Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/623
Registro completo de metadatos
Campo DC Valor Idioma
dc.rights.license© ESO 2021-
dc.contributor.authorBulut, N.-
dc.contributor.authorRoncero, O.-
dc.contributor.authorAguado, A.-
dc.contributor.authorLoison, J. C.-
dc.contributor.authorNavarro Almaida, D.-
dc.contributor.authorWakelam, V.-
dc.contributor.authorFuente, A.-
dc.contributor.authorRoueff, E.-
dc.contributor.authorLe Gal, R.-
dc.contributor.authorCaselli, P.-
dc.contributor.authorGerin, M.-
dc.contributor.authorHickson, K. M.-
dc.contributor.authorSpezzano, S.-
dc.contributor.authorRiviére Marichalar, P.-
dc.contributor.authorAlonso Albi, T.-
dc.contributor.authorBachiller, R.-
dc.contributor.authorJiménez Serra, I.-
dc.contributor.authorKramer, C.-
dc.contributor.authorTercero, B.-
dc.contributor.authorRodríguez Baras, M.-
dc.contributor.authorGarcía Burillo, S.-
dc.contributor.authorGoicoechea, J. R.-
dc.contributor.authorTreviño Morales, S. P.-
dc.contributor.authorEsplugues, G.-
dc.contributor.authorCazaux, S.-
dc.contributor.authorCommercon, B.-
dc.contributor.authorLaas, J. C.-
dc.contributor.authorKirk, J.-
dc.contributor.authorLattanzi, V.-
dc.contributor.authorMartín Doménech, R.-
dc.contributor.authorMuñoz Caro, G. M.-
dc.contributor.authorPineda, J. E.-
dc.contributor.authorWard Thompson, D.-
dc.contributor.authorTafalla, M.-
dc.contributor.authorMarcelino, N.-
dc.contributor.authorMalinen, J.-
dc.contributor.authorFriesen, R.-
dc.contributor.authorGiuliano, B. M.-
dc.contributor.authorAgúndez, Marcelino-
dc.contributor.authorHacar, A.-
dc.date.accessioned2022-02-15T14:33:01Z-
dc.date.available2022-02-15T14:33:01Z-
dc.date.issued2021-02-02-
dc.identifier.citationAstronomy and Astrophysics 646: A5(2021)es
dc.identifier.issn0004-6361-
dc.identifier.otherhttps://www.aanda.org/articles/aa/abs/2021/02/aa39611-20/aa39611-20.html-
dc.identifier.urihttp://hdl.handle.net/20.500.12666/623-
dc.description.abstractContext. Carbon monosulphide (CS) is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. However, chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. Aims. The CS+O → CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150−400 K, but the extrapolation to lower temperatures is doubtful. Our goal is to calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. Methods. We performed ab initio calculations to obtain the three lowest potential energy surfaces (PES) of the CS+O system. These PESs are used to study the reaction dynamics, using several methods (classical, quantum, and semiclassical) to eventually calculate the CS + O thermal reaction rates. In order to check the accuracy of our calculations, we compare the results of our theoretical calculations for T ~ 150−400 K with those obtained in the laboratory. Results. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150–400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, below 10−15 cm3 s−1, which is consistent with the extrapolation of experimental data using the Arrhenius expression. Conclusions. We use the updated chemical network to model the sulfur chemistry in Taurus Molecular Cloud 1 (TMC 1) based on molecular abundances determined from Gas phase Elemental abundances in Molecular CloudS (GEMS) project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate, ζH2, along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.es
dc.description.sponsorshipThe research leading to these results has received funding from MICIU (Spain) under grants FIS2017-83473-C2, AYA2016-75066-C2-2-P, ESP2017-86582-C4-1-R, AYA2017-85111-P, PID2019-105552RB-C41 and PID2019-106235GB-I00. N.B. acknowledges the computing facilities by TUBITAK-TRUBA, and O.R. and A.A. acknowledge computing time at Finisterre (CESGA) and Marenostrum (BSC) under RES computational grants ACCT-2019-3-0004 and AECT-2020-1-0003. SPTM acknowledges the European Union's Horizon 2020 research and innovation program for funding support under agreement No 639450 (PROMISE).es
dc.language.isoenges
dc.publisherEDP Scienceses
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AYA2016-75066-C2-2-P/ES/LA RELACION ENTRE DINAMICA Y QUIMICA: FORMACION DE ESTRELLAS Y PLANETAS/-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AYA2017-85111-P/ES/EFECTOS DINAMICOS Y RADIATIVOS DE LAS ESTRELLAS MASIVAS EN EL MEDIO INTERESTELAR: IMAGENES ESPECTROSCOPICAS CON ALMA, SOFIA, IRAM-30M Y JWST/-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105552RB-C41/ES/CONTRIBUCION DEL CAB A SPICA, DESARROLLO DE INSTRUMENTACION CRIOGENICA Y EXPLOTACION CIENTIFICA MULTILONGITUD DE ONDA/-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106235GB-I00-
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAstrochemistryes
dc.subjectMolecular processeses
dc.subjectISM: cloudses
dc.subjectISM: moleculeses
dc.subjectISM: abundanceses
dc.titleGas phase Elemental abundances in Molecular cloudS (GEMS) III. Unlocking the CS chemistry: the CS+O reactiones
dc.typeinfo:eu-repo/semantics/articlees
dc.contributor.orcidMarcelino, N. [0000-0001-7236-4047]-
dc.contributor.orcidRoncero, O. [0000-0002-8871-4846]-
dc.contributor.orcidPineda, J. [0000-0002-3972-1978]-
dc.contributor.orcidAgundez, M. [0000-0003-3248-3564]-
dc.contributor.orcidTafalla, M. [0000-0002-2569-1253]-
dc.identifier.doi10.1051/0004-6361/202039611-
dc.identifier.e-issn1432-0746-
dc.contributor.funderAgencia Estatal de Investigación (AEI)-
dc.description.peerreviewedPeerreviewes
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033-
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501-
Aparece en las colecciones: (CAB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
aa39611-20.pdf1,1 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons