Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/339
Registro completo de metadatos
Campo DC Valor Idioma
dc.rights.license© C. Gieser et al. 2019-
dc.contributor.authorGieser, C.-
dc.contributor.authorSemenov, D.-
dc.contributor.authorBeuther, H.-
dc.contributor.authorAhmadi, A.-
dc.contributor.authorMottram, J. C.-
dc.contributor.authorHenning, T.-
dc.contributor.authorBeltrán, M. T.-
dc.contributor.authorMaud, L. T.-
dc.contributor.authorBosco, F.-
dc.contributor.authorLeurini, S.-
dc.contributor.authorPeters, T.-
dc.contributor.authorKlaassen, P. D.-
dc.contributor.authorKuiper, R.-
dc.contributor.authorFeng, S.-
dc.contributor.authorUrquhart, J. S.-
dc.contributor.authorMoscadelli, L.-
dc.contributor.authorCsengeri, T.-
dc.contributor.authorLumsden, S.-
dc.contributor.authorWinters, J. M.-
dc.contributor.authorSuri, S.-
dc.contributor.authorZhang, Q.-
dc.contributor.authorPudritz, R.-
dc.contributor.authorPalau, A.-
dc.contributor.authorMenten, K. M.-
dc.contributor.authorGalván Madrid, R.-
dc.contributor.authorWyrowski, F.-
dc.contributor.authorSchilke, P.-
dc.contributor.authorSánchez Monge, A.-
dc.contributor.authorLinz, H.-
dc.contributor.authorJohnston, K. G.-
dc.contributor.authorJiménez Serra, I.-
dc.contributor.authorLongmore, S.-
dc.contributor.authorMöller, T.-
dc.contributor.otherUnidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737-
dc.date.accessioned2021-04-14T10:00:57Z-
dc.date.available2021-04-14T10:00:57Z-
dc.date.issued2019-11-08-
dc.identifier.citationAstronomy and Astrophysics 631: A142(2019)es
dc.identifier.issn0004-6361-
dc.identifier.otherhttps://www.aanda.org/articles/aa/abs/2019/11/aa35865-19/aa35865-19.html-
dc.identifier.urihttp://hdl.handle.net/20.500.12666/339-
dc.descriptionFellow of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD).es
dc.description.abstractAims. In order to understand the observed molecular diversity in high-mass star-forming regions, we have to determine the underlying physical and chemical structure of those regions at high angular resolution and over a range of evolutionary stages. Methods. We present a detailed observational and modeling study of the hot core VLA 3 in the high-mass star-forming region AFGL 2591, which is a target region of the NOrthern Extended Millimeter Array (NOEMA) large program CORE. Using NOEMA observations at 1.37 mm with an angular resolution of ~0″. 42 (1400 au at 3.33 kpc), we derived the physical and chemical structure of the source. We modeled the observed molecular abundances with the chemical evolution code MUSCLE (MUlti Stage ChemicaL codE). Results. With the kinetic temperature tracers CH3CN and H2CO we observe a temperature distribution with a power-law index of q = 0.41 ± 0.08. Using the visibilities of the continuum emission we derive a density structure with a power-law index of p = 1.7 ± 0.1. The hot core spectra reveal high molecular abundances and a rich diversity in complex molecules. The majority of the molecules have an asymmetric spatial distribution around the forming protostar(s), which indicates a complex physical structure on scales <1400 au. Using MUSCLE, we are able to explain the observed molecular abundance of 10 out of 14 modeled species at an estimated hot core chemical age of ~21 100 yr. In contrast to the observational analysis, our chemical modeling predicts a lower density power-law index of p < 1.4. Reasons for this discrepancy are discussed. Conclusions. Combining high spatial resolution observations with detailed chemical modeling allows us to derive a concise picture of the physical and chemical structure of the famous AFGL 2591 hot core. The next steps are to conduct a similar analysis for the whole CORE sample, and then use this analysis to constrain the chemical diversity in high-mass star formation to a much greater depth.es
dc.description.sponsorshipThe authors would like to thank the anonymous referee whose comments helped improve the clarity of this paper. This work is based on observations carried out under project number L14AB with the IRAM NOEMA Interferometer and the IRAM 30m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). C.G., H.B., A.A., and J.C.M. acknowledge support from the European Research Council under the Horizon 2020 Framework Programme via the ERC Consolidator Grant CSF-648505. D.S. acknowledges support from the Heidelberg Institute of Theoretical Studies for the project "Chemical kinetics models and visualization tools: Bridging biology and astronomy." R.K. acknowledges financial support via the Emmy Noether Research Group on Accretion Flows and Feedback in Realistic Models of Massive Star Formation funded by the German Research Foundations (DFG) under grant no. KU 2849/3-1 and KU 2849/3-2. A.P. acknowledges financial support from UNAM-PAPIIT IN113119 grant, Mexico. A.S.M. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) via the Sonderforschungsbereich SFB 956 Conditions and Impact of Star Formation (subproject A6). I.J.-S. acknowledges partial support by the MINECO and FEDER funding under grants ESP2015-65597-C4-1 and ESP2017-86582-C4-1-R. This research made use of Astropy10, a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018); With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737).es
dc.language.isoenges
dc.publisherEDP Scienceses
dc.relationinfo:eu-repo/grantAgreement/MINECO//ESP2015-65597-C4-1-R-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/-
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectISM: individual objects: AFGL 2591es
dc.subjectAstrochemistryes
dc.subjectISM: moleculeses
dc.subjectStars: massivees
dc.titleChemical complexity in high-mass star formation An observational and modeling case study of the AFGL 2591 VLA 3 hot corees
dc.typeinfo:eu-repo/semantics/articlees
dc.contributor.orcidKuiper, R. [0000-0003-2309-8963]-
dc.contributor.orcidSánchez Monge, A. [0000-0002-3078-9482]-
dc.contributor.orcidGalván Madrid, R. [0000-0003-1480-4643]-
dc.contributor.orcidLeurini, S. [0000-0003-1014-3390]-
dc.contributor.orcidAhmadi, A. [0000-0003-4037-5248]-
dc.contributor.orcidSemenov, D. [0000-0002-3913-7114]-
dc.contributor.orcidGieser, C. [0000-0002-8120-1765]-
dc.identifier.doi10.1051/0004-6361/201935865-
dc.identifier.e-issn1432-0746-
dc.contributor.funderDeutsche Forschungsgemeinschaft (DFG)-
dc.contributor.funderAgencia Estatal de Investigación (AEI)-
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO)-
dc.contributor.funderEuropean Research Council (ERC)-
dc.description.peerreviewedPeer reviewes
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/648505-
Aparece en las colecciones: (CAB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Chemical complexity in high mass star formation.pdf1,68 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons