Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12666/911
Registro completo de metadatos
Campo DC | Valor | Idioma |
---|---|---|
dc.rights.license | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. | es |
dc.contributor.author | Lozano, Carlos | es |
dc.contributor.author | Ponsin, J. | es |
dc.date.accessioned | 2023-12-04T10:22:46Z | - |
dc.date.available | 2023-12-04T10:22:46Z | - |
dc.date.issued | 2023-04-24 | - |
dc.identifier.citation | Aerospace 10(5): 392(2023) | es |
dc.identifier.other | https://www.mdpi.com/2226-4310/10/5/392 | es |
dc.identifier.uri | http://hdl.handle.net/20.500.12666/911 | - |
dc.description | Both authors have contributed equally to the paper. All authors have read and agreed to the published version of the manuscript.© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | es |
dc.description.abstract | Numerical solutions to the adjoint Euler equations have been found to diverge with mesh refinement near walls for a variety of flow conditions and geometry configurations. The issue is reviewed, and an explanation is provided by comparing a numerical incompressible adjoint solution with an analytic adjoint solution, showing that the anomaly observed in numerical computations is caused by a divergence of the analytic solution at the wall. The singularity causing this divergence is of the same type as the well-known singularity along the incoming stagnation streamline, and both originate at the adjoint singularity at the trailing edge. The argument is extended to cover the fully compressible case, in subcritical flow conditions, by presenting an analytic solution that follows the same structure as the incompressible one. | es |
dc.description.sponsorship | The research described in this paper has been supported by INTA and the Ministry of Defence of Spain under the grants Termofluidodinámica (IGB99001) and IDATEC (IGB21001). | es |
dc.language.iso | eng | es |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | es |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | es |
dc.subject | Adjoint euler equations | es |
dc.subject | Analytic adjoint solution | es |
dc.subject | Wall singularity | es |
dc.subject | Mesh dependence | es |
dc.title | Explaining the lack of mesh convergence of inviscid adjoint solutions near solid walls for subcritical flows | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.3390/aerospace10050392 | - |
dc.identifier.e-issn | 2226-4310 | - |
dc.contributor.funder | Instituto Nacional de Técnica Aeroespacial (INTA) | es |
dc.description.peerreviewed | Peerreview | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | es |
Aparece en las colecciones: | (Aeronáutica) Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Explaining the lack of mesh convergence of inviscid adjoint solutions near solid walls for subcritical flows.pdf | 3,93 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons