Examinando por Autor "Molina, A."
Mostrando 1 - 12 de 12
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits(Nature Publishing Group, 2023-02-21) Azua Bustos, A.; Fairén, A.; González Silva, C.; Prieto-Ballesteros, Olga; Carrizo, D.; Sánchez García, Laura; Parro, Víctor; Fernández Martínez, Miguel Ángel; Escudero, C.; Muñoz Iglesias, V.; Fernández Sampedro, M.; Molina, A.; García Villadangos, M.; Moreno Paz, Mercedes; Wierzchos, J.; Ascaso, C.; Fornado, Teresa; Brucato, J. R.; Poggiali, G.; Manrique, J. A.; Veneranda, M.; López Reyes, G.; Sanz Arranz, Aurelio; Rull, F.; Ollila, A. M.; Wiens, R. C.; Reyes Newell, Adriana; Clegg, S. M.; Millan, Maëva; Stewart Johnson, Sarah; McIntosh, Ophélie; Szopa, Cyril; Freissinet, Caroline; Sekine, Yasuhito; Fukushi, Keisuke; Morida, Koki; Inoue, Kosuke; Sakuma, Hiroshi; Rampe, Elizabeth; European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Japan Society for the Promotion of Science (JSPS); Comunidad de Madrid; National Aeronautics and Space Administration (NASA); Agenzia Spaziale Italiana (ASI); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan–fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as “dark microbiome”, and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.Publicación Restringido Enhancing Operational Efficiency of the Raman Laser Spectrometer (RLS) in the ExoMars Rosalind Franklin Mission: A Comprehensive Qualitative Analysis of Key Parameters in the Sample Acquisition and Measurement Strategies(Wiley, 2025-06-15) Pérez, Carlos; Moral, Andoni G.; Seoane, Laura; Zafra, Jesús; Rodriguez Perez, Pablo; Benito Parejo, Marina; Rodríguez, J. A.; Canchal, R.; Santamaría, Pilar; López, Iván; Molina, A.; Manrique, J. A.; Veneranda, M.; López Reyes, Guillermo; Prieto-Ballesteros, Olga; Rull, F.; Agencia Estatal de Investigación (España)The Raman Laser Spectrometer (RLS), part of the Pasteur analytical suite onboard the ExoMars 2028 Rosalind Franklin rover, is designed to perform structural and compositional analyses of powdered subsurface samples on Mars. Its fully autonomous operation within the constraints of the Pasteur Analytical Laboratory-limited by time, energy, and sample availability-requires an efficient balance between scientific performance and operational viability. This study presents a qualitative analysis of RLS operations under mission-representative conditions using the Flight Spare (FS) model, focusing on the impact of key parameters-number of accumulations, autofocus frequency, and analyzed spots per sample-on the system's detection capabilities. Experimental campaigns were conducted using ESA-selected analog samples representative of Oxia Planum geology. Performance was evaluated using both the RLS FS and the ExoMars Simulator. Results show high consistency (90-95%) in mineral detection between systems, confirming the robustness of the RLS FS under representative scenarios. The instrument demonstrated its ability to identify key phases, including oxides, silicates, carbonates, hydrated sulfates, and amorphous carbon, highlighting its relevance to geological and astrobiological investigations. Operational tests confirmed that reducing the number of accumulations or autofocus activations-under appropriate sample conditions-does not compromise spectral quality. These findings support a flexible strategy that adapts operational parameters to the scientific context, optimizing resource use and preserving long-term instrument reliability. The results will contribute to the refinement of nominal activity plans for ExoMars and reinforce the use of the RLS FS as a critical asset for validating future configurations of the flight model.Publicación Acceso Abierto Fingerprinting molecular and isotopic biosignatures on different hydrothermal scenarios of Iceland, an acidic and sulfur-rich Mars analog(Springer Nature, 2020-12) Sánchez García, Laura; Carrizo, D.; Molina, A.; Muñoz Iglesias, V.; Lezcano, M. A.; Fernández