Logotipo del repositorio
Comunidades
Todo Digital INTA
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Haukka, H."

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 3 de 3
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Lunar In-situ Navigation and Communication Node - LUNINA
    (Europlanet, 2024-07-03) Haukka, H.; Kestilä, Antti; Arruego, Ignacio; Harri, Ari-Matti; Genzer, María; Apéstigue, Víctor; Hieta, M.; Camañes, Carmen; Ortega, Cristina; Kivekäs. Jarmo; Koskimaa, Petri
    LUNINA is an in-situ navigation and communication node. Proposed LUNINA platform is designed to be a compact, independent, cost effective, robust, and location independent navigation beacon and communication relay on the Moon that can operate 24/7.
  • Cargando...
    Miniatura
    PublicaciónRestringido
    The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season
    (Elsevier, 2018-02-01) Bettanini, C.; Esposito, F.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, Enrico; Ferri, F.; Marty, Laurent; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, Edoardo; Ari-Matti, H.; Montmessin, F.; Wilson, Colin; Arruego, I.; Abbaki. S.; Apéstigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S.; Forget, F.; Genzer, María; Gilbert, Pierre; Haukka, H.; Jiménez Martín, Juan José; Jiménez, Salvador; Josset, J. L.; Karatekin, Özgür; Landis, G.; Lorenz, Ralph; Martínez Oter, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Patel, M.; Pommereau, J. P.; Popa, C. I.; Rafkin, Scot C. R.; Rannou, P.; Rennó, N. O.; Schmidt, Walter; Simoes, F.; Spiga, A.; Valero, F.; Vázquez, L.; Apéstigue, Víctor; Agenzia Spaziale Italiana (ASI); Istituto Nazionale di Astrofisica (INAF)
    "The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and update mission timelines for operation. Elaboration of housekeeping data showed that the behaviour of the whole instrument was nominal during the whole cruise. Unfortunately DREAMS was not able to operate on the surface of Mars, due to the known guidance anomaly during the descent that caused Schiaparelli to crash at landing. The adverse sequence of events at 4 km altitude anyway triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. The spare models of DREAMS are currently in use at university premises for the development of autonomous units to be used in cubesat mission and in probes for stratospheric balloons launches in collaboration with Italian Space Agency."
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars
    (European Geoscience Union (EGU), 2017-02-24) Harri, Ari-Matti; Pichkadze, K.; Zeleny, L.; Vázquez, L.; Schmidt, Walter; Alexashkin, S.; Korablev, O.; Guerrero, H.; Heilimo, J.; Uspensky, M.; Finchenko, V.; Linkin, V.; Arruego, Ignacio; Genzer, María; Lipatov, A.; Polkko, J.; Paton, M.; Savijärvi, H.; Haukka, H.; Siili, T.; Khovanskov, V.; Ostesko, B.; Poroshin, A.; Díaz Michelena, Marina; Siikonen, T.; Palin, M.; Vorontsov, V.; Polyakov, A.; Valero, F.; Kemppinen, O.; Leinonen, J.; Romero, P.; Finnish Meteorological Institute (Finland); Russian Space Research Institute; Instituto Nacional de Técnica Aeroespacial (INTA); Lavochkin Association (Russia); Harri, A. M. [0000-0001-8541-2802]; Schmidt, W. [0000-0002-8210-3868]; Korablev, O. [0000-0003-1115-0656]; Genzer, M. [0000-0002-3971-0152]; Haukka, H. [0000-0001-7653-5114]
    nvestigations of global and related local phenomena on Mars such as atmospheric circulation patterns, boundary layer phenomena, water, dust and climatological cycles and investigations of the planetary interior would benefit from simultaneous, distributed in situ measurements. Practically, such an observation network would require low-mass landers, with a high packing density, so a large number of landers could be delivered to Mars with the minimum number of launchers. The Mars Network Lander (MetNet Lander; MNL), a small semi-hard lander/penetrator design with a payload mass fraction of approximately 17 %, has been developed, tested and prototyped. The MNL features an innovative Entry, Descent and Landing System (EDLS) that is based on inflatable structures. The EDLS is capable of decelerating the lander from interplanetary transfer trajectories down to a surface impact speed of 50–70 m s−1 with a deceleration of < 500 g for < 20 ms. The total mass of the prototype design is ≈ 24 kg, with ≈ 4 kg of mass available for the payload. The EDLS is designed to orient the penetrator for a vertical impact. As the payload bay will be embedded in the surface materials, the bay's temperature excursions will be much less than if it were fully exposed on the Martian surface, allowing a reduction in the amount of thermal insulation and savings on mass. The MNL is well suited for delivering meteorological and atmospheric instruments to the Martian surface. The payload concept also enables the use of other environmental instruments. The small size and low mass of a MNL makes it ideally suited for piggy-backing on larger spacecraft. MNLs are designed primarily for use as surface networks but could also be used as pathfinders for high-value landed missions.
footer.link.logos.derechosLogo Acceso abiertoLogo PublicacionesLogo Autores
Logo Sherpa/RomeoLogo DulcineaLogo Creative CommonsLogo RecolectaLogo Open AireLogo Hispana

Dspace - © 2024

  • Política de cookies
  • Política de privacidad
  • Aviso Legal
  • Accesibilidad
  • Sugerencias