Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/690
Registro completo de metadatos
Campo DC Valor Idioma
dc.contributor.authorVillafañe Barajas, S. A.-
dc.contributor.authorRuiz Bermejo, Marta-
dc.contributor.authorRayo Pizarroso, P.-
dc.contributor.authorGálvez Martínez, S.-
dc.contributor.authorMateo Martí, Eva-
dc.contributor.authorColín García, M.-
dc.date.accessioned2022-03-18T11:50:57Z-
dc.date.available2022-03-18T11:50:57Z-
dc.date.issued2021-07-06-
dc.identifier.citationLife 11(7): 661(2021)es
dc.identifier.otherhttps://www.mdpi.com/2075-1729/11/7/661-
dc.identifier.urihttp://hdl.handle.net/20.500.12666/690-
dc.description.abstractHydrogen cyanide, HCN, is considered a fundamental molecule in chemical evolution. The named HCN polymers have been suggested as precursors of important bioorganics. Some novel researches have focused on the role of mineral surfaces in the hydrolysis and/or polymerization of cyanide species, but until now, their role has been unclear. Understanding the role of minerals in chemical evolution processes is crucial because minerals undoubtedly interacted with the organic molecules formed on the early Earth by different process. Therefore, we simulated the probable interactions between HCN and a serpentinite-hosted alkaline hydrothermal system. We studied the effect of serpentinite during the thermolysis of HCN at basic conditions (i.e., HCN 0.15 M, 50 h, 100 °C, pH > 10). The HCN-derived thermal polymer and supernatant formed after treatment were analyzed by several complementary analytical techniques. The results obtained suggest that: (I) the mineral surfaces can act as mediators in the mechanisms of organic molecule production such as the polymerization of HCN; (II) the thermal and physicochemical properties of the HCN polymer produced are affected by the presence of the mineral surface; and (III) serpentinite seems to inhibit the formation of bioorganic molecules compared with the control (without mineral).es
dc.description.sponsorshipS.A.V.-B. acknowledges Posgrado en Ciencias de la Tierra (UNAM), Instituto de Ciencias Nucleares (UNAM), CONACyT (Ph. D. grant 697442 and the financial support for a research stay grant), and the technical assistance of Claudia Camargo and Alicia Negrón-Mendoza. The Instituto de Ciencias Nucleares (UNAM) and Centro de Astrobiología (CAB) are acknowledged for the use of their facilities. M.R.-B., P.R.-P., S.G.-M. and E.M.-M. used the research facilities of the Centro de Astrobiología (CAB) and were supported by the Instituto Nacional de Técnica Aeroespacial “Esteban Terradas” (INTA). Additionally, the authors are grateful to Mª Teresa Fernández, for performing the FT-IR spectra, and to the “Servicio de Análisis Térmico” of ICMM (CSIC, Spain).es
dc.language.isoenges
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectHydrogen cyanidees
dc.subjectAlkaline hydrothermal environmentses
dc.subjectOrganic moleculeses
dc.subjectSerpentinees
dc.subjectPrebiotic chemistryes
dc.titleA Lizardite–HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studieses
dc.typeinfo:eu-repo/semantics/articlees
dc.contributor.orcidVillafañe Barajas, S. [0000-0003-3087-4457]-
dc.contributor.orcidRuiz Bermejo, M. [0000-0002-8059-1335]-
dc.contributor.orcidMartí, E. M. [0000-0003-4709-4676]-
dc.contributor.orcidColín García, M. [0000-0002-9193-1761]-
dc.identifier.doi10.3390/life11070661-
dc.identifier.e-issn2075-1729-
dc.description.peerreviewedPeerreviewes
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501-
Aparece en las colecciones: (CAB) Artículos



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons