gradients while pro-
ducing large quantities of entropy at smaller scales [6]. In
planetary sciences, entropy production has been invoked to
explain the zonal climates of Earth, Mars, and Titan [7]. Anal-
ysis of entropy production patterns can explain the diversified
experimental observations and interpretations of water-rock
interactions [8], as well as the spatial organization of vegeta-
tion in river basins [9]. In developmental biology, a reduction
in the rate of specific entropy production has been validated
in the development, growth, and aging of organisms [10]. In
chemical engineering, the entropy production is employed for
analyzing shock waves, phase boundaries, diffusion, convec-
tive flows, and boundary conditions [11].

A unifying thermodynamic principle for dissipative sys-
tems was established by Glansdorff and Prigogine, who
derived a general inequality for the entropy production valid
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for the entire range of macroscopic physics and for fixed
boundary conditions. Their result states that the temporal
change of the generalized forces proceeds always in a way
as to lower the value of the entropy production: This is
the general evolution criterion (GEC). Although the origi-
nal GEC can be applied to chemical reactions, its scope in
this field has been limited to systems lacking explicit open
matter flows or fluxes. Yet such flows are the hallmark of
continuous open-flow systems such as, e.g., biological cells:
systems that exchange matter and energy with their environ-
ments [12]. Nevertheless, the clamped approximation, which
assumes constant fixed concentrations for all species external
to the reaction volume, has traditionally been invoked as a
convenient, if unrealistic, simplification in benefit of the math-
ematical analysis. The clamped approximation may well be
the reason why the GEC is being largely overlooked. Hence,
the extension of the GEC to volumetric open-flow systems
establishes an important and needed contribution to the ther-
modynamic understanding of far from equilibrium nonlinear
systems, and so helps broaden its range of useful applications
in nonlinear dynamical systems.

In this paper, we derive a thermodynamic inequality
governing the rate of change of the entropy for far from
equilibrium chemical reactions driven by continuous open
flow. This inequality generalizes the Glansdorff-Prigogine
GEC and states that the chemical forces (the affinities A)
must necessarily evolve so as to lower the temporal change
in the system entropy. It provides a rigorous criterion for
how the entropy balance must evolve in time. Moreover, the
application of stoichiometric network analysis (SNA) [13,14]
reveals an equipartition of the partial entropy productions
and exchanges corresponding to each individual reaction,
the partitioning is over the subsets of reaction pathways in
which those reactions belong. This implies that the evolution
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criterion can be expressed in terms of weighted sums of the
partial entropy productions and exchanges along each reaction
pathway, and summed over all the reaction pathways of the
system. As a result, the chemical forces (i.e., the affinities)
acting along each individual reaction pathway must evolve
so as to lower the rate of change in the net system entropy
(dS/dt ). This pathway criterion is validated, and its physi-
cal significance revealed, for an enantioselective autocatalytic
model [15], which has chiral nonequilibrium stationary states
that exist off the thermodynamic branch (racemic states) and
is relevant in chemical evolution scenarios for explaining the
prebiotic origin of biological homochirality.

II. ENTROPY PRODUCTION AND ENTROPY EXCHANGE

We begin with a brief synopsis of the modern approach to
thermodynamics, where the changes in a system’s entropy S
can be expressed as a balance equation [3]

dS

dt
= diS

dt
+ deS

dt
, (1)

where diS/dt � 0 is the non-negative rate of entropy pro-
duction due to the irreversible processes within the system
and deS/dt is the entropy flow rate, due to the exchange of
matter and energy with the exterior; see Fig. 1. The latter can
be positive or negative and is zero for isolated systems. For
reversible chemical reactions, the rate of entropy production
per unit volume σ = V −1diS/dt in well-mixed homogeneous
systems is expressed as

σ = R
∑

k

(w+k − w−k ) ln

(
w+k

w−k

)
� 0, (2)

in terms of the forward w+k and reverse w−k reaction rates
of the kth microreversible reaction; R is the universal gas
constant [3].

FIG. 1. Reversible version of the Frank model [15] in a contin-
uous open-flow reactor of volume V and temperature T, assuming
instant and perfect diffusion of the all species in solution (see
Appendix C). Achiral resource A flows in at fixed concentration,
[A]in, and all species A, L, D, and P flow out with their instanta-
neous concentrations. The matter flow maintains the system out of
equilibrium. The fluid volumes entering and exiting the reactor per
unit time are the same. The entropy production diS/dt � 0 is due
to the reversible transformations taking place within V , the entropy
exchange deS/dt is due to the matter flows into and out from the
reaction volume V .

The entropy exchange per unit volume σe = V −1deS/dt is
given by [16]

σe = R
∑

k

f (xk − xk,in) ln

(
xk

xeq
k

)
. (3)

This depends on the concentrations of the species flowing into
(xk,in) and out from (xk ) the reactor, with the volumetric flow
rate f = q/V , where q is the volume of fluid per unit time
entering and exiting the reactor. The equilibrium concentra-
tions (xeq

k ) are determined from detailed balance and mass
conservation: the state corresponding to the reactor being iso-
lated from the open flow ( f = q = 0). This uses the relative
chemical potential μrel [17], which shifts the reference point
of the standard potential to the equilibrium state of the system,
as introduced by Onsager [18]:

μrel
k = [

μ0
k + RT ln(xk )

] − [
μ0

k + RT ln
(
xeq

k

)]
= RT ln

(
xk

xeq
k

)
. (4)

The relative chemical potential shifts the reference point from
the Gibbs energy of formation of the compound to the equi-
librium state of the system (here in the case of ideal solutions
where the activity is equal to the concentration). σe is an im-
portant aspect of open-flow reactors (see Fig. 1), essential for
achieving entropy balance (1) in nonequilibrium stationary
states (NESS) [16]. The sum σ + σe gives the entropy balance
Eq. (1) per unit volume, V −1dS/dt , and the inequality we
derive below in Sec. IV shows how the evolution of this sum is
related to that of the chemical affinities in the nonlinear regime
of nonequilibrium thermodynamics.

III. GEC: NICOLIS AND PRIGOGINE

We present a brief overview of the salient points in the
Nicolis and Prigogine proof of the GEC. We then highlight
the key assumptions made in order to compare and contrast
with our proof, valid for volumetric open-flow architectures,
that follows afterward.

The entropy production P associated with chemical reac-
tions and diffusion, taking place in a system of volume V and
constant temperature T , is given by [2]

P =
∫

dV σ =
∫

dV

[
−

∑
i

ji · ∇μi

T
+

∑
ρ

wρ

Aρ

T

]

≡
∫

dV
∑

k

JkXk . (5)

The generalized forces X giving rise to the flows J are those
due to diffusion and chemical reactions:

X diff
j = −∇μ j

T
, Jdiff

j = j j, (6)

X react
ρ = Aρ

T
, J react

ρ = wρ, (7)

where μ j is the standard chemical potential, j j is the diffusive
flux, Aρ is the affinity, and wρ is the reaction rate.

