Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/685
Registro completo de metadatos
Campo DC Valor Idioma
dc.rights.license© 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbHes
dc.contributor.authorRibó, J. M.-
dc.contributor.authorHochberg, D.-
dc.date.accessioned2022-03-18T09:59:02Z-
dc.date.available2022-03-18T09:59:02Z-
dc.date.issued2021-07-14-
dc.identifier.citationChemistry: A European Journal 27(52): 13098-13106es
dc.identifier.issn0947-6539-
dc.identifier.otherhttps://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202101562-
dc.identifier.urihttp://hdl.handle.net/20.500.12666/685-
dc.description.abstractThe way chemical transformations are described by models based on microscopic reversibility does not take into account the irreversibility of natural processes, and therefore, in complex chemical networks working in open systems, misunderstandings may arise about the origin and causes of the stability of non-equilibrium stationary states, and general constraints on evolution in systems that are far from equilibrium. In order to be correctly simulated and understood, the chemical behavior of complex systems requires time-dependent models, otherwise the irreversibility of natural phenomena is overlooked. Micro reversible models based on the reaction-coordinate model are time invariant and are therefore unable to explain the evolution of open dissipative systems. The important points necessary for improving the modeling and simulations of complex chemical systems are: a) understanding the physical potential related to the entropy production rate, which is in general an inexact differential of a state function, and b) the interpretation and application of the so-called general evolution criterion (GEC), which is the general thermodynamic constraint for the evolution of dissipative chemical systems.es
dc.description.sponsorshipThe authors acknowledge the coordinated research grants PID2020-116846GB-C21 and PID2020-116846GB-C22, from the Ministerio de Ciencia e Innovación (Spain). We thank A. Sorrenti for his critical and thoughtful comments on this work.es
dc.language.isoenges
dc.publisherChemistry Europe: European Chemical Societies Publishinges
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116846GB-C21/ES/RUPTURA DE LA SIMETRIA ESPECULAR EN PROCESOS QUIMICOS DE FLUJO CONTINUO: ANALISIS TEORICO Y APLICACIONES EN CATALISIS/-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116846GB-C22/ES/RUPTURA DE LA SIMETRIA ESPECULAR EN PROCESOS QUIMICOS DE FLUJO CONTINUO: ANALISIS TEORICO Y APLICACIONES EN CATALISIS/-
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectReaction modeles
dc.subjectChemical complexityes
dc.titleThe Coordinate Reaction Model: An Obstacle to Interpreting the Emergence of Chemical Complexityes
dc.typeinfo:eu-repo/semantics/articlees
dc.contributor.orcidRibó, J. M. [0000-0001-6258-1726]-
dc.contributor.orcidHochberg, D. [0000-0002-0411-019X]-
dc.identifier.doi10.1002/chem.202101562-
dc.identifier.e-issn1521-3765-
dc.contributor.funderAgencia Estatal de Investigación (AEI)-
dc.description.peerreviewedPeerreviewes
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033-
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501-
Aparece en las colecciones: (CAB) Artículos



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons