Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12666/706
Registro completo de metadatos
Campo DC | Valor | Idioma |
---|---|---|
dc.rights.license | © ESO 2021 | - |
dc.contributor.author | Pereira Santaella, M. | - |
dc.contributor.author | Colina, L. | - |
dc.contributor.author | García Burillo, S. | - |
dc.contributor.author | Lamperti, I. | - |
dc.contributor.author | González Alfonso, E. | - |
dc.contributor.author | Perna, M. | - |
dc.contributor.author | Arribas, S. | - |
dc.contributor.author | Alonso Herrero, A. | - |
dc.contributor.author | Aalto, S. | - |
dc.contributor.author | Combes, F. | - |
dc.contributor.author | Labiano, Á. | - |
dc.contributor.author | Piqueras López, J. | - |
dc.contributor.author | Rigopoulou, D. | - |
dc.contributor.author | Van der Werf, P. P. | - |
dc.contributor.other | Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737 | - |
dc.date.accessioned | 2022-03-24T10:50:34Z | - |
dc.date.available | 2022-03-24T10:50:34Z | - |
dc.date.issued | 2021-07-12 | - |
dc.identifier.citation | Astronomy and Astrophysics 651: A41(2021) | es |
dc.identifier.issn | 0004-6361 | - |
dc.identifier.other | https://www.aanda.org/articles/aa/abs/2021/07/aa40955-21/aa40955-21.html | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12666/706 | - |
dc.description.abstract | We analyze new high-resolution (400 pc) ∼220 GHz continuum and CO(2–1) Atacama Large Millimeter Array (ALMA) observations of a representative sample of 23 local (z < 0.165) ultra-luminous infrared systems (ULIRGs; 34 individual nuclei) as part of the “Physics of ULIRGs with MUSE and ALMA” (PUMA) project. The deconvolved half-light radii of the ∼220 GHz continuum sources, rcont, are between < 60 pc and 350 pc (median 80–100 pc). We associate these regions with the regions emitting the bulk of the infrared luminosity (LIR). The good agreement, within a factor of 2, between the observed ∼220 GHz fluxes and the extrapolation of the infrared gray-body as well as the small contributions from synchrotron and free–free emission support this assumption. The cold molecular gas emission sizes, rCO, are between 60 and 700 pc and are similar in advanced mergers and early interacting systems. On average, rCO are ∼2.5 times larger than rcont. Using these measurements, we derived the nuclear LIR and cold molecular gas surface densities (ΣLIR = 1011.5 − 1014.3 L⊙ kpc−2 and ΣH2 = 102.9 − 104.2 M⊙ pc−2, respectively). Assuming that the LIR is produced by star formation, the median ΣLIR corresponds to ΣSFR = 2500 M⊙ yr−1 kpc−2. This ΣSFR implies extremely short depletion times, ΣH2/ΣSFR < 1–15 Myr, and unphysical star formation efficiencies > 1 for 70% of the sample. Therefore, this favors the presence of an obscured active galactic nucleus (AGN) in these objects that could dominate the LIR. We also classify the ULIRG nuclei in two groups: (a) compact nuclei (rcont < 120 pc) with high mid-infrared excess emission (ΔL6−20 μm/LIR) found in optically classified AGN; and (b) nuclei following a relation with decreasing ΔL6−20 μm/LIR for decreasing rcont. The majority, 60%, of the nuclei in interacting systems lie in the low-rcont end (<120 pc) of this relation, while this is the case for only 30% of the mergers. This suggests that in the early stages of the interaction, the activity occurs in a very compact and dust-obscured region while, in more advanced merger stages, the activity is more extended, unless an optically detected AGN is present. Approximately two-thirds of the nuclei have nuclear radiation pressures above the Eddington limit. This is consistent with the ubiquitous detection of massive outflows in local ULIRGs and supports the importance of the radiation pressure in the outflow launching process. | es |
dc.description.sponsorship | We thank the referee for the useful comments and suggestions. We are grateful to A. Hernán-Caballero and H. Spoon for providing measurements from the IDEOS database. MPS and IL acknowledge support from the Comunidad de Madrid through the Atracción de Talento Investigador Grant 2018-T1/TIC-11035 and PID2019-105423GA-I00 (MCIU/AEI/FEDER,UE). AA-H and SG-B acknowledge support through grant PGC2018-094671-B-I00 (MCIU/AEI/FEDER,UE). MP is supported by the Programa Atracción de Talento de la Comunidad de Madrid via grant 2018-T2/TIC-11715. AL acknowledges the support from Comunidad de Madrid through the Atracción de Talento Investigador Grant 2017-T1/TIC-5213. SA, LC, MP, and AL acknowledge support from the Spanish Ministerio de Economía y Competitividad through grants ESP2017-83197-P and PID2019-106280GB-I00. This work was done under project No. MDM-2017-0737 Unidad de Excelencia "María de Maeztu"- Centro de Astrobiología (INTA-CSIC). D. Rigopoulou acknowledges support from STFC through grant ST/S000488/1. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.00113.S, ADS/JAO.ALMA#2015.1.00263.S, ADS/JAO.ALMA#2016.1.00170.S, ADS/JAO.ALMA#2016.1.00777.S, ADS/JAO.ALMA#2018.1.00486.S, and ADS/JAO.ALMA#2018.1.00699.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. | es |
dc.language.iso | eng | es |
dc.publisher | EDP Sciences | es |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105423GA-I00 | - |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094671-B-I00/ES/EVOLUCION DE GALAXIAS Y SUS AGUJEROS NEGROS CON ALTA RESOLUCION ESPACIAL: FEEDBACK, EL TORO Y FORMACION ESTELAR/ | - |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-83197-P | - |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106280GB-I00/ES/PARTICIPACION ESPAÑOLA EN EL TELESCOPIO JAMES WEBB: ACTIVIDADES PREVIAS AL LANZAMIENTO, CARACTERIZACION EN ORBITA,Y PREPARACION DE PROGRAMAS CIENTIFICOS DE TIEMPO GARANTIZADO/ | - |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | es |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Galaxies: evolution | es |
dc.subject | Galaxies: interactions | es |
dc.subject | Galaxies: nuclei | es |
dc.subject | Infrared: galaxies | es |
dc.title | Physics of ULIRGs with MUSE and ALMA: The PUMA project II. Are local ULIRGs powered by AGN? The subkiloparsec view of the 220 GHz continuum | es |
dc.type | info:eu-repo/semantics/article | es |
dc.contributor.orcid | Pereira Santaella, M. [0000-0002-4005-9619] | - |
dc.identifier.doi | 10.1051/0004-6361/202140955 | - |
dc.identifier.e-issn | 1432-0746 | - |
dc.contributor.funder | Comunidad de Madrid | - |
dc.contributor.funder | Agencia Estatal de Investigación (AEI) | - |
dc.contributor.funder | Science and Technology Facilities Council (STFC) | - |
dc.description.peerreviewed | Peerreview | es |
dc.identifier.funder | http://dx.doi.org/10.13039/100012818 | - |
dc.identifier.funder | http://dx.doi.org/10.13039/501100011033 | - |
dc.identifier.funder | http://dx.doi.org/10.13039/501100000271 | - |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | - |
Aparece en las colecciones: | (CAB) Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
aa40955-21.pdf | 1,99 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons