Examinando por Autor "Patel, P."
Mostrando 1 - 5 de 5
- Resultados por página
- Opciones de ordenación
Ítem Acceso Abierto Decline in Water Ice Abundance in the Martian Mesosphere during Aphelion(Europlanet, 2024-07-03) Toledo, D.; Rannou, P.; Apéstigue, Víctor; Rodríguez Veloso, Raúl; Arruego, I.; Martínez, Germán M.; Tamppari, L. K.; Munguira, A.; Lorenz, Ralph; Stcherbinine, Aurélien; Montmessin, F.; Sánchez Lavega, Agustín; Patel, P.; Viúdez Moreiras, Daniel; Hueso, R.; Bertrand, T.; Pla García, J.; Yela González, Margarita; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.Clouds play a crucial role in the past and current climate of Mars. Cloud particles impact the planet's energy balance and atmospheric dynamics, as well as influence the vertical distribution of dust particles through dust scavenging. This process of dust scavenging by clouds has significant consequences for the planet's water cycle. For example, regions in the atmosphere with insufficient quantities of dust particles, or condensation nuclei, can inhibit the formation of H2O clouds, leading to the presence of water vapor in excess of saturation [1]. Recent observations made by the MEDA Radiation and Dust Sensor (RDS) [2,3] have shown a marked decline in mesospheric cloud activity (above 35-40 km) when Mars is near its aphelion (within the Aphelion Cloud Belt-ACB season), notably occurring during solar longitudes (Ls) between Ls 70° and 80° [4] (see Figure 1). In order to investigate the possible factors leading to this decrease in water ice abundance, we used a one-dimensional cloud microphysical model [5,6], which includes the processes of nucleation, condensation, coagulation, evaporation, precipitation, and coalescence, and where the vertical mixing is parameterized using an eddy diffusion profile (Keddy). Combining cloud microphysics modeling with ground-based (Mars 2020 and InSight) and orbital observations (TGO and MRO) of clouds, water vapor, and temperature, we will discuss in this presentation the main factors controlling the water abundance in the Martian mesosphere during the ACB season.Publicación Acceso Abierto Drying of the Martian mesosphere during aphelion induced by lower temperatures(Springer Nature, 2024-11-20) Toledo, D.; Rannou, P.; Apéstigue, Víctor; Rodríguez Veloso, Raúl; Rodríguez Manfredi, J. A.; Arruego, Ignacio; Martínez, Germán M.; Tamppari, L. K.; Munguira, A.; Lorenz, Ralph; Stcherbinine, Aurélien; Montmessin, F.; Sánchez Lavega, Agustín; Patel, P.; Smith, Michael D.; Lemmon, M. T.; Vicente Retortillo, Álvaro; Newman, C. E.; Viúdez Moreiras, Daniel; Hueso, R.; Bertrand, T.; Pla García, J.; Yela González, Margarita; De la Torre Juárez, M.; Ministerio de Ciencia e Innovación (MICINN); Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Gobierno Vasco; Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Instituto de Astrofísica de Cantabria, MDM-2017-0765The formation of water ice clouds or hazes on Mars imposes substantial limitations on the vertical transport of water into the middle-upper atmosphere, impacting the planet’s hydrogen loss. Recent observations made by the Mars Environmental Dynamics Analyzer instrument onboard Mars 2020 Perseverance rover have shown a marked decline in water ice abundance within the mesosphere (above 35-40 km) when Mars is near its aphelion (near the northern summer solstice), notably occurring during solar longitudes (Ls) between Ls 70∘ and 80∘. Orbital observations around the same latitudes indicate that temperatures between ~ 30-40 km reach a minimum during the same period. Using cloud microphysics simulations, we demonstrate that this decrease in temperature effectively increases the amount of water cold-trapped at those altitudes, confining water ice condensation to lower altitudes. Similarly, the reinforcement of the cold trap induced by the lower temperatures results in significant reductions in the water vapor mixing ratio above 35–40 km, explaining the confinement of water vapor observed around aphelion from orbiters.Ítem Acceso Abierto First detection of visible-wavelength aurora on Mars(Europlanet, 2024-07-03) Wright Knutsen, Elise; McConnochie, Tim H.; Lemmon, M. T.; Tamppari, L. K.; Viet, Shayla; Cousin, Agnes; Wiens, Roger C.; Francis, R.; Donaldson, Chris; Lasue, J.; Forni, O.; Patel, P.; Schneider, Nick; Toledo, D.; Apéstigue, V.Auroras are hallmarks of the interaction between solar particles and the atmosphere of planets. Martian aurora was first discovered in 2005, since then, four different types have been identified: localized discreet aurora (Bertaux et al., 2005), global diffuse aurora (Schneider et al., 2015), dayside proton aurora (Deighan et al., 2018), and large-scale sinuous aurora (Lillis et al., 2022). All previous detections have been made in the UV from orbit. Here we present, from observations with the SuperCam and MastCam-Z instruments on the Mars 2020 Perseverance rover, the first detection of aurora from the Martian surface and the first detection of the green 557.7 nm atomic oxygen auroral emission on Mars. This is the same emission line that is familiar from terrestrial aurora. Charged particles accelerated by interplanetary coronal mass ejections (ICMEs) or solar flares are referred to as solar energetic particles (SEPs) (Reames, 1999). Diffuse aurora is strongly correlated with SEP events. ICME-accelerated SEPs travel nearly radially, as opposed to flare-accelerated SEPs which follow the Parker spiral. If the solar source region is identified, ICME-accelerated SEP events at Mars, and thus diffuse aurora, can be forecasted. The dynamic nature of rover planning and operations allows for a reactive observation strategy that takes advantage of such forecasts. We made several attempts, starting in May 2023, to react to SEP events and observe with the M2020 rover (Farley et al., 2020) instruments at times when we believed the likelihood of emission to be highest. Our fourth attempt, in March 2024, yielded the positive detection reported here.Publicación Acceso Abierto Hexagonal Prisms Form in Water-Ice Clouds on Mars, Producing Halo Displays Seen by Perseverance Rover(AGU Advancing Earth and Space Science, 2022-10-03) Lemmon, M. T.; Toledo, D.; Apéstigue, Víctor; Arruego, Ignacio; Wolff, Michael; Patel, P.; Guzewich, Scott; Colaprete, A.; Vicente Retortillo, Álvaro; Tamppari, L. K.; Montmessin, F.; De la Torre Juárez, M.; Maki, Justin N.; McConnochie, Tim H.; Brown, Adrian Jon; Bell, J. F.; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); NASA Jet Propulsion Laboratory (JPL); Arizona State University (ASU); Ministerio de Economía y Competitividad (MINECO); Gobierno Vasco; European Research Council (ERC); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Observations by several cameras on the Perseverance rover showed a 22° scattering halo around the Sun over several hours during northern midsummer (solar longitude 142°). Such a halo has not previously been seen beyond Earth. The halo occurred during the aphelion cloud belt season and the cloudiest time yet observed from the Perseverance site. The halo required crystalline water-ice cloud particles in the form of hexagonal columns large enough for refraction to be significant, at least 11 μm in diameter and length. From a possible 40–50 km altitude, and over the 3.3 hr duration of the halo, particles could have fallen 3–12 km, causing downward transport of water and dust. Halo-forming clouds are likely rare due to the high supersaturation of water that is required but may be more common in northern subtropical regions during northern midsummer.Publicación Acceso Abierto The dynamic atmospheric and aeolian environment of Jezero crater, Mars(Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Álvaro; Apéstigue, Víctor; Martínez, Germán M.; Toledo, D.; Sullivan, Robert; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A.; Murdoch, N.; Sánchez Lavega, Agustín; Wolff, Michael; Arruego, I.; Sebastián, E.; Navarro López, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, Michael D.; Lepinette Malvitte, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, María; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, Felipe; McConnochie, Tim H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María-Paz; Mora Sotomayor, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, Scott; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.