Beyond the linear range of nonequilibrium thermodynam-
ics, the total derivative dP/dt does not exhibit any property of
general validity, but the change in P with respect to the time
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derivative of the generalized forces X,

dX P

dt
= 1

T

∫
dV

[
−

∑
i

ji · ∇ ∂μi

∂t
+

∑
ρ

wρ

∂Aρ

∂t

]

≡
∫

dV
∑

k

Jk
∂Xk

∂t
, (8)

does satisfy a general inequality. Using Green’s theorem and
expressing the affinities in terms of the chemical potentials
[de Donder’s affinity, Eq. (20)], Nicolis and Progogine obtain

dX P

dt
= − 1

T

∫
d� n ·

∑
i

ji
∂μi

∂t︸ ︷︷ ︸
+ 1

T

∫
dV

×
[∑

i j

(
∂μi

∂ρ j

)
∂ρ j

∂t
div ji −

∑
i jρ

wρνiρ

(
∂μi

∂ρ j

)
∂ρ j

∂t

]
.

(9)

It is at this point of the demonstration where they assume
time-independent concentrations or zero fluxes at the system’s
boundaries. The surface integral contribution (indicated by
the underbrace) then vanishes by virtue of these boundary
conditions.

Next, using the mass-balance equation [2]

∂ρi

∂t
= −div ji +

∑
ρ

νiρwρ, (10)

where ρi is the mass density (the mass per unit volume),
allows the right-hand side of Eq. (9) to be expressed as

dX P

dt
= − 1

T

∫
dV

∑
i j

(
∂μi

∂ρ j

)
∂ρi

∂t

∂ρ j

∂t
. (11)

Lastly, in order to ensure a definite character of this quadratic
form Eq. (11), Nicolis and Prigogine appeal to equilibrium
thermodynamic stability conditions. For this, they use the
second variation of the equilibrium thermodynamic potential
(density):

(δ2φv )eq =
∑

i j

(
∂μi

∂ρ j

)
eq

δρiδρ j � 0, (12)

which, and in conjunction with Eq. (11), leads to the conclu-
sion that

dX P

dt
� 0 (=0 NESS). (13)

The assumptions

There are two crucial points in the above demonstration
that merit closer examination before turning to our proof
below. The first point concerns the assumption of time-
independent concentrations or zero fluxes at the system’s
boundary. Quoting Nicolis and Prigogine [2], “these condi-
tions correspond to an open system in communication with
some external phases that are in a time-independent and spa-
tially uniform state and are characterized by given values of
temperature, pressure and chemical potentials” (p. 50). One
way to implement the choice of time-independent chemical
potentials for the chemical species external to the system vol-
ume is to invoke the clamped approximation. Then, a general

network of elementary reactions involving na external con-
stant concentration species Au and nx reaction intermediates
Xu obeying ideal mass-action law kinetics is

na∑
u=1

α+
uwAu +

nx∑
u=1

β+
uwXu �

na∑
u=1

α−
uwAu +

nx∑
u=1

β−
uwXu, (14)

where the forward and reverse extensive reaction rates are
given by

w±
w (a, x) = V k±

w

na∏
u=1

(au)α
±
uw

nx∏
u=1

(xu)β
±
uw , (15)

and k±
w is the (+ forward, − reverse) rate constant, and au, xu

are the concentrations of external and intermediate species,
respectively. But since the external species Au have fixed
concentrations, the following redefinition of the rate constants

k′±
w (a) ≡ k±

w

na∏
u=1

(au)α
±
uw (16)

immediately implies that the reaction rates

w±
w (a, x) = V k′±

w (a)
nx∏

u=1

(xu)β
±
uw (17)

are those corresponding to a closed system with respect to the
X species (there is no exchange of internal species X with the
exterior). Evidently, the clamped system, Eq. (14), can be kept
away from equilibrium by selecting the fixed concentrations
au of the external species, and this is tantamount to varying the
rate constants k′±

w (a). Nevertheless, the clamped reaction rates
in Eqs. (15) and (17) for the reversible transformations con-
tribute exclusively to an entropy production σ � 0 [Eq. (2)]
(per unit volume) but make no contribution to the entropy ex-
change (per unit volume) by volumetric flow σe = 0 [Eq. (3)].
Note moreover that only diffusion fluxes ji are included in
their demonstration, but not matter fluxes, due to volumetric
fluid flow exchange between the interior and the exterior.

The second point has to do with establishing the def-
initeness of the quadratic form in Eq. (11). For this,
thermodynamic stability conditions are appealed to in order
to establish a definite sign, in the above case, to ensure
( ∂μi

∂ρ j
)eq � 0. The sign is inferred from considering the sec-

ond variation of the equilibrium thermodynamic potential
(δ2φv )eq � 0, Eq. (12). This is an equilibrium or pseudoequi-
librium result, its validity in nonequilibrium thermodynamics
follows of course from the assumption of local equilibrium
[3]. In other demonstrations of the general evolution crite-
rion, thermal and mechanical stability conditions have been
invoked (positivity of specific heat at constant volume and of
the isothermal compressibility) to ensure the definiteness of
the quadratic forms, implied by the second variation of the
equilibrium entropy (δ2S)eq � 0 [1,19,20].

IV. THE EVOLUTION THEOREM

Consider chemical reactions for r reactions ( j = 1, . . . , r)
and n reacting species obeying mass-action kinetics:

α1 jX1 + · · · + αn jXn
k j→ β1 jX1 + · · · + βn jXn, (18)
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where the Xi, 1 � i � n, are the species and k j > 0 is the
reaction rate constant for the jth reaction. Forward and reverse
reactions are treated individually. Thus, Eq. (18) can also
encompass any matter-flux terms we may want to include:

Thus,
f [Xu]in→ Xu is written for a species flowing into the reactor

with concentration [Xu]in, and Xu
f→ for outflow. A given

species can flow out of the reactor (say, as a product) without
necessarily flowing into it. A species flowing in at a specified
input concentration can flow out with its instantaneous con-
centration, as established within the reactor. The entries of the
n×r stoichiometric matrix νi j = βi j − αi j are read off directly
from Eq. (18). Note that our complete stoichiometric matrix ν

includes the stoichiometric coefficients for both the internal
reactions and the volumetric flow contributions, in contrast to
that appearing in the mass-balance equation, Eq. (10), which
accounts solely for the chemical reactions of the intermediate
species.

The reaction rate w j corresponding to the jth reaction takes
the form of a monomial

w j (x, k j ) = k j

n∏
i=1

x
αi j

i , (19)

where xi = [Xi] are the concentrations. The chemical force,
or affinity Aj [3] of the jth reaction, is given by de Donder’s
relation [3]

Aj = −
n∑

k=1

νk j μk, (20)

and μk is the chemical potential of the kth species. Since
the entropy production σ is the product of a force times the
flow it creates [1–3], we therefore consider the products of
the affinities (the forces) times the reaction rates (the flows),
summed over all the reversible reactions and the input-output
volumetric flows. Using Eqs. (19) and (20), this works out to
give (for details, see Appendix A:

∑
k

J react
k X react

k +
∑

i

Jflow
i X flow

i =
r∑

j=1

w j

(
Aj

T

)
= σ + σe,

(21)
where the force X and corresponding flow J for the volumetric
matter flows are defined in Eqs. (A20) and (A21). This yields
the entropy production plus the entropy exchange, where T is
the absolute temperature. This is the entropy balance equation,
Eq. (1) (per unit volume).

An evolution criterion governs dynamics. We therefore
consider how the temporal derivative of the forces (the affini-
ties) can affect the balance equation (21) and so define the
quantity � via

� =
r∑

j=1

w j
d

dt

(
Aj

T

)
. (22)

Having established the important identity of Eq. (21), (A24),
we consider the calculating the sum over products of the
reaction rates times the derivatives of the affinities.

We evaluate this directly by calculating the temporal
derivative of the affinity from Eq. (20). The derivatives of the
affinities, through their dependence on the chemical potentials

(20), involve the kinetic rate equations for the concentrations.
The latter are expressed in terms of the complete stoichiomet-
ric matrix (internal reactions plus volumetric flows) and the
corresponding reaction rates:

dxk

dt
=

r∑
l=1

νkl wl . (23)

The affinities are

Aj = −
n∑

k=1

νk jμ
rel
k , (24)

= −RT
n∑

k=1

νk j ln

(
xk

xeq
k

)
, (25)

where μrel
k is the relative chemical potential (4). Calculating

the temporal derivative directly gives

dAj

dt
= −RT

n∑
k=1

νk j
d

dt
ln

(
xk

xeq
k

)
, (26)

= −RT
n∑

k=1

νk j
1

xk

(
dxk

dt

)
, (27)

= −RT
n∑

k=1

νk j

xk

( r∑
l=1

νklwl

)
, (28)

= −RT
r∑

l=1

( n∑
k=1

νk jνkl

xk

)
︸ ︷︷ ︸

wl � 0. (29)

The final inequality holds because the underbraced term is
semipositive definite: That is, the sum over k defines the
jl element of a Gram matrix [21], since xk > 0. Since the
individual reaction rates wl > 0 are always positive, we
are summing up semipositive definite contributions. Hence,
the entire expression (because of the overall minus sign) is
negative semidefinite. This proves that Eq. (29) is strictly
negative semidefinite. Finally, inserting Eq. (29) into (22)
immediately implies that � � 0 (= 0 on NESS), which is our
thermodynamic evolution theorem:

� =
r∑

j=1

w j
d

dt

(
Aj

T

)
� 0 (= 0 NESS). (30)

Moreover, from Eqs. (21), (22), and (29) we also conclude

� = dA(σ + σe)

dt
� 0 (= 0 NESS). (31)

Here, dA/dt is the change with respect to the temporal deriva-
tive of the affinities. This is the statement that the chemical
forces (the affinities Aj) must evolve in such a way as to
lower the sum of the entropy production σ and the entropy
exchange σe. Note for the “clamped” approximation, the volu-
metric flow is absent, q = f = 0, there is no exchange entropy
σe = 0, and our result in Eq. (31) then reduces to that
of Glansdorff and Prigogine [1], who assumed both time-
independent boundary conditions and external forces [22].
The definite character of the quadratic form derived here
(29) is a direct consequence of the linear-algebraic properties
of products of the elements of this complete stoichiometric
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matrix. We include the volumetric open flow terms through
the stoichiometric matrix νi j , which accounts for all the
transformations: Both the internal microreversible chemical
transformations and the irreversible input-ouput flows in the
well-mixed approximation.

From Eqs. (23), (29), and (30), we can express � as an
inner product of a vector with itself:

� = −R
dx√
xdt

· dx√
xdt

= −R

∥∥∥∥ dx√
xdt

∥∥∥∥2

� 0, (32)

where the vector components are (k = 1, 2, . . . , n)

vk =
(

dx√
xdt

)
k

=
r∑

l=1

νkl wl√
xk

. (33)

Then vk is the differential rate equation dxk/dt , divided by√
xk . � is therefore invariant under rotations v′

j = R jkvk , for
R an element of the rotation group in n dimensions. Related
symmetry properties are discussed in Appendix B, where �

itself is expressed in terms of a Gram matrix.
A further important result follows from identifying the

reaction pathways of the open-flow scheme. The matter fluxes
traversing the network are identified using stoichiometric net-
work analysis (SNA) [13]. Then, the hybrid pathwise entropy
productions and exchanges can be calculated for each path-
way, or elementary flux mode E i (EFM), and the sum over all
these m modes, or pathways, obeys the identity [16,23]

m∑
i=1

σ (E i ) = σ + σe ≡ V −1 dS

dt
, (34)

where E i represents an elementary flux mode, or reaction
pathway: It is made up from a specific sequence of trans-
formations (18) that belong to the network. The m vectors
{E i}m

i=1 have r components, equal to the number of individual
irreversible reactions (including the input-output flow terms)
[13]. Then σ (E i ) denotes the weighted sum of the partial
entropy productions and exchanges due to each of the trans-
formations making up the ith flux mode (see Sec VI). The
identity Eq. (34) resolves the entropy balance equation (1) in
terms of pathwise entropy production-exchange contributions.
Thus, from (31) and (34) we conclude that

� = dA

dt

m∑
i=1

σ (E i ) � 0 (= 0 NESS), (35)

which states that the affinities A evolve in time such that
the sum of the pathwise entropy productions and exchanges,
taken over all the m pathways of the network, is minimized.
Furthermore, the dissipation of the complete network obeys a
graded equipartition over the individual transformations that
make up the elementary pathways. That is, a specific reaction
in (18) that participates in n different pathways will contribute
a fraction (1/n) of its partial entropy production and/or ex-
change to each one of those pathways. This resolution (34)
reveals those pathways for which the production and exchange
of entropy are either maximized or minimized in compliance
with the thermodynamic constraint (35); see Sec. VI for an
explicit worked example.

Together, Eqs. (29), (31), and (35) are the main results of
this paper. We have incorporated volumetric continuous flow

terms, which give rise to an entropy exchange σe which must
be included with the entropy production σ � 0. Both terms
are necessarily involved in the generalization of the GEC to
volumetric open flow architectures. Continuous open flows
are represented by flux terms [16], when integrated over the
system boundary surface, give rise to the expression for σe,
Eq. (3), in the approximation of instant diffusion and perfect
mixing. The original derivations of the GEC [1,19] were based
on the assumption of local thermodynamic stability, used the
negativity of the second-order variation of the equilibrium
entropy δ2Seq < 0, and carried this over to nonequilibrium
settings [1,3]. Our demonstration that � � 0 follows directly
from the fact that the stoichiometric matrix νi j enters quadrat-
ically in the time derivative of the chemical affinities, Eq. (29),
yielding a structure recognized to be a positive definite Gram
matrix. Note that (

∂μi

∂x j

)
eq

= RT

xi
δi j � 0, (36)

proving that the inequality established in Eq. (29) is a conse-
quence of the thermodynamic stability of the ideal solution.