Sampedro, M.; Parro, Víctor; Prieto-Ballesteros, Olga; European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Detecting signs of potential extant/extinct life on Mars is challenging because the presence of organics on that planet is expected to be very low and most likely linked to radiation-protected refugia and/or preservative strategies (e.g., organo-mineral complexes). With scarcity of organics, accounting for biomineralization and potential relationships between biomarkers, mineralogy, and geochemistry is key in the search for extraterrestrial life. Here we explored microbial fingerprints and their associated mineralogy in Icelandic hydrothermal systems analog to Mars (i.e., high sulfur content, or amorphous silica), to identify potentially habitable locations on that planet. The mineralogical assemblage of four hydrothermal substrates (hot springs biofilms, mud pots, and steaming and inactive fumaroles) was analyzed concerning the distribution of biomarkers. Molecular and isotopic composition of lipids revealed quantitative and compositional differences apparently impacted by surface geothermal alteration and environmental factors. pH and water showed an influence (i.e., greatest biomass in circumneutral settings with highest supply and turnover of water), whereas temperature conditioned the mineralogy that supported specific microbial metabolisms related with sulfur. Raman spectra suggested the possible coexistence of abiotic and biomediated sources of minerals (i.e., sulfur or hematite). These findings may help to interpret future Raman or GC–MS signals in forthcoming Martian missions.Publicación Acceso Abierto Frozen ground and snow cover monitoring in Livingston and Deception islands, Antarctica: preliminary results of the 2015-2019 PERMASNOW project(Universidad de la Rioja, 2020-02-15) De Pablo, M. A.; Jiménez, J. J.; Ramos, Miguel; Prieto, M.; Molina, A.; Vieira, G.; Hidalgo, M. A.; Fernández, S.; Fernández Menéndez, Susana del Carmen; Calleja, J. F.; Peón, J. J.; Corbea Pérez, A.; Maior, C. N.; Morales, M.; Mora, C.; Ministerio de Economía y Competitividad (MINECO); Universidad de Alcalá; 0000-0002-5038-2022; 0000-0002-0843-3658; 0000-0001-7551-2236; 0000-0002-4496-2741; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Since 2006, our research team has been establishing in the islands of Livingston and Deception, (South Shetland archipelago, Antarctica) several monitoring stations of the active layer thickness within the international network Circumpolar Active Layer Monitoring (CALM), and the ground thermal regime for the Ground Terrestrial Network-Permafrost (GTN-P). Both networks were developed within the International Permafrost Association (IPA). In the GTN-P stations, in addition to the temperature of the air, soil, and terrain at different depths, the snow thickness is also monitored by snow poles. Since 2006, a delay in the disappearance of the snow layer has been observed, which could explain the variations we observed in the active layer thickness and permafrost temperatures. Therefore, in late 2015 our research group started the PERMASNOW project (2015-2019) to pay attention to the effect of snow cover on ground thermal This project had two different ways to study the snow cover. On the first hand, in early 2017 we deployed new instrumentation, including new time lapse cameras, snow poles with high number of sensors and a complete and complex set of instruments and sensors to configure a snow pack analyzer station providing 32 environmental and snow parameters. We used the data acquired along 2017 and 2018 years with the new instruments, together with the available from all our already existing sensors, to study in detail the snow cover. On the other hand, remote sensing data were used to try to map the snow cover, not only at our monitoring stations but the entire islands in order to map and study the snow cover distribution, as well as to start the way for future permafrost mapping in the entire islands. MODIS-derived surface temperatures and albedo products were used to detect the snow cover and to test the surface temperature. Since cloud presence limited the acquisition of valid observations of MODIS sensor, we also analyzed Terrasar X data to overcome this limitation. Remote sensing data validation required the acquirement of in situ ground-true data, consisting on data front our permanent instruments, as well as ad hoc measurements in the field (snow cover mapping, snow pits, albedo characterization, etc.). Although the project is finished, the data analysis is still ongoing. We present here the different research tasks we are developing as well as the most important results we already obtained about the snow cover. These results confirm how the snow cover duration has been changing in the last years, affecting the ground thermal behavior.Publicación Acceso Abierto Geomorphology of the southwest Sinus Sabaeus region: evidence for an ancient hydrological cycle on Mars(Taylor and Francis Online, 2021-09-13) Robas, C.; Molina, A.; López, I.; Prieto-Ballesteros, Olga; Fairén, Alberto G.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We have produced a 1:650,000 scale geomorphological map of the southwest Sinus Sabaeus, a region of Mars approximately centered at 25.0°S and 6.5°E and located in the topographic transition between Arabia Terra and Noachis Terra, in the Martian highlands. This heavily cratered region, subjected to extensive surface erosion, shows a complex valley network system known as Marikh Vallis. In this work, we study the history and role of water in and around Marikh Vallis, focusing on the modification and evolution of this area during the earliest Martian times, the Noachian period. The map described in this paper was produced through the analysis of a combination of available imagery data, topography, and thermal inertia, which together allow defining different geomorphological units in this area. This new map provides a basis for identifying the ancient presence of water in the region, both in the liquid state and in the ice phase.Publicación Acceso Abierto Meteorological Predictions for Mars 2020 Perseverance Rover Landing Site at Jezero Crater(Springer Link, 2020-12-14) Pla García, J.; Rafkin, Scot C. R.; Martínez, G. M.; Vicente Retortillo, Álvaro; Newman, C. E.; Rodríguez Manfredi, J. A.; Gómez, Felipe; Molina, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Mars Regional Atmospheric Modeling System (MRAMS) and a nested simulation of the Mars Weather Research and Forecasting model (MarsWRF) are used to predict the local meteorological conditions at the Mars 2020 Perseverance rover landing site inside Jezero crater (Mars). These predictions are complemented with the COmplutense and MIchigan MArs Radiative Transfer model (COMIMART) and with the local Single Column Model (SCM) to further refine predictions of radiative forcing and the water cycle respectively. The primary objective is to facilitate interpretation of the meteorological measurements to be obtained by the Mars Environmental Dynamics Analyzer (MEDA) aboard the rover, but also to provide predictions of the meteorological phenomena and seasonal changes that might impact operations, from both a risk perspective and from the perspective of being better prepared to make certain measurements. A full diurnal cycle at four different seasons (L-s 0 degrees, 90 degrees, 180 degrees, and 270 degrees) is investigated. Air and ground temperatures, pressure, wind speed and direction, surface radiative fluxes and moisture data are modeled. The good agreement between observations and modeling in prior works [Pla-Garcia et al. in Icarus 280:103-113, 2016; Newman et al. in Icarus 291:203-231, 2017; Vicente-Retortillo et al. in Sci. Rep. 8(1):1-8, 2018; Savijarvi et al. in Icarus, 2020] provides confidence in utilizing these models results to predict the meteorological