Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12666/906
Registro completo de metadatos
Campo DC | Valor | Idioma |
---|---|---|
dc.rights.license | Copyright © 2019, Springer Science Business Media, LLC, part of Springer Nature | es |
dc.contributor.author | Lozano, Carlos | es |
dc.date.accessioned | 2023-12-04T09:08:20Z | - |
dc.date.available | 2023-12-04T09:08:20Z | - |
dc.date.issued | 2019-11-11 | - |
dc.identifier.citation | Journal of Scientific Computing 81: 2447–2483(2019) | es |
dc.identifier.issn | 0885-7474 | - |
dc.identifier.other | https://link.springer.com/article/10.1007/s10915-019-01092-0 | es |
dc.identifier.uri | http://hdl.handle.net/20.500.12666/906 | - |
dc.description | Lozano, C. Entropy and Adjoint Methods. J Sci Comput 81, 2447–2483 (2019). https://doi.org/10.1007/s10915-019-01092-0 | es |
dc.description.abstract | Aerodynamic drag can be partially approximated by the entropy flux across fluid domain boundaries with a formula due to Oswatitsch. In this paper, we build the adjoint solution that corresponds to this representation of the drag and investigate its relation to the entropy variables, which are linked to the integrated residual of the entropy transport equation. For inviscid isentropic flows, the resulting adjoint variables are identical to the entropy variables, an observation originally due to Fidkowski and Roe, while for non-isentropic flows there is a significant difference that is explicitly demonstrated with analytic solutions in the shocked quasi-1D case. Both approaches are also investigated for viscous and inviscid flows in two and three dimensions, where the adjoint equations and boundary conditions are derived. The application of both approaches to mesh adaptation is investigated, with especial emphasis on inviscid flows with shocks. | es |
dc.description.sponsorship | This work has been supported by INTA and the Spanish Ministry of Defence under the research program “Termofluidodinámica” (IGB99001). The 2D and 3D computations were carried out with the TAU Code, developed at DLR’s Institute of Aerodynamics and Flow Technology at Göttingen and Braunschweig, which is licensed to INTA through a research and development cooperation agreement. | es |
dc.language.iso | eng | es |
dc.publisher | Springer Link | es |
dc.subject | Adjoint | es |
dc.subject | Oswatitsch drag formula | es |
dc.subject | Entropy variables | es |
dc.subject | Error estimation | es |
dc.title | Entropy and adjoint methods | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1007/s10915-019-01092-0 | - |
dc.identifier.e-issn | 1573-7691 | - |
dc.contributor.funder | Instituto Nacional de Técnica Aeroespacial (INTA) | es |
dc.description.peerreviewed | Peerreview | es |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | es |
Aparece en las colecciones: | (Aeronáutica) Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Entropy and adjoint methods.pdf | 6,99 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de Digital.INTA están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.