Examinando por Autor "Stott, A."
Mostrando 1 - 5 de 5
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars(Advancing Earth and Space Science AGU, 2021-02-08) Charalambous, C.; Stott, A.; Pike, W. T.; McClean, John; Warren, T.; Spiga, A.; Banfield, D.; García, R. F.; Clinton, J.; Stähler, S. C.; Navarro López, Sara; Lognonné, P.; Scholz, J. R.; Kawamura, T.; Van Driel, M.; Böse, M.; Ceylan, S.; Khan, A.; Horleston, A.; Orhand Mainsant, G.; Sotomayor, L. M.; Murdoch, N.; Giardini, D.; Banerdt, W. B.; Murdoch, N. [0000-0002-9701-4075]; Lognonne, P. [0000-0002-1014-920X]; Charalambous, C. [0000-0002-9139-3895]; Stott, A. E. [0000-0001-6121-705X]; Spiga, A. [0000-0002-6776-6268]; Stähler, S. [0000-0002-0783-2489]; Scholz, J. R. [0000-0003-1404-2335]; Ceylan, S. [0000-0002-6552-6850]; Khan, A. [0000-0003-4462-3173]; Van Driel, M. [0000-0002-8938-4615]; Horleston, A. [0000-0002-6748-6522]; Giardini, D. [0000-0002-5573-7638]; Banerdt, W. B. [0000-0003-3125-1542]Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.Publicación Restringido Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data(Nature Research Journals, 2020-02-24) Lognonné, P.; Banerdt, W. B.; Pike, W. T.; Giardini, D.; Christensesn, U.; García, R. F.; Kawamura, T.; Kedar, S.; Knapmeyer Endrun, B.; Margerin, L.; Nimmo, F.; Panning, M.; Tauzin, B.; Scholz, J. R.; Antonangeli, D.; Barkaoui, S.; Beucler, E.; Bissig, F.; Brinkman, N.; Calvet, M.; Ceylan, S.; Charalambous, C.; Davis, P.; Van Driel, M.; Drilleau, M.; Fayon, L.; Joshi, R.; Kenda, B.; Khan, A.; Knapmeyer, M.; Lekic, V.; McClean, John; Mimoun, D.; Murdoch, N.; Pan, L.; Perrin, C.; Pinot, B.; Pou, L.; Menina, S.; Rodríguez, Sébastien; Schmelzbach, C.; Schmerr, N.; Sollberg, D.; Spiga, A.; Stähler, S.; Stott, A.; Stutzmann, E.; Tharimena, S.; Widmer Schnidrig, R.; Andersson, F.; Ansan, V.; Beghein, C.; Knollenberg, M.; Krasner, S.; krause, C.; Lorenz, R.; Michaut, C.; Myhill, R.; Nissen Meyer, T.; Ten Pierick, J.; Plesa, A. C.; Quantin Nataf, C.; Robertsson, J.; Rochas, L.; Schimmel, M.; Smrekar, Suzanne; Spohn, T.; Teanby, N.; Tromp, J.; Vallade, J.; Verdier, N.; Vrettos, C.; Weber, R.; Banfield, D.; Barrett, E.; Bierwith, M.; Calcutt, S.; Compaire, N.; Johnson, C. L.; Mance, D.; Euchner, F.; Kerjean, L.; Mainsant, G.; Mocquet, A.; Rodríguez Manfredi, J. A.; Pont, G.; Laudet, Philippe; Nebut, T.; Raucort, S.; Robert, O.; Russell, C. T.; Sylvestre Baron, A.; Tillier, S.; Warren, T.; Wieczorek, Mark A.; Yana, C.; Zweifel, P.; Centre National D'Etudes Spatiales (CNES); Agence Nationale de la Recherche (ANR); Lognonné, P.[0000-0002-1014-920X]; Spiga, A. [0000-0002-6776-6268]; Murdoch, N. [0000-0002-9701-4075]; Fayon, L. [0000-0002-4276-8160]; Knapmeyer, M. [0000-0003-0319-2514]; Tromp, J. [0000-0002-2742-8299]; Perrin, C. [0000-0002-7200-5682]; Schimmel, M. [0000-0003-2601-4462]; Panning, M. P. [0000-0002-2041-3190]; Rodríguez Manfredi, J. [0000-0003-0461-9815]; Pan, L. [0000-0002-8151-2125]; García, R. F. [0000-0003-1460-6663]; Rodríguez, S. [0000-0003-1219-0641]; Sollberger, D. [0000-0001-6408-6681]; Ceylan, S. [0000-0002-6552-6850]; Irving, J. [0000-0002-0866-8246]; Warren, T. [0000-0003-3877-0046]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Mars’s seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight’s Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8–11 km of the crust is highly altered and/or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles.Publicación Acceso Abierto Dust Lifting Through Surface Albedo Changes at Jezero Crater, Mars(Advancing Earth and Space Science (AGU), 2023-03-22) Vicente Retortillo, Álvaro; Martínez, Germán M.; Lemmon, M. T.; Hueso, R.; Johnson, J. R.; Sullivan, Robert; Newman, C. E.; Sebastián, E.; Toledo, D.; Apéstigue, Víctor; Arruego, Ignacio; Munguira, A.; Sánchez Lavega, Agustín; Murdoch, N.; Gillier, M.; Stott, A.; Mora Sotomayor, L.; Bertrand, T.; Tamppari, L. K.; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); Comunidad de Madrid; Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We identify temporal variations in surface albedo at Jezero crater using first-of-their-kind high-cadence in-situ measurements of reflected shortwave radiation during the first 350 sols of the Mars 2020 mission. Simultaneous Mars Environmental Dynamics Analyzer (MEDA) measurements of pressure, radiative fluxes, winds, and sky brightness indicate that these albedo changes are caused by dust devils under typical conditions and by a dust storm at Ls ∼ 155°. The 17% decrease in albedo caused by the dust storm is one order of magnitude larger than the most apparent changes caused during quiescent periods by dust devils. Spectral reflectance measurements from Mastcam-Z images before and after the storm indicate that the decrease in albedo is mainly caused by dust removal. The occurrence of albedo changes is affected by the intensity and proximity of the convective vortex, and the availability and mobility of small particles at the surface. The probability of observing an albedo change increases with the magnitude of the pressure drop (ΔP): changes were detected in 3.5%, 43%, and 100% of the dust devils with ΔP < 2.5 Pa, ΔP > 2.5 Pa and ΔP > 4.5 Pa, respectively. Albedo changes were associated with peak wind speeds above 15 m·s−1. We discuss dust removal estimates, the observed surface temperature changes coincident with albedo changes, and implications for solar-powered missions. These results show synergies between multiple instruments (MEDA, Mastcam-Z, Navcam, and the Supercam microphone) that improve our understanding of aeolian processes on Mars.Publicación Restringido The atmosphere of Mars as observed by InSight.