V. ENTROPIC ANALYSIS IN SPONTANEOUS
MIRROR SYMMETRY BREAKING

We calculate the entropy production and the exchange
entropy and validate the thermodynamic evolution theorem
Eq. (31) as well as analyze the individual pathwise entropy
productions σ (E i ) in the context of spontaneous mirror sym-
metry breaking [14]. For this purpose, we will employ the
Frank model, Fig. 1, which undergoes a bifurcation from an
initially metastable racemic, or mirror-symmetric, state to one
of two energetically degenerate stable scalemic states: See
Fig. 2. There is a relatively short induction period in which
both the enantiomers L, D remain close to their initial concen-
trations, followed by a burst in their joint concentrations and
consumption of the achiral resource A. This is followed by a
rapid increase in the production of the achiral heterodimer P,
with a corresponding drop in the still joint concentrations of
L, D to a very low level. The high level of heterodimer and the
low levels of the enantiomers become unstable, provoking the
bifurcation in the enantiomeric concentrations and a drop in
the heterodimer concentration. Beyond this point, the system
remains in this stable NESS. In this simulation example, we
have chosen a slight initial excess for the concentration in the
L enantiomer over that of the D. This initially minuscule chiral
fluctuation, equivalent to an initial enantiomeric excess ee0 =
5.0×10−18, suffices to take the system out from the unstable
racemic NESS and evolves toward the stable scalemic NESS,
resulting in an amplification of the initial ee to nearly 100%
homochirality; see Fig. 2. The Frank model (see Appendix C)
has been implemented experimentally by suitable chemical
reactions [24]. The calculation of the pathwise entropy pro-
ductions σ (E i ), described below in detail in Sec. VI, provides
additional specific insight into the mirror symmetry breaking
transition in terms of the dissipations along each pathway.

The entropy production sheds light on both stability prop-
erties [1,3] and on mirror symmetry breaking transitions
[25–28] in chemical systems. These situations are character-
ized by transitions from metastable racemic to stable scalemic
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FIG. 2. Spontaneous mirror symmetry breaking (SMSB) for the Frank model in Fig. 1 (see also Appendix C). (a) Evolution of the
concentrations of the achiral resource A, the enantiomers L and D, and the heterodimer P. (b) Percent enantiomeric excess ee(%) = ([L] −
[D])/([L] + [D])×100%. Rate constants: ka = 1×104, k−a = 1×10−4, kd = 1×10−2, k−d = 1×10−10, k2 = 1×102, k−2 = 1×10−4; initial
conditions (mol/L): [A]0 = [A]in = 1×10−2, [L]0 = 1×10−3 + 1×10−20, [D]0 = 1×10−3 − 1×10−20, [P]0 = 1×10−6.

nonequilibrium stationary states (NESS), respectively. Fig-
ure 3 shows the evolution of the entropy production per unit
volume σ � 0, Eq. (2), and its subsequent minimization in
the final stable chiral state relative to the racemic; the entropy
balance dS/dt , Eq. (1), evolves to zero: This is confirmed
since σe = −σ < 0 in the stationary chiral state (Fig. 3 and
see also Fig. 5). In Fig. 4, the change in entropy production
with respect to the time derivative of the affinities, dAσ/dt , is
negative and goes to zero from below on the approach to the
final stable chiral NESS; the change in the entropy exchange
dAσe/dt is positive and goes to zero at the NESS (Fig. 4).
Summing both these separate contributions obeys the evolu-
tion criterion � � 0, Eq. (31), and is negative, approaching
zero asymptotically from below, as the system settles down
into the final stable chiral state; see Fig. 5.

VI. PATHWAY ENTROPY PRODUCTION AND EXCHANGE

We consider the partial entropy productions and exchanges
[16] associated with each individual unidirectional transfor-
mation (see Appendix C) in Fig. 1. These are defined and
calculated in Table I for the chemical transformations and
volumetric flow terms involved. Their weighted sums yield the
combined, or hybrid, entropy production and exchange σ (E i )
along each pathway or elementary flux mode E i (EFM), and
the sum over all the m pathways or EFMs obeys the entropy
balance equation (34) and, hence from Eq. (31), thus also the

thermodynamic evolution criterion (35). The open-flow Frank
model, Fig. 1, has m = 18 EFMs, 14 of which correspond
to seven enantiomeric pairs or doublets under L ↔ D inter-
change, while the remaining four EFMs are mirror-symmetric
singlets; see Table II. The EFMs are defined and calculated
using stoichiometric network analysis (SNA) in Appendix C 1
and are listed in Table II, indicating the sequence of transfor-
mations each EFM represents.

From Tables I and II, we define and calculate the entropy
production and entropy exchange along each pathway, or
along each extreme flux mode (EFM) E i, as follows. We first
calculate the partial entropy production or exchange corre-
sponding to each individual irreversible transformation (using
Table I) and then form the weighted sum of these partial
contributions along the flux mode E i to define the entropy
production and exchange along each reaction pathway. For
the rth transformation, the inverse of the number of nonzero
entries in the rth row of the matrix E in Eq. (C17) provides
the relative weight, which must be included to avoid double
counting. Carrying out this procedure leads to

σ (E1) = 1
5σ (L + D → P) + σ (P → L + D), (37)

σ (E2) = 1
5σ (A → D) + 1

2σ (D → A), (38)

σ (E3) = 1
5σ (A + D → 2D) + 1

2σ (D → A), (39)

FIG. 3. (a) The entropy production σ > 0 for the Frank model in Fig. 1 over the time range of the simulation (see also Appendix C). (b) The
entropy production σ � 0 and exchange entropy σe on their approach to the final chiral nonequilibrium stationary state where σe = −σ < 0
for the NESS. This confirms that V −1dS/dt = σ + σe = 0 vanishing on the stationary states.
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FIG. 4. (a) The rate of change of the entropy production per unit volume dAσ/dt with respect to the time derivative of the affinities.
(b) The change in the entropy exchange dAσe/dt with respect to the time derivative of the affinities. The sum of both quantities yields
� = dA(σ + σe)/dt � 0; see Fig. 5.

σ (E4) = 1
2σ (2D → A + D) + 1

5σ (A → D), (40)

σ (E5) = 1
5σ (A + D → 2D) + 1

2σ (2D → A + D), (41)

σ (E6) = 1
5σ (A → L) + 1

2σ (L → A), (42)

σ (E7) = 1
5σ (A + L → 2L) + 1

2σ (L → A), (43)

σ (E8) = 1
2σ (2L → A + L) + 1

5σ (A → L), (44)

σ (E9) = 1
5σ (A + L → 2L) + 1

2σ (2L → A + L), (45)

σ (E10) = 1
9σ (→ A) + σ (A →), (46)

σ (E11) = 1
9σ (→ A) + 1

5σ (A → D) + 1
2σ (D →), (47)

σ (E12) = 1
9σ (→ A) + 1

5σ (A + D → 2D) + 1
2σ (D →),

(48)

σ (E13) = 1
9σ (→ A) + 1

5σ (A → L) + 1
2σ (L →), (49)

σ (E14) = 1
9σ (→ A) + 1

5σ (A + L → 2L) + 1
2σ (L →),

(50)

σ (E15) = 1
9σ (→ A) + 1

5σ (A → L) + 1
5σ (A → D)

+ 1
5σ (L + D → P) + 1

4σ (P →), (51)

σ (E16) = 1
9σ (→ A) + 1

5σ (A → L) + 1
5σ (A + D → 2D)

+ 1
5σ (L + D → P) + 1

4σ (P →), (52)

σ (E17) = 1
9σ (→ A) + 1

5σ (A → D) + 1
5σ (A + L → 2L)

