Examinando por Autor "Mora Sotomayor, L."
Mostrando 1 - 8 de 8
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Dust Lifting Through Surface Albedo Changes at Jezero Crater, Mars(Advancing Earth and Space Science (AGU), 2023-03-22) Vicente Retortillo, Álvaro; Martínez, Germán M.; Lemmon, M. T.; Hueso, R.; Johnson, J. R.; Sullivan, Robert; Newman, C. E.; Sebastián, E.; Toledo, D.; Apéstigue, Víctor; Arruego, Ignacio; Munguira, A.; Sánchez Lavega, Agustín; Murdoch, N.; Gillier, M.; Stott, A.; Mora Sotomayor, L.; Bertrand, T.; Tamppari, L. K.; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); Comunidad de Madrid; Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We identify temporal variations in surface albedo at Jezero crater using first-of-their-kind high-cadence in-situ measurements of reflected shortwave radiation during the first 350 sols of the Mars 2020 mission. Simultaneous Mars Environmental Dynamics Analyzer (MEDA) measurements of pressure, radiative fluxes, winds, and sky brightness indicate that these albedo changes are caused by dust devils under typical conditions and by a dust storm at Ls ∼ 155°. The 17% decrease in albedo caused by the dust storm is one order of magnitude larger than the most apparent changes caused during quiescent periods by dust devils. Spectral reflectance measurements from Mastcam-Z images before and after the storm indicate that the decrease in albedo is mainly caused by dust removal. The occurrence of albedo changes is affected by the intensity and proximity of the convective vortex, and the availability and mobility of small particles at the surface. The probability of observing an albedo change increases with the magnitude of the pressure drop (ΔP): changes were detected in 3.5%, 43%, and 100% of the dust devils with ΔP < 2.5 Pa, ΔP > 2.5 Pa and ΔP > 4.5 Pa, respectively. Albedo changes were associated with peak wind speeds above 15 m·s−1. We discuss dust removal estimates, the observed surface temperature changes coincident with albedo changes, and implications for solar-powered missions. These results show synergies between multiple instruments (MEDA, Mastcam-Z, Navcam, and the Supercam microphone) that improve our understanding of aeolian processes on Mars.Publicación Acceso Abierto In-flight calibration of the MEDA-TIRS instrument onboard NASA's Mars2020 mission(Elsevier, 2024-11-09) Sebastián, E.; Martínez, Germán M.; Ramos, Miguel; Smith, Michael D.; Peinado, V.; Mora Sotomayor, L.; Lemmon, M. T.; Vicente Retortillo, Álvaro; de Lucas Veguillas, Javier; Ferrándiz, Ricardo; Rodríguez Manfredi, J. A.This article describes a novel procedure and algorithm used for the in-flight calibration of the Thermal Infrared Sensor (TIRS) onboard the Mars 2020 mission. The purpose is to recalibrate the responsivity of TIRS’ IR detectors as they degrade following surface operations and exposure to harsh environmental conditions. Using data from in-flight calibration campaigns conducted through sol 800 of this mission, we report the time evolution of the responsivity for the different IR detectors, as well as the final performance achieved by the algorithm in the real operating environment. Moreover, we analyzed changes in responsivity as a function of TIRS geometric design and environmental factors, e.g., detector orientation, direct exposure to prevailing winds and solar radiation, electrostatic properties of the detector filter, and atmospheric dust concentration. We concluded that dust deposition on the detectors' filter during landing, and later during operation is the most likely cause of the degradation observed in the various channels, with gravitational sedimentation and the capacity of the filters to accumulate electrostatic charge being key factors. The relative and absolute degradation of the TIRS is similar to those reported by other Martian missions and instruments with similar orientations, and to date, it has shown no signs of cleaning after more than a year on the surface of Mars. Accounting for changes in responsivity during the mission is critical to maintaining the reliability of TIRS measurements, which will later be made available in NASA's Planetary Data System for the benefit of the scientific community.Publicación Acceso Abierto Location and Setting of the Mars InSight Lander, Instruments, and Landing Site(American Geophysical Union: Advancing Earth and Space Science, 2020-09-21) Golombek, M.; Williams, N. R.; Warner, N. H.; Parker, T. J.; Williams, M. G.; Daubar, I.; Calef, F. J.; Grant, J.; Bailey, P.; Abarca, H.; Deen, R.; Ruoff, N.; Maki, Justin N.; McEwen, A.; Baugh, N.; Block, K.; Tamppari, L. K.; Call, J.; Ladewig, J.; Stoltz, A.; Weems, W. A.; Mora Sotomayor, L.; Torres, J.; Johnson, M.; Kennedy, T.; Sklyanskiy, E.; National Aeronautics and Space Administration (NASA); Warner, N. [0000-0002-7615-2524]; Williams, N. [0000-0003-0602-484X]; Golombek, M. [0000-0002-1928-2293]; Parker, T. [0000-0003-3524-9220]; Deen, R. [0000-0002-5693-641X]; Maki, J. [0000-0002-7887-0343]; Mora Stomayor, L. [0000-0002-8209-1190]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Knowing precisely where a spacecraft lands on Mars is important for understanding the regional and local context, setting, and the offset between the inertial and cartographic frames. For the InSight spacecraft, the payload of geophysical and environmental sensors also particularly benefits from knowing exactly where the instruments are located. A ~30 cm/pixel image acquired from orbit after landing clearly resolves the lander and the large circular solar panels. This image was carefully georeferenced to a hierarchically generated and coregistered set of decreasing resolution orthoimages and digital elevation models to the established positive east, planetocentric coordinate system. The lander is located at 4.502384°N, 135.623447°E at an elevation of −2,613.426 m with respect to the geoid in Elysium Planitia. Instrument locations (and the magnetometer orientation) are derived by transforming from Instrument Deployment Arm, spacecraft mechanical, and site frames into the cartographic frame. A viewshed created from 1.5 m above the lander and the high‐resolution orbital digital elevation model shows the lander is on a shallow regional slope down to the east that reveals crater rims on the east horizon ~400 m and 2.4 km away. A slope up to the north limits the horizon to about 50 m away where three rocks and an eolian bedform are visible on the rim of a degraded crater rim. Azimuths to rocks and craters identified in both surface panoramas and high‐resolution orbital images reveal that north in the site frame and the cartographic frame are the same (within 1°).Publicación Acceso Abierto Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument(AGU Advancing Earth and Space Science, 2023-02) Martínez, Germán M.; Sebastián, E.; Vicente Retortillo, Álvaro; Smith, Michael D.; Johnson, J. R.; Fischer, E.; Savijärvi, H.; Toledo, D.; Hueso, R.; Mora Sotomayor, L.; Gillespie, H.; Munguira, A.; Sánchez Lavega, Agustín; Lemmon, M. T.; Gómez, Felipe; Polkko, J.; Mandon, Lucía; Apéstigue, Víctor; Arruego, Ignacio; Ramos, Miguel; Conrad, Pamela G.; Newman, C. E.; De la Torre Juárez, M.; Jordan, Francisco; Tamppari, L. K.; McConnochie, Tim H.; Harri, Ari-Matti; Genzer, María; Hieta, M.; Zorzano, María-Paz; Siegler, M.; Prieto-Ballesteros, Olga; Molina, A.; Rodríguez Manfredi, J. A.; Comunidad de Madrid; Universities Space Research Association (USRA); Agencia Estatal de Investigación (AEI); Gobierno Vasco; Instituto Nacional de Técnica Aeroespacial (INTA); Centre National D'Etudes Spatiales (CNES); National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first-of-its-kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non-Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock-dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground-truth to orbital measurements.Publicación Restringido The atmosphere of Mars as observed by InSight.(Nature Research Journals, 2020-02-24) Banfield, D.; Spiga, A.; Newman, C. E.; Forget, F.; Lemmon, M. T.; Lorenz, R.; Murdoch, N.; Viúdez Moreiras, Daniel; Pla García, J.; García, R. F.; Lognonné, P.; Karatekin, Özgür; Perrin, C.; Martire, L.; Teanby, N.; Van Hove, B.; Maki, Justin N.; Kenda, B.; Mueller, N. T.; Rodriguez, Sébastien; Kawamura, T.; McClean, John; Stott, A.; Charalambous, C.; Millour, E.; Johnson, C. L.; Mittelholz, A.; Määttänen, A.; Lewis, S. R.; Clinton, J.; Stähler, S. C.; Ceylan, S.; Giardini, D.; Warren, T.; Pike, W. T.; Daubar, I.; Golombek, M.; Rolland, L.; Widmer Schnidrig, R.; Mimoun, D.; Beucler, E.; Jacob, A.; Lucas, A.; Baker, M.; Ansan, V.; Hurst, K.; Mora Sotomayor, L.; Navarro López, Sara; Torres, J.; Lepinette Malvitte, A.; Molina, A.; Marín Jiménez, M.; Gómez Elvira, J.; Peinado, V.; Rodríguez Manfredi, J. A.; Carchic, B. T.; Sackett, S.; Russell, C. T.; Spohn, T.; Smrekar, Suzanne; Banerdt, W. B.; Agence Nationale de la Recherche (ANR); Määttänen, A. [0000-0002-7326-8492]; Martire, L. [0000-0002-9402-6150]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Lognonné, P. [0000-0002-1014-920X]; Rodríguez, S. [0000-0003-1219-0641]; Spiga, A. [0000-0002-6776-6268]; Perrin, C. [0000-0002-7200-5682]; Molina, A. [0000-0002-5038-2022]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; García, R. [0000-0003-1460-6663]; Murdoch, N. [0000-0002-9701-4075]; Lorenz, R. [0000-0001-8528-4644]; Mittelholz, A. [0000-0002-5603-7334]; Kawamura, T. [0000-0001-5246-5561]; Widmer Schnidrig, R. [0000-0001-9698-2739]; McClean, J. [0000-0002-7863-0120]; Mueller, N. [0000-0001-9229-8921]; Lewis, S. [0000-0001-7237-6494]; Teanby, N. [0000-0003-3108-5775]; Warren, T. [0000-0003-3877-0046]; Milliour, E. [0000-0003-4808-9203]; Lemmon, M. [0000-0002-4504-5136]; Clinton, J. [0000-0001-8626-2703]; Ceylan, S. [0000-0002-6552-6850]; Banfield, D. [0000-0003-2664-0164]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The atmosphere of Mars is thin, although rich in dust aerosols, and covers a dry surface. As such, Mars provides an opportunity to expand our knowledge of atmospheres beyond that attainable from the atmosphere of the Earth. The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander is measuring Mars’s atmosphere with unprecedented continuity, accuracy and sampling frequency. Here we show that InSight unveils new atmospheric phenomena at Mars, especially in the higher-frequency range, and extends our understanding of Mars’s meteorology at all scales. InSight is uniquely sensitive to large-scale and regional weather and obtained detailed in situ coverage of a regional dust storm on Mars. Images have enabled high-altitude wind speeds to be measured and revealed airglow—faint emissions produced by photochemical reactions—in the middle atmosphere. InSight observations show a paradox of aeolian science on Mars: despite having the largest recorded Martian vortex activity and dust-devil tracks close to the lander, no visible dust devils have been seen. Meteorological measurements have produced a catalogue of atmospheric gravity waves, which included bores (soliton-like waves). From these measurements, we have discovered Martian infrasound and unexpected similarities between atmospheric turbulence on Earth and Mars. We suggest that the observations of Mars’s atmosphere by InSight will be key for prediction capabilities and future exploration.Publicación Acceso Abierto The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars(Nature Publishing Group, 2023-01-09) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán M.; Lemmon, M. T.; Newman, C. E.; Munguira, A.; Hieta, M.; Tamppari, L. K.; Polkko, J.; Toledo, D.; Sebastian, D.; Smith, Michael D.; Jaakonaho, I.; Genzer, María; Vicente Retortillo, Álvaro; Viúdez Moreiras, Daniel; Ramos, Miguel; Saiz López, A.; Lepinette Malvitte, A.; Wolff, Michael; Sullivan, R. J.; Gómez Elvira, J.; Apéstigue, Víctor; Conrad, P.; Del Río Gaztelurrutia, T.; Murdoch, N.; Arruego, Ignacio; Banfield, D.; Boland, J.; Brown, Adrian Jon; Ceballos Cáceres, J.