(Nature Research Journals, 2020-02-24) Banfield, D.; Spiga, A.; Newman, C. E.; Forget, F.; Lemmon, M. T.; Lorenz, R.; Murdoch, N.; Viúdez Moreiras, Daniel; Pla García, J.; García, R. F.; Lognonné, P.; Karatekin, Özgür; Perrin, C.; Martire, L.; Teanby, N.; Van Hove, B.; Maki, Justin N.; Kenda, B.; Mueller, N. T.; Rodriguez, Sébastien; Kawamura, T.; McClean, John; Stott, A.; Charalambous, C.; Millour, E.; Johnson, C. L.; Mittelholz, A.; Määttänen, A.; Lewis, S. R.; Clinton, J.; Stähler, S. C.; Ceylan, S.; Giardini, D.; Warren, T.; Pike, W. T.; Daubar, I.; Golombek, M.; Rolland, L.; Widmer Schnidrig, R.; Mimoun, D.; Beucler, E.; Jacob, A.; Lucas, A.; Baker, M.; Ansan, V.; Hurst, K.; Mora Sotomayor, L.; Navarro López, Sara; Torres, J.; Lepinette Malvitte, A.; Molina, A.; Marín Jiménez, M.; Gómez Elvira, J.; Peinado, V.; Rodríguez Manfredi, J. A.; Carchic, B. T.; Sackett, S.; Russell, C. T.; Spohn, T.; Smrekar, Suzanne; Banerdt, W. B.; Agence Nationale de la Recherche (ANR); Määttänen, A. [0000-0002-7326-8492]; Martire, L. [0000-0002-9402-6150]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Lognonné, P. [0000-0002-1014-920X]; Rodríguez, S. [0000-0003-1219-0641]; Spiga, A. [0000-0002-6776-6268]; Perrin, C. [0000-0002-7200-5682]; Molina, A. [0000-0002-5038-2022]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; García, R. [0000-0003-1460-6663]; Murdoch, N. [0000-0002-9701-4075]; Lorenz, R. [0000-0001-8528-4644]; Mittelholz, A. [0000-0002-5603-7334]; Kawamura, T. [0000-0001-5246-5561]; Widmer Schnidrig, R. [0000-0001-9698-2739]; McClean, J. [0000-0002-7863-0120]; Mueller, N. [0000-0001-9229-8921]; Lewis, S. [0000-0001-7237-6494]; Teanby, N. [0000-0003-3108-5775]; Warren, T. [0000-0003-3877-0046]; Milliour, E. [0000-0003-4808-9203]; Lemmon, M. [0000-0002-4504-5136]; Clinton, J. [0000-0001-8626-2703]; Ceylan, S. [0000-0002-6552-6850]; Banfield, D. [0000-0003-2664-0164]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The atmosphere of Mars is thin, although rich in dust aerosols, and covers a dry surface. As such, Mars provides an opportunity to expand our knowledge of atmospheres beyond that attainable from the atmosphere of the Earth. The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander is measuring Mars’s atmosphere with unprecedented continuity, accuracy and sampling frequency. Here we show that InSight unveils new atmospheric phenomena at Mars, especially in the higher-frequency range, and extends our understanding of Mars’s meteorology at all scales. InSight is uniquely sensitive to large-scale and regional weather and obtained detailed in situ coverage of a regional dust storm on Mars. Images have enabled high-altitude wind speeds to be measured and revealed airglow—faint emissions produced by photochemical reactions—in the middle atmosphere. InSight observations show a paradox of aeolian science on Mars: despite having the largest recorded Martian vortex activity and dust-devil tracks close to the lander, no visible dust devils have been seen. Meteorological measurements have produced a catalogue of atmospheric gravity waves, which included bores (soliton-like waves). From these measurements, we have discovered Martian infrasound and unexpected similarities between atmospheric turbulence on Earth and Mars. We suggest that the observations of Mars’s atmosphere by InSight will be key for prediction capabilities and future exploration.Publicación Acceso Abierto The dynamic atmospheric and aeolian environment of Jezero crater, Mars(Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Álvaro; Apéstigue, Víctor; Martínez, Germán M.; Toledo, D.; Sullivan, Robert; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A.; Murdoch, N.; Sánchez Lavega, Agustín; Wolff, Michael; Arruego, I.; Sebastián, E.; Navarro López, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, Michael D.; Lepinette Malvitte, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, María; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, Felipe; McConnochie, Tim H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María-Paz; Mora Sotomayor, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, Scott; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.










