Examinando por Autor "Zurita, S."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Publicación Restringido Denoising Atmospheric Temperature Measurements Taken by the Mars Science Laboratory on the Martian Surface(Institute of Electrical and Electronics Engineers, 2020-10-30) Zurita, S.; Escribano, F.; Sáez Landete, J.; Rodríguez Manfredi, J. A.; Agencia Estatal de Investigación (AEI); 0000-0002-3136-2720; 0000-0002-7648-2734; 0000-0002-9384-9745; 0000-0003-0461-9815In this article, we analyze data from two temperature sensors of the Mars Science Laboratory, which has been active in Mars since August 2012. Temperature measurements received from the rover are noisy and must be processed and validated before being delivered to the scientific community. Currently, a simple moving average (MA) filter is used to perform signal denoising. The application of this basic method relies on the assumption that the noise is stationary and statistically independent of the underlying structure of the signal, an arguable assumption in this kind of harsh environment. In this article, we analyze the application of two alternative methods to process the temperature sensor measurements: the discrete wavelet transform (DWT) and the Hilbert-Huang transform (HHT). We consider two different data sets: one belonging to the current Martian measurement campaigns, and the other to the thermal vacuum tests. The processing of these data sets allows to separate the random noise from the interference created by other systems. The experiments show that the MA filter may provide useful results under given circumstances. However, the proposed methods allow a better fitting for all the realistic scenarios while providing the possibility to identify and analyze other interesting signal features and artifacts that could be later studied and classified. The large amount of data to be processed makes computational efficiency an important requirement in this mission. Considering the computational cost and the filtering performance, we propose the method based on DWT as more suitable for this application.Publicación Acceso Abierto The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars(Nature Publishing Group, 2023-01-09) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán M.; Lemmon, M. T.; Newman, C. E.; Munguira, A.; Hieta, M.; Tamppari, L. K.; Polkko, J.; Toledo, D.; Sebastian, D.; Smith, Michael D.; Jaakonaho, I.; Genzer, María; Vicente Retortillo, Álvaro; Viúdez Moreiras, Daniel; Ramos, Miguel; Saiz López, A.; Lepinette Malvitte, A.; Wolff, Michael; Sullivan, R. J.; Gómez Elvira, J.; Apéstigue, Víctor; Conrad, P.; Del Río Gaztelurrutia, T.; Murdoch, N.; Arruego, Ignacio; Banfield, D.; Boland, J.; Brown, Adrian Jon; Ceballos Cáceres, J.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Ferrándiz Guibelalde, Ricardo; Fischer, E.; García Villadangos, M.; Giménez Torregrosa, S.; Gómez Gómez, F.; Guzewich, Scott; Harri, Ari-Matti; Jiménez Martín, Juan José; Jiménez, V.; Makinen, Terhi; Marín Jiménez, M.; Martín Rubio, C.; Martín Soler, J.; Molina, A.; Mora Sotomayor, L.; Navarro López, Sara; Peinado, V.; Pérez Grande, I.; Pla García, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Savijärvi, H.; Schofield, J. T.; Torres, J.; Urquí, R.; Zurita, S.; NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Instituto Nacional de Técnica Aeroespacial (INTA); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); California Institute of Technology (CIT); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both comPublicación Acceso Abierto The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission(Springer Link, 2021-04-13) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Alonso, A.; Apéstigue, Víctor; Arruego, Ignacio; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M. A.; Castañer, L.; Ceballos Cáceres, J.; Chen Chen, H.; Cobos, A.; Conrad, Pamela G.; Cordoba, E.; Del Río Gaztelurrutia, T.; Vicente Retortillo, Álvaro; Domínguez Pumar, M.; Espejo, S.; Fairén, Alberto G.; Fernández Palma, A.; Ferrándiz, Ricardo; Ferri, F.; Fischer, E.; García Manchado, A.; García Villadangos, M.; Genzer, María; Giménez, Á.; Gómez Elvira, J.; Gómez, Felipe; Guzewich, Scott; Harri, Ari-Matti; Hernández, C. D.; Hieta, M.; Hueso, R.; Jaakonaho, I.; Jiménez Martín, Juan José; Jiménez, V.; Larman, A.; Leiter, R.; Lepinette Malvitte, A.; Lemmon, M. T.; López, G.; Madsen, Soren N.; Mäkinen, T.; Marín Jiménez, M.; Martín Soler, J.; Martínez, Germán M.; Molina, A.; Mora Sotomayor, L.; Moreno Álvarez, J. F.; Navarro López, Sara; Newman, C. E.; Ortega, Cristina; Parrondo, María Concepción; Peinado, V.; Peña, A.; Pérez Grande, I.; Pérez Hoyos, S.; Pla García, J.; Polkko, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Ramos, Miguel; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Runyon, Kirby; Saiz López, A.; Sánchez Lavega, Agustín; Sard, I.; Schofield, J. T.; Sebastián, E.; Smith, Michael D.; Sullivan, Robert; Tamppari, L. K.; Thompson, A. D.; Toledo, D.; Torrero, F.; Torres, J.; Urquí, R.; Velasco, T.; Viúdez Moreiras, Daniel; Zurita, S.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Gobierno Vasco; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Saiz López, A. [0000-0002-0060-1581]; Chen, H. [0000-0001-9662-0308]; Pérez Hoyos, S. [0000-0002-2587-4682]NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.