+ 1
5σ (L + D → P) + 1

4σ (P →), (53)

σ (E18) = 1
9σ (→A) + 1

5σ (A + L → 2L) + 1
5σ (A + D → 2D)

+ 1
5σ (L + D → P) + 1

4σ (P →). (54)

The relative fractional weights reflect the fact that the
partial entropy production and exchange corresponding to
each elementary irreversible transformation (see Table I) is
equipartitioned over the number of EFMs E i in which that
specific transformation participates. For example, the partial
entropy production σ (A + D → 2D) contributes a fraction
1/5 of its magnitude to each one of the five distinct EFMs
that involve this catalytic step, E3, E5, E12, E16, and E18; see
Table II. Summing up all these partial entropy productions and
exchanges over the set of 18 EFM’s, and using Table I, it is
straightforward to verify that

18∑
i=1

σ (E i ) = σ + σe = V −1 dS

dt
, (55)

where σ � 0 is the entropy production and σe is the entropy
exchange, per unit volume; see Eqs. (2) and (3). This result,
Eq. (55), resolves the sum of the entropy production and

FIG. 5. (a) The time rate of change of the system entropy per unit volume V −1dS/dt = σ + σe. (b) The change in the entropy production
and exchange entropy with respect to the time derivative of the affinities � = dA(σ + σe)/dt � 0, and obeys our thermodynamic evolution
criterion, Eq. (31), for the volumetric open-flow reaction scheme in Fig. 1.
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TABLE I. The partial entropy productions and entropy exchanges (per unit volume) for the transformations involved in the open-flow
Frank scheme: (C1)–(C8).

Transformation: Partial entropy production or exchange (per unit volume)

A + L
ka−→ 2L σ (A + L → 2L) = Rka[A][L] ln ( ka[A]

k−a[L] )

2L
k−a−→ A + L σ (2L → A + L) = Rk−a[L]2 ln ( k−a[L]

ka[A] )

A
kd−→ L σ (A → L) = Rkd [A] ln ( kd [A]

k−d [L] )

L
k−d−→ A σ (L → A) = Rk−d [L] ln ( k−d [L]

kd [A] )

L + D
k1−→ P σ (L + D → P) = Rk1[L][D] ln ( k1[L][D]

k−1[P] )

P
k−1−→ L + D σ (P → L + D) = Rk−1[P] ln ( k−1[P]

k1[L][D] )
f [A]in−→ A σ (→ A) = R f [A]in ln ( [A]eq

[A] )

Y
f−→ σ (Y →) = R f [Y ] ln ( [Y ]

[Y ]eq
)

exchange entropy σ + σe in terms of the (hybrid) pathway
entropy contributions σ (E i ), summed up over all the path-
ways. This is the entropy balance equation, Eq. (1), expressed
in terms of the pathway entropy productions and exchanges
associated with each individual EFM.

Consider first the hybrid entropy production and exchange
for the enantiomeric pathway pair E16, E17. These are ex-
pressed as weighted sums over the partial entropy productions
and/or exchanges associated with each individual transfor-
mations as indicated; the fractional weights follow from
stoichiometric network analysis [13]. These pathways involve
the (i) input of A to the reactor, (ii) the direct conversion
of A to enantiomers L or D, (iii) enantioselective autocatal-
ysis, (iv) followed by mutual inhibition (formation of the
heterodimer P), and then (v) the outflow of the product P
from the reactor. The mirror symmetry of the pathway pair,

Eqs. (52) and (53), under interchange of L ↔ D is manifest.
Nevertheless, the evolution of the system leads to a mirror
symmetry breaking bifurcation in this, as well in all seven
pairs of pathway entropy productions corresponding to the
14 enantiomeric extreme flux modes; see Fig. 6 for two
characteristic examples. After symmetry breaking, we find
σ (E17) > σ (E16) and σ (E14) > σ (E12). The distinguishing
chemical feature in the first pathway pair is the combination
of the direct productions A → L(D) and the enantioselective
autocatalyses A + D(L) → 2D(L); in the latter pair, it is the
combination of the autocatalyses and the outflows of each
enantiomer (Fig. 6).

Mirror symmetry breaking leads to bifurcations in the
values of the pathway entropy productions and exchanges
associated with the mirror-symmetric related EFM pair
σ (E2) > σ (E6) and also with the pair σ (E7) > σ (E3),

TABLE II. Frank open-flow scheme (see Fig. 1): the 18 elementary flux modes (EFM) E i, the individual transformations they involve
as enumerated in Eqs. (C1)–(C8), and their corresponding reaction pathways. These currents can be grouped into a subset of seven mirror
symmetric doublets under L ↔ D interchange: E2 ⇔ E6, E3 ⇔ E7, E4 ⇔ E8, E5 ⇔ E9, E11 ⇔ E13, E12 ⇔ E14, and E16 ⇔ E17 and a
subset of four mirror symmetric singlets:E1, E10, E15, E18. This is a Z2 symmetry in composition space. See also Appendix C 1.

EFM: Reactions Subnetwork: reaction pathway

E1 (9), (10) L + D → P, P → L + D
E2 (7), (8) A → D, D → A
E3 (5), (8) A + D → 2D, D → A
E4 (6), (7) 2D → A + D, A → D
E5 (5), (6) A + D → 2D, 2D → A + D
E6 (3), (4) A → L, L → A
E7 (1), (4) A + L → 2L, L → A
E8 (2), (3) 2L → A + L, A → L
E9 (1), (2) A + L → 2L, 2L → A + L
E10 (11), (12) → A, A →
E11 (11), (7), (14) → A, A → D, D →
E12 (11), (5), (14) → A, A + D → 2D, D →
E13 (11), (3), (13) → A, A → L, L →
E14 (11), (1), (13) → A, A + L → 2L, L →
E15 (11), (3), (7), (9), (15) → A, A → L, A → D, L + D → P, P →
E16 (11), (3), (5), (9), (15) → A, A → L, A + D → 2D, L + D → P, P →
E17 (11), (1), (7), (9), (15) → A, A + L → 2L, A → D, L + D → P, P →
E18 (11), (1), (5), (9), (15) → A, A + L → 2L, A + D → 2D, L + D → P, P →
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FIG. 6. Mirror symmetry breaking bifurcation in the pathway and hybrid entropy productions and/or exchange in the enantiomeric
pairs of extreme flux modes (EFM). (a) Bifurcation in the pair σ (E16), σ (E17), Eqs. (52) and (53). (b) Bifurcation in the pair
σ (E12) = 1

9 σ (→ A) + 1
5 σ (A + D → 2D) + 1

2 σ (D →) and σ (E14) = 1
9 σ (→ A) + 1

5 σ (A + L → 2L) + 1
2 σ (L →), Eqs. (48) and (50).

respectively; see Fig. 7. From Table II, E2 and E6 rep-
resent the pathways A → D, D → A, and A → L, L → A,
respectively, the forward and inverse direct production of the
enantiomers. Likewise, E7 and E3 represent the pathways A +
L → 2L, L → A and A + D → 2D, D → A, respectively: the
enantioselective catalyses and the decay of the enantiomers
back into the achiral source.