environment at Mars 2020 Perseverance rover landing site inside Jezero crater. The data returned by MEDA will determine the extent to which this confidence was justified.Publicación Restringido Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team(Springer Link, 2020-11-03) Stack, K. M.; Williams, N. R.; Calef, F. J.; Sun, V. Z.; Williford, K. H.; Farley, K. A.; Eide, S.; Flannery, D.; Hughes, C.; Jacob, S. R.; Kah, L. C.; Meyen, F.; Molina, A.; Quantin Nataf, C.; Rice, M.; Russel, P.; Scheller, E.; Seeger, C. H.; Abbey, W. J.; Adler, J. B.; Amudsen, H.; Anderson, R. B.; Ángel, S. M.; Arana, G.; Atkins, J.; Barrington, M.; Berger, T.; Borden, R.; Boring, B.; Brown, A.; Carrier, B. L.; Conrad, Pamela G.; Dypvik, H.; Fagents, S. A.; Gallegos, Z. E.; Garczynski, B.; Golder, K.; Gómez, Felipe; Goreva, Y.; Gupta, S.; Hamran, S. E.; Hicks, T.; Hinterman, E. D.; Horgan, B. N.; Hurowitz, J.; Johnson, J. R.; Lasue, J.; Kronyak, R. E.; Liu, Y.; Madariaga, J. M.; Mangold, N.; McClean, John; Miklusicak, N.; Nunes, D.; Rojas, C.; Runyon, Kirby; Schmitz, N.; Scudder, N.; Shaver, E.; SooHoo, J.; Spaulding, R.; Stanish, E.; Tamppari, L. K.; Tice, M. M.; Turenne, N.; Willis, P. A.; Aileen Yingst, R.; European Research Council (ERC); National Aeronautics and Space Administration (NASA); Molina, A. [0000-0002-5038-2022]; Hughes, C. [0000-0002-7061-1443]; Jacob, S. [0000-0001-9950-1486]; Arana, Gorka [0000-0001-7854-855X]; Sun, V. Z. [0000-0003-1480-7369]; Stack, K. [0000-0003-3444-6695]; Williford, K. [0000-0003-0633-408X]; Flannery, D. [0000-0001-8982-496X]; Gupta, S. [0000-0001-6415-1332]; Williams, N. [0000-0003-0602-484X]; Unidad de Excelencia Científica Centro de Astrobiología María de Maeztu del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Mars 2020 Perseverance rover landing site is located within Jezero crater, a similar to 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.Publicación Acceso Abierto Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument(AGU Advancing Earth and Space Science, 2023-02) Martínez, Germán M.; Sebastián, E.; Vicente Retortillo, Álvaro; Smith, Michael D.; Johnson, J. R.; Fischer, E.; Savijärvi, H.; Toledo, D.; Hueso, R.; Mora Sotomayor, L.; Gillespie, H.; Munguira, A.; Sánchez Lavega, Agustín; Lemmon, M. T.; Gómez, Felipe; Polkko, J.; Mandon, Lucía; Apéstigue, Víctor; Arruego, Ignacio; Ramos, Miguel; Conrad, Pamela G.; Newman, C. E.; De la Torre Juárez, M.; Jordan, Francisco; Tamppari, L. K.; McConnochie, Tim H.; Harri, Ari-Matti; Genzer, María; Hieta, M.; Zorzano, María-Paz; Siegler, M.; Prieto-Ballesteros, Olga; Molina, A.; Rodríguez Manfredi, J. A.; Comunidad de Madrid; Universities Space Research Association (USRA); Agencia Estatal de Investigación (AEI); Gobierno Vasco; Instituto Nacional de Técnica Aeroespacial (INTA); Centre National D'Etudes Spatiales (CNES); National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first-of-its-kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non-Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock-dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground-truth to orbital measurements.Publicación Restringido The atmosphere of Mars as observed by InSight.(Nature Research Journals, 2020-02-24) Banfield, D.; Spiga, A.; Newman, C. E.; Forget, F.; Lemmon, M. T.; Lorenz, R.; Murdoch, N.; Viúdez Moreiras, Daniel; Pla García, J.; García, R. F.; Lognonné, P.; Karatekin, Özgür; Perrin, C.; Martire, L.; Teanby, N.; Van Hove, B.; Maki, Justin N.; Kenda, B.; Mueller, N. T.; Rodriguez, Sébastien; Kawamura, T.; McClean, John; Stott, A.; Charalambous, C.; Millour, E.; Johnson, C. L.; Mittelholz, A.; Määttänen, A.; Lewis, S. R.; Clinton, J.; Stähler, S. C.; Ceylan, S.; Giardini, D.; Warren, T.; Pike, W. T.; Daubar, I.; Golombek, M.; Rolland, L.; Widmer Schnidrig, R.; Mimoun, D.; Beucler, E.; Jacob, A.; Lucas, A.; Baker, M.; Ansan, V.; Hurst, K.; Mora Sotomayor, L.; Navarro López, Sara; Torres, J.; Lepinette