Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/104
Título : Renormalization of stochastic differential equations with multiplicative noise using effective potential methods
Autor : Sébastien Gagnon, Jean
Hochberg, David
Pérez Mercader, Juan
Palabras clave : Simulation;Polymer;equations
Fecha de publicación : 23-dic-2020
Editorial : APS Physics
DOI: 10.1103/PhysRevE.102.062142
Versión del Editor: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.062142
Citación : Physical Review E 102(6): 062142 (2020)
Resumen : We present a method to renormalize stochastic differential equations subjected to multiplicative noise. The method is based on the widely used concept of effective potential in high-energy physics and has already been successfully applied to the renormalization of stochastic differential equations subjected to additive noise. We derive a general formula for the one-loop effective potential of a single ordinary stochastic differential equation (with arbitrary interaction terms) subjected to multiplicative Gaussian noise (provided the noise satisfies a certain normalization condition). To illustrate the usefulness (and limitations) of the method, we use the effective potential to renormalize a toy chemical model based on a simplified Gray-Scott reaction. In particular, we use it to compute the scale dependence of the toy model's parameters (in perturbation theory) when subjected to a Gaussian power-law noise with short time correlations.
URI : http://hdl.handle.net/20.500.12666/104
E-ISSN : 2470-0053
ISSN : 2470-0045
Aparece en las colecciones: (CAB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
acceso-restringido.pdf221,73 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de Digital.INTA están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.