Similarly, the pairs of pathway entropies associated with
the following pathways show σ (E4) > σ (E8) and σ (E9) >

σ (E5), respectively, they undergo bifurcations: See Fig. 8.
The first pathway pair involves the reverse catalyses plus the
forward direct productions; see Table II. The second pathway
pair are defined by the forward and reverse catalyses only.
Figure 9 shows the bifurcation for the enantiomeric pathways
σ (E13) > σ (E11). These latter pathways involve the input of
A, the direct production of enantiomer, followed by the exit of
that same enantiomer from the reactor; see Table II.

For these initially mirror symmetric pathway entropy pro-
ductions and exchanges, after SMSB the larger combined
production plus exchange is sometimes along the pathways
involving only the L-enantiomer and achiral source, as is the
case for E7, E9, and E13, whereas the greater magnitude is
sometimes for the pathways E2 and E4, which involve only
the D enantiomer and achiral source. This result may result
counterintuitive, since we perturbed the initial racemic state
with a slight excess in favor of the L enantiomer. The pathway
analysis therefore shows that, while the enantiomeric excess
is indeed in the L composition (see Fig. 2), the pathwise
distributions of the overall entropy production and exchange
can be maximized or minimized for some of the pathways

involving only the minority enantiomer (in the case, the D),
with respect to the majority enantiomer (in this case, the L).

From this EFM analysis, the reason why entropy produc-
tion is minimized, with respect to the unstable racemic, in the
case of SMSB [3,23,26–31] is intuitively clear: Whereas in the
racemic state the pairs of EFMs in each Z2 doublet dissipate
identically, after SMSB the dissipation is diminished in one
half of the Z2 related doublet EFMs, while it is augmented
slightly in the other half of the EFMs. This compositional Z2

symmetry is broken, and this impacts directly on the overall
system’s dissipation and entropy exchange. We see this clearly
from the bifurcations in the pathway entropy productions and
entropy exchanges for the EFM doublets: Figs. 6–9.

The sum of the partial entropy productions and exchanges
taken over all the extreme flux modes vanishes identically at
any NESS, confirming that production and exchange over all
such pathways are perfectly balanced at the final chiral NESS,
as well as at the prior metastable racemic state, in compliance
with Eq. (35); see also Fig. 5.

VII. DISCUSSION

Stoichiometric network analysis (SNA) applied to a reac-
tion network, in a system possessing input and output matter
fluxes, yields the inequality for �, Eq. (31), that is, the
statement that the change in σ + σe with respect to the time
derivatives of the affinities A is such as to lower the value of
dS/dt and which is zero in a stationary state. Thus, the chemi-
cal forces (the affinities) of the entire system as a whole evolve
in time so as to lower the rate of change in the system entropy.

FIG. 7. Mirror symmetry breaking bifurcation in the pathway and hybrid entropy productions and/or exchanges corresponding to the
enantiomeric pairs of extreme flux modes (EFM) in Table II. (a) Bifurcation in the pair σ (E2), σ (E6); see Eqs. (38) and (42). (b) Bifurcation
in the pair σ (E3) and σ (E7); see Eqs. (39) and (43).
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FIG. 8. Mirror symmetry breaking bifurcation in the pathway and hybrid entropy productions and/or exchanges corresponding to the
enantiomeric pairs of extreme flux modes (EFM) in Table II. (a) Bifurcation in the pair σ (E4), σ (E8); see Eqs. (40) and (44). (b) Bifurcation
in the pair σ (E5) and σ (E9); see Eqs. (41) and (45).

This is a generalization of the general evolution criterion
(GEC). Note, for the clamped approximation, when all the
external concentrations are held at predetermined fixed values,
these can be absorbed into the reaction rate constants k of
the internal reversible reactions. There is then no exchange
entropy, σe = 0, and our result reduces, as it must, to the
standard GEC as proven originally by Glansdorff and Pri-
gogine [1]. In their proof, they derived the GEC for dissipative
processes involving a variety of generalized forces Xα which
includes the chemical affinity. They state that “[t]he change
of the forces Xα proceeds always in a way as to lower the
value of the entropy production” (p. 111) [1]. The original
GEC demonstration follows as a consequence of the second
law, but the inequality Eq. (31) for �, in which the elements
of the stoichiometric matrix define a Gram matrix in Eq. (29),
necessarily gives a positive sign (negative, when the definition
of de Donder’s affinity is taken into account). This manifestly
algebraic conclusion is a consequence of the ability of SNA to
describe, through the stoichiometric matrix, coupled reaction
networks in open systems: Each species’s chemical potential
shows a specific value, but this unique value determines posi-
tive or negative forces depending on the specific unidirectional
reaction where it is acting. Notice that the correlation between
the directions (that is, parallel or antiparallel) of the force
Xα and the current Jα , for example, between a temperature
gradient and heat flow, or chemical potential difference and

FIG. 9. Mirror symmetry breaking bifurcation in the pathway
and hybrid entropy productions and/or exchanges corresponding to
the enantiomeric pair of extreme flux modes σ (E11) and σ (E13); see
Eqs. (47) and (49) and also Table II.

absolute reaction rates, is a universal physical constraint prior
to the second law. Therefore, � reveals this directional force-
current constraint.

Thermodynamic evolution of fluid flow-driven chemical
reactions involves the internal processes taking place within
the system as well as the matter fluxes into and out from
the system (e.g., Fig. 1). The affinities must evolve to
minimize the sum of the entropy production and entropy
exchange. The set of reactions plus the input-output fluxes
evolve jointly and in unison in compliance with this crite-
rion Eq. (29), valid in the nonlinear and linear regimes of
nonequilibrium thermodynamics, and vanishes for stationary
states and for equilibrium. Application of SNA reveals that the
(partial) entropy productions and exchanges associated with
each individual irreversible reaction and matter flow term are
equipartioned over those pathways in which those reactions
and flow terms belong. The combined entropy productions
and exchanges over each reaction pathway gives insight to
the mechanisms involved in symmetry breaking. This result is
important, for it links production of entropy and exchange en-
tropy with pathways and hence with network topology. In this
respect, open flow chemical systems have special interest re-
garding features of symmetry breaking in dynamical systems,
as well as their obvious relevance for studying biochemical
and biological problems in more involved and complex sit-
uations. Our results hold for macroscopic systems and ideal
solutions. For sufficiently small systems, such as biological
cells, stochastic nonequilibrium thermodynamics is likely re-
quired [32–35]. For this case, the mesoscopic approach leads
to an evolution criterion in terms of the time derivative of the
probability distribution [33] reminiscent of (29), where the
latter is valid in the limit of zero fluctuations, and so our result
can be regarded as the thermodynamic or deterministic limit
of the former.

By making use of stoichiometric network analysis (SNA),
we also derived an inequality constraining the pathway en-
tropy productions associated to each extreme flux mode
(EFM) and summed over all the EFMs. This representation
of our thermodynamic inequality shows that the forces (the
affinities of both the internal reactions and of the external
matter fluxes) evolve in time so that the sum of the entropy
productions and/or exchanges, taken over all the elementary
flux modes E i (EFM), of the network, is lowered. The lat-
ter result shows moreover how the entropy production and
exchange gets shared out among all the individual reaction
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pathways of the system. An explicit set of EFMs is derived
in Appendix C 1 for an open-flow version of the Frank model,
and the inequality is validated for a mirror symmetry breaking
transition. For the case of SMSB in the Frank model, the en-
tropy production plus exchange entropy do reach a minimum
value, with respect to the thermodynamic racemic branch after
symmetry breaking.

At this juncture, it is important to emphasize, however,
the fact that neither the original GEC nor our generalization
to open flow, Eq. (31), necessarily imply that the entropy
production (or the sum of the entropy production and
the exchange entropy) will actually be minimized. This
is because, beyond the linear regime of nonequilibrium
thermodynamics, there is no general result governing the
behavior of the changes in entropy production with respect
to temporal derivatives of the flows dJσ/dt , where the
flows J result from the generalized forces X . For the case
of SMSB in the Frank model, the entropy production plus
exchange entropy do reach a minimum value, with respect
to the thermodynamic racemic branch after symmetry
breaking. An interesting example, to contrast against our
results for the Frank model, is provided by an autocatalytic
enantioselective reaction scheme, without mutual inhibition,
and with variable catalytic order 1 < n � 2, which can exhibit
either bistability or even tristability, depending on the value
of n. Then, for specified reaction rate and flow constants
and for the range 1.6 < n < 1.7, the model has one stable
racemic NESS, one unstable scalemic NESS, and one stable
scalemic NESS [36]. The corresponding entropy productions
satisfy σ (stable racemic) > σ (unstable scalemic) > σ

(stable scalemic)>0. Thus, if the system starts off initially in
the unstable scalemic NESS, the sign of a random fluctuation
will determine whether the system ends up in the stable
racemic NESS or else in the stable scalemic NESS: In
the latter case, the entropy production will be minimized,
but in the former it will be maximized, with respect to
that of the initial unstable scalemic state. Nevertheless, the
thermodynamic inequality Eq. (31) is strictly obeyed for all
the possible allowed outcomes [36].

In summary, we have derived an inequality which governs
the rate of change of the entropy balance (the entropy pro-
duction σ � 0 plus the exchange entropy σe) in volumetric
open-flow chemical systems. This result governs the joint
evolution of both the internal reactions taking place within the
system and the matter fluxes that the system exchanges with
its environment. It furthermore describes how the equiparti-
tion of the energy, over the reaction pathways belonging to the
entire system, leads to a partitioning of the entropy production
over the set of pathways with weights determined by the stoi-
chiometry. The power (per unit volume) is distributed over the
reaction paths and reveals a universal evolution criterion for
extended nonlinear thermodynamics. The result is invariant
under rotations corresponding to redefinitions of products of
stoichiometric coefficients with reaction rate velocities. We
validate our inequality for an enantioselective autocatalytic
model possessing nonequilibrium stationary states (NESS)
that lie off the thermodynamic branch, of interest regarding
the emergence of biological homochirality in origin of life
research, and provides a relevant proof of concept for this
thermodynamic evolution theorem. In our opinion, this result

opens up a window for the design of models and simulations
for the study of the dynamics of complex systems and their
interactions with the environment [37].
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APPENDIX A: THE ENTROPY BALANCE
FOR OPEN-FLOW REACTION SCHEMES

We deduce the physical interpretation of the bilinear ex-
pression in Eq. (21), that is, the sum over products of reaction
rates times affinities yields the entropy production σ � 0 plus
the entropy exchange σe (per unit volume). We demonstrate
this for a general reaction scheme subject to input and output
volumetric flow terms.

The chemical reactions for r reactions involving n chemi-
cal species can be summarized as follows:

α1 jX1 + · · · + αn jXn
k j→ β1 jX1 + · · · + βn jXn, j = 1, . . . , r,

(A1)
where the Xi, 1 � i � n, are the n chemical species, and
each k j > 0 is the reaction rate constant for the jth reaction.
Forward and reverse reactions are treated separately, and the
above list (A1) can also include the irreversible pseudoreac-
tions, that is, the input and output volumetric flows to and
from the reactor. There can be a such a flow for each one of
the species, u = 1, . . . , n:

kin,u[Xu]in→ Xu (inflow), (A2)

Xu
kout,u→ (outflow). (A3)

The effective rate constants kin,u = q/V = kout,u, where q =
l/s is volume l of fluid entering and exiting the reactor of
volume V per second, and [Xu]in is the fixed concentration of
species u flowing into the reactor. These fluid flows maintain
the system volume V constant. Inflows and outflows need not
be “matched”; that is, a given species u can flow out of the
reactor, without necessarily flowing into it: This means we
would set kin,u = 0 for this species. All species generally flow
out with their instantaneous concentration as determined by
the reactions taking place within the reactor.

We can group the full set of all the r irreversible transfor-
mations (A1) into one subset of p pairs that comprise all the
reversible reactions:

α1 jX1 + · · · + αn jXn

k+
j→ β1 jX1 + · · · + βn jXn, (A4)

β1 jX1 + · · · + βn jXn

k−
j→ α1 jX1 + · · · + αn jXn, (A5)

for j = 1, 2, . . . , p. Let ν+
i j = βi j − αi j , ν−

i j = −ν+
i j be the

elements of the stoichiometric matrix defined for j in this
range. The remaining transformations belong to the second
subset and correspond to the input and output flow terms (A2)
and (A3) (see below).
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The columns of the overall n×2p stoichiometic matrix
corresponding this the set of 2p (irreversible) transformations
(A4) and (A5) are built from alternating (or dovetailing) the
columns of the above submatrices ν+ and ν−, as follows:

νil =

⎧⎪⎨
⎪⎩

ν+
i,[ l

2 ]+1
l = 1, 3, . . . , 2p − 1 (odd),

ν−
i, l

2

l = 2, 4, . . . , 2p (even).
(A6)

The remaining r − 2p transformations in (A1) will represent
the input-output flows; see below.

Forward, reverse rates of reaction and their corresponding
affinities are ( j = 1, 2, . . . , p)

w+
j = k+

j

n∏
u=1

(xu)αu j , (A7)

w−
j = k−

j

n∏
u=1

(xu)βu j , (A8)

A+
j = −

n∑
k=1

ν+
k jμk, (A9)

A−
j = −

n∑
k=1

ν−
k jμk = −A+

j . (A10)

Consider the following sum over the p pairs of forward and
reverse reactions:

1

T

2p∑
k=1

wkAk = 1

T

p∑
j=1

(w+
j A+

j + w−
j A−

j )

=
p∑

j=1

(w+
j − w−

j )
A+

j

T
. (A11)

Evaluate the affinities employing the relative chemical poten-
tials (4):

A+
j

T
= − 1

T

n∑
k=1

ν+
k jμk, (A12)

= −R
n∑

k=1

(
βk j − αk j

)
ln

(
[xk]

[xk]eq

)
, (A13)

= R ln

(
n∏

k=1

(
[xk]eq

[xk]

)βk j−αk j
)

, (A14)

= R ln

(
n∏

k=1

(
[xk]eq

[xk]

)βk j
(

[xk]

[xk]eq

)αk j
)

, (A15)

= R ln

(
n∏

k=1

(
[xk]β jk

eq

[xk]α jk
eq

)
n∏

k=1

(
[xk]αk j

[xk]β jk

))
, (A16)

= R ln

(
k+

j

k−
j

n∏
k=1

(
[xk]αk j

[xk]β jk

))
, (A17)

= R ln

(
w+

j

w−
j

)
. (A18)

Inserting (A18) into the final expression in (A11) shows that
this sum (A11), over products of reaction rates for the re-
versible transformations times their corresponding affinities,
gives the entropy production per unit volume σ � 0 [Eq. (2)]
corresponding to the set of all the p-reversible reactions.

Next, consider the sum over the pseudoreactions. The
columns of the overall n×2n stoichiometic matrix corre-
sponding to the set of the 2n (irreversible) pseudoreactions
(A2) and (A3) are assembled from alternating (or dovetailing)
the columns of the following sub-matrices, indicated as fol-
lows:

ν
pseudo
il =

⎧⎨
⎩

δi,[ l
2 ]+1 l = 1, 3, . . . , 2n − 1 (odd),

−δi, l
2

l = 2, 4, . . . , 2n (even).
(A19)

Define the reaction rates [the flows Jflow
i in Eq. (21)] and

affinities [the forces X flow
i in Eq. (21)] associated with the open

flow terms:

w+
j = kin

j [Xj]in, Ain
j = −μrel

j , (A20)

w−
j = kout

j [Xj], Aout
j = μrel

j . (A21)

Then, the part of the (overall) sum that runs over the pseu-
doreactions (A2) and (A3) can be written as follows (note the
summation limits):

1

T

n∑
j=1

(
w+

j Ain
j + w−

j Aout
j

) = −
n∑

j=1

(w+
j − w−

j )
μrel

j

T
, (A22)

= −
n∑

j=1

(
kin

j [Xj]in − kout
j [Xj]

)μrel
j

T
= σe. (A23)

Together (A11), (A18), and (A23) demonstrate that prod-
ucts of reaction rates times affinities, summed over all the
internal reactions and the volumetric flow terms, gives the sum
of the entropy production and the entropy exchange (per unit
volume):

r∑
k=1

wk
Ak

T
= σ + σe. (A24)

APPENDIX B: SYMMETRIES AND INVARIANCE OF �

We can express � in a manifestly symmetric way by defin-
ing a matrix with elements Gmn = wnνmn/

√
xm. Then we have

� = −R
r∑

j=1

r∑
l=1

(
n∑

k=1

w jνk jνklwl

xk

)
, (B1)

= −R
r∑

j=1

r∑
l=1

n∑
k=1

GT
jkGkl , (B2)

= −R
r∑

j=1

r∑
l=1

[GT G] jl � 0, (B3)

where M = [GT G] � 0 is a Gram matrix [21] and so is posi-
tive semidefinite. Thus, � � 0. We transform the individual
G matrices by an orthogonal transformation (rotations) as
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follows:

G′ = OG, G′T = GT OT ,

G′T G′ = GT OT OG = GT G,

⇒ � ′ = �. (B4)

Thus, � is invariant under rotations. We can express the in-
equality as a scalar product of a vector with itself, as follows
[using Eq. (23)]:

� = −R
dx√
xdt

· dx√
xdt

= −R ‖ dx√
xdt

‖2� 0, (B5)

where the components of the vector in question are defined by(
dx√
xdt

)
k

=
r∑

l=1

νkl wl√
xk

. (B6)

The expression for � (B5) is manifestly invariant under rota-
tions. The kth component of the vector is the rate of change of
the concentration of the kth species divided by the square root
of its concentration (B6).

APPENDIX C: OPEN-FLOW FRANK SCHEME

The fully reversible Frank model scheme in an open-flow
reactor of volume V , where A flows in at constant concen-
tration [A]in and all species A, L, D, and P flow out with
their corresponding instantaneous concentrations (see Fig. 1),
is specified by the 15 transformations as numbered:

A + L
ka (1)
�

k−a (2)
L + L, A + D

ka(5)
�

k−a(6)
D + D, (C1)

A
kd (3)
�

k−d (4)
L, A

kd (7)
�

k−d (8)
D, (C2)

L + D
k1(9)
�

k−1(10)
P, (C3)

∅̄ k f [A]in (11)−→ A, (C4)

A
k f (12)−→ ∅, (C5)

L
k f (13)−→ ∅, (C6)

D
k f (14)−→ ∅, (C7)

P
k f (15)−→ ∅, (C8)

where k f = q/V , the volumetric flow rate q = 10−3 L/s, and
V = 1 L. For convenience, we number the 15 transformations

as indicated for the purposes of carrying out the stoichiometric
network analysis (SNA) [13] that follows below. Equality
of the equilibrium constants for the direct production (C2)
and the autocatalytic steps (C1) implies the constraint for the
reaction rate constants:

ka

k−a
= kd

k−d
. (C9)

These transformations lead to the following set of differen-
tial rate equations for the concentrations and in the mean-field
approximation:

d[A]

dt
= −2kd [A] + k−d ([D] + [L]) − ka[A]([L] + [D])

+ k−a([L]2 + [D]2) + k f ([A]in − [A]), (C10)

d[L]

dt
= kd [A] − k−d [L] + ka[A][L] − k−a[L]2

− k1[L][D] + k−1[P] − k f [L], (C11)

d[D]

dt
= kd [A] − k−d [D] + ka[A][D] − k−a[D]2

− k1[L][D] + k−1[P] − k f [D], (C12)

d[P]

dt
= k1[L][D] − k−1[P] − k f [P]. (C13)

These imply the constraint

d

dt
([A] + [L] + [D] + 2[P])

= k f ([A]in − [A] − [L] − [D] − 2[P]), (C14)

so that in the steady states, the total chemical mass in the
reactor is equal to the input mass [A]in:

[A]in = [A] + [L] + [D] + 2[P]. (C15)

The differential equations (C10)–(C13) are integrated nu-
merically using the MATHEMATICA function NDSolve with
options MaxSteps→ 106 and WorkingPrecision→ 30. All the
initial conditions and parameters are specified with SetPreci-
sion set to 30. The output InterpolatingFunctions is used to
evaluate the dynamics, the enantiomeric excess, the entropy
production, and the entropy exchange.

Stoichiometric network analysis

The associated stoichiometric matrix is [columns represent
the transformations numbered consecutively from (1) to (15)
in going from left to right, whereas the rows correspond to the
four species A, L, D, and P in labeling top to bottom]

ν =

⎛
⎜⎜⎜⎜⎝

−1 1 −1 1 −1 1 −1 1 0 0 1 −1 0 0 0

1 −1 1 −1 0 0 0 0 −1 1 0 0 −1 0 0

0 0 0 0 1 −1 1 −1 −1 1 0 0 0 −1 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠. (C16)

Then the intersection of the null space of the stoichiometric matrix ν with the positive orthant of the 15-dimensional Euclidean
space R15

+ yields 18 currents E i or the extreme flux modes (EFM) [13], which can be organized into the columns of the following
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matrix E (see Table II for the different reaction pathways they represent):

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C17)

and obeys the matrix product νE = 0.
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