Malvitte, A.; Molina, A.; Marín Jiménez, M.; Gómez Elvira, J.; Peinado, V.; Rodríguez Manfredi, J. A.; Carchic, B. T.; Sackett, S.; Russell, C. T.; Spohn, T.; Smrekar, Suzanne; Banerdt, W. B.; Agence Nationale de la Recherche (ANR); Määttänen, A. [0000-0002-7326-8492]; Martire, L. [0000-0002-9402-6150]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Lognonné, P. [0000-0002-1014-920X]; Rodríguez, S. [0000-0003-1219-0641]; Spiga, A. [0000-0002-6776-6268]; Perrin, C. [0000-0002-7200-5682]; Molina, A. [0000-0002-5038-2022]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; García, R. [0000-0003-1460-6663]; Murdoch, N. [0000-0002-9701-4075]; Lorenz, R. [0000-0001-8528-4644]; Mittelholz, A. [0000-0002-5603-7334]; Kawamura, T. [0000-0001-5246-5561]; Widmer Schnidrig, R. [0000-0001-9698-2739]; McClean, J. [0000-0002-7863-0120]; Mueller, N. [0000-0001-9229-8921]; Lewis, S. [0000-0001-7237-6494]; Teanby, N. [0000-0003-3108-5775]; Warren, T. [0000-0003-3877-0046]; Milliour, E. [0000-0003-4808-9203]; Lemmon, M. [0000-0002-4504-5136]; Clinton, J. [0000-0001-8626-2703]; Ceylan, S. [0000-0002-6552-6850]; Banfield, D. [0000-0003-2664-0164]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The atmosphere of Mars is thin, although rich in dust aerosols, and covers a dry surface. As such, Mars provides an opportunity to expand our knowledge of atmospheres beyond that attainable from the atmosphere of the Earth. The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander is measuring Mars’s atmosphere with unprecedented continuity, accuracy and sampling frequency. Here we show that InSight unveils new atmospheric phenomena at Mars, especially in the higher-frequency range, and extends our understanding of Mars’s meteorology at all scales. InSight is uniquely sensitive to large-scale and regional weather and obtained detailed in situ coverage of a regional dust storm on Mars. Images have enabled high-altitude wind speeds to be measured and revealed airglow—faint emissions produced by photochemical reactions—in the middle atmosphere. InSight observations show a paradox of aeolian science on Mars: despite having the largest recorded Martian vortex activity and dust-devil tracks close to the lander, no visible dust devils have been seen. Meteorological measurements have produced a catalogue of atmospheric gravity waves, which included bores (soliton-like waves). From these measurements, we have discovered Martian infrasound and unexpected similarities between atmospheric turbulence on Earth and Mars. We suggest that the observations of Mars’s atmosphere by InSight will be key for prediction capabilities and future exploration.Publicación Acceso Abierto The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars(Nature Publishing Group, 2023-01-09) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán M.; Lemmon, M. T.; Newman, C. E.; Munguira, A.; Hieta, M.; Tamppari, L. K.; Polkko, J.; Toledo, D.; Sebastian, D.; Smith, Michael D.; Jaakonaho, I.; Genzer, María; Vicente Retortillo, Álvaro; Viúdez Moreiras, Daniel; Ramos, Miguel; Saiz López, A.; Lepinette Malvitte, A.; Wolff, Michael; Sullivan, R. J.; Gómez Elvira, J.; Apéstigue, Víctor; Conrad, P.; Del Río Gaztelurrutia, T.; Murdoch, N.; Arruego, Ignacio; Banfield, D.; Boland, J.; Brown, Adrian Jon; Ceballos Cáceres, J.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Ferrándiz Guibelalde, Ricardo; Fischer, E.; García Villadangos, M.; Giménez Torregrosa, S.; Gómez Gómez, F.; Guzewich, Scott; Harri, Ari-Matti; Jiménez Martín, Juan José; Jiménez, V.; Makinen, Terhi; Marín Jiménez, M.; Martín Rubio, C.; Martín Soler, J.; Molina, A.; Mora Sotomayor, L.; Navarro López, Sara; Peinado, V.; Pérez Grande, I.; Pla García, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Savijärvi, H.; Schofield, J. T.; Torres, J.; Urquí, R.; Zurita, S.; NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Instituto Nacional de Técnica Aeroespacial (INTA); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); California Institute of Technology (CIT); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both comPublicación Acceso Abierto The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission(Springer Link, 2021-04-13) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Alonso, A.; Apéstigue, Víctor; Arruego, Ignacio; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M. A.; Castañer, L.; Ceballos Cáceres, J.; Chen Chen, H.; Cobos, A.; Conrad, Pamela G.; Cordoba, E.; Del Río Gaztelurrutia, T.; Vicente Retortillo, Álvaro; Domínguez Pumar, M.; Espejo, S.; Fairén, Alberto G.; Fernández Palma, A.; Ferrándiz, Ricardo; Ferri, F.; Fischer, E.; García Manchado, A.; García Villadangos, M.; Genzer, María; Giménez, Á.; Gómez Elvira, J.; Gómez, Felipe; Guzewich, Scott; Harri, Ari-Matti; Hernández, C. D.; Hieta, M.; Hueso, R.; Jaakonaho, I.; Jiménez Martín, Juan José; Jiménez, V.; Larman, A.; Leiter, R.; Lepinette Malvitte, A.; Lemmon, M. T.; López, G.; Madsen, Soren N.; Mäkinen, T.; Marín Jiménez, M.; Martín Soler, J.; Martínez, Germán M.; Molina, A.; Mora Sotomayor, L.; Moreno Álvarez, J. F.; Navarro López, Sara; Newman, C. E.; Ortega, Cristina; Parrondo, María Concepción; Peinado, V.; Peña, A.; Pérez Grande, I.; Pérez Hoyos, S.; Pla García, J.; Polkko, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Ramos, Miguel; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Runyon, Kirby; Saiz López, A.; Sánchez Lavega, Agustín; Sard, I.; Schofield, J. T.; Sebastián, E.; Smith, Michael D.; Sullivan, Robert; Tamppari, L. K.; Thompson, A. D.; Toledo, D.; Torrero, F.; Torres, J.; Urquí, R.; Velasco, T.; Viúdez Moreiras, Daniel; Zurita, S.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Gobierno Vasco; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Saiz López, A. [0000-0002-0060-1581]; Chen, H. [0000-0001-9662-0308]; Pérez Hoyos, S. [0000-0002-2587-4682]NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.Publicación Acceso Abierto Transition from a Subaerial to a Subnival Permafrost Temperature Regime Following Increased Snow Cover (Livingston Island, Maritime Antarctic)(Multidisciplinary Digital Publishing Institute (MDPI), 2020-12-08) Ramos, Miguel; Vieira, G.; De Pablo, M. A.; Molina, A.; Jiménez, Juan Javier; Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Fundacao para a Ciencia e a Tecnologia (FCT); Ramos, M. [0000-0003-3648-6818]; Vieira, G. [0000-0001-7611-3464]; De Pablo, M. Á. [0000-0002-4496-2741]; Jiménez Cuenca, J. J. [0000-0001-7677-8140]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Antarctic Peninsula (AP) region has been one of the regions on Earth with strongest warming since 1950. However, the northwest of the AP showed a cooling from 2000 to 2015, which had local consequences with an increase in snow accumulation and a deceleration in the loss of mass from glaciers. In this paper, we studied the effects of increased snow accumulation in the permafrost thermal regime in two boreholes (PG1 and PG2) in Livingston Island, South Shetlands Archipelago, from 2009 to 2015. The two boreholes located c. 300 m apart but at similar elevation showed different snow accumulation, with PG2 becoming completely covered with snow all year long, while the other remained mostly snow free during the summer. The analysis of the thermal regimes and of the estimated soil surface energy exchange during the study period showed the effects of snow insulation in reducing the active layer thickness. These effects were especially relevant in PG2, which transitioned from a subaerial to a subnival regime. There, permafrost aggraded from below, with the active layer completely disappearing and the efficiency of thermal insulation by the snowpack prevailing in the thermal regime. This situation may be used as an analogue for the transition from a periglacial to a subglacial environment in longer periods of cooling in the paleoenvironmental record. View Full-Text