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Ferrándiz Guibelalde, Ricardo; Fischer, E.; García Villadangos, M.; Giménez Torregrosa, S.; Gómez Gómez, F.; Guzewich, Scott; Harri, Ari-Matti; Jiménez Martín, Juan José; Jiménez, V.; Makinen, Terhi; Marín Jiménez, M.; Martín Rubio, C.; Martín Soler, J.; Molina, A.; Mora Sotomayor, L.; Navarro López, Sara; Peinado, V.; Pérez Grande, I.; Pla García, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Savijärvi, H.; Schofield, J. T.; Torres, J.; Urquí, R.; Zurita, S.; NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Instituto Nacional de Técnica Aeroespacial (INTA); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); California Institute of Technology (CIT); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both comPublicación Acceso Abierto The dynamic atmospheric and aeolian environment of Jezero crater, Mars(Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Álvaro; Apéstigue, Víctor; Martínez, Germán M.; Toledo, D.; Sullivan, Robert; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A.; Murdoch, N.; Sánchez Lavega, Agustín; Wolff, Michael; Arruego, I.; Sebastián, E.; Navarro López, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, Michael D.; Lepinette Malvitte, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, María; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, Felipe; McConnochie, Tim H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María-Paz; Mora Sotomayor, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, Scott; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.Publicación Acceso Abierto The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission(Springer Link, 2021-04-13) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Alonso, A.; Apéstigue, Víctor; Arruego, Ignacio; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M. A.; Castañer, L.; Ceballos Cáceres, J.; Chen Chen, H.; Cobos, A.; Conrad, Pamela G.; Cordoba, E.; Del Río Gaztelurrutia, T.; Vicente Retortillo, Álvaro; Domínguez Pumar, M.; Espejo, S.; Fairén, Alberto G.; Fernández Palma, A.; Ferrándiz, Ricardo; Ferri, F.; Fischer, E.; García Manchado, A.; García Villadangos, M.; Genzer, María; Giménez, Á.; Gómez Elvira, J.; Gómez, Felipe; Guzewich, Scott; Harri, Ari-Matti; Hernández, C. D.; Hieta, M.; Hueso, R.; Jaakonaho, I.; Jiménez Martín, Juan José; Jiménez, V.; Larman, A.; Leiter, R.; Lepinette Malvitte, A.; Lemmon, M. T.; López, G.; Madsen, Soren N.; Mäkinen, T.; Marín Jiménez, M.; Martín Soler, J.; Martínez, Germán M.; Molina, A.; Mora Sotomayor, L.; Moreno Álvarez, J. F.; Navarro López, Sara; Newman, C. E.; Ortega, Cristina; Parrondo, María Concepción; Peinado, V.; Peña, A.; Pérez Grande, I.; Pérez Hoyos, S.; Pla García, J.; Polkko, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Ramos, Miguel; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Runyon, Kirby; Saiz López, A.; Sánchez Lavega, Agustín; Sard, I.; Schofield, J. T.; Sebastián, E.; Smith, Michael D.; Sullivan, Robert; Tamppari, L. K.; Thompson, A. D.; Toledo, D.; Torrero, F.; Torres, J.; Urquí, R.; Velasco, T.; Viúdez Moreiras, Daniel; Zurita, S.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Gobierno Vasco; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Saiz López, A. [0000-0002-0060-1581]; Chen, H. [0000-0001-9662-0308]; Pérez Hoyos, S. [0000-0002-2587-4682]NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.










