Logotipo del repositorio
Comunidades
Todo Digital INTA
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Barstow, J. K."

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 5 de 5
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Evidence of a Clear Atmosphere for WASP-62b: The Only Known Transiting Gas Giant in the JWST Continuous Viewing Zone
    (IOP Science Publishing, 2021-01-11) Alam, M. K.; López Morales, M.; MacDonald, R. J.; Nikolov, N.; Kirk, J.; Goyal, J. M.; Sing, D. K.; Wakeford, H. R.; Rathcke, A. D.; Deming, D. L.; Sanz Forcada, J.; Lewis, N. K.; Barstow, J. K.; Mikal Evans, T.; Buchhave, L. A.; National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); Agencia Estatal de Investigación (AEI); Alam, M. K. [0000-0003-4157-832X]; López Morales, M. [0000-0003-3204-8183]; MacDonald, R. J. [0000-0003-4816-3469]; Nikolov, N. [0000-0002-6500-3574]; Kirk, J. [0000-0002-4207-6615]; Goyal, J. M. [0000-0002-8515-7204]; Sing, D. K. [0000-0001-6050-7645]; Wakeford, H. R. [0000-0003-4328-3867]; Rathcke, A. D. [0000-0002-4227-4953]; Deming, D. L. [0000-0001-5727-4094]; Sanz Forcada, J. [0000-0002-1600-7835]; Lewis, N. K. [0000-0002-8507-1304]; Barstow, J. K. [0000-0003-3726-5419]; Mikal Evans, T. [0000-0001-5442-1300]; Buchhave, L. A. [0000-0003-1605-5666]
    Exoplanets with cloud-free, haze-free atmospheres at the pressures probed by transmission spectroscopy represent a valuable opportunity for detailed atmospheric characterization and precise chemical abundance constraints. We present the first optical to infrared (0.3−5 μm) transmission spectrum of the hot Jupiter WASP-62b, measured with Hubble/STIS and Spitzer/IRAC. The spectrum is characterized by a 5.1σ detection of Na i absorption at 0.59 μm, in which the pressure-broadened wings of the Na D-lines are observed from space for the first time. A spectral feature at 0.4 μm is tentatively attributed to SiH at 2.1σ confidence. Our retrieval analyses are consistent with a cloud-free atmosphere without significant contamination from stellar heterogeneities. We simulate James Webb Space Telescope (JWST) observations, for a combination of instrument modes, to assess the atmospheric characterization potential of WASP-62b. We demonstrate that JWST can conclusively detect Na, H2O, FeH, NH3, CO, CO2, CH4, and SiH within the scope of its Early Release Science (ERS) program. As the only transiting giant planet currently known in the JWST Continuous Viewing Zone, WASP-62b could prove a benchmark giant exoplanet for detailed atmospheric characterization in the James Webb era.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    HST PanCET Program: A Complete Near-UV to Infrared Transmission Spectrum for the Hot Jupiter WASP-79b
    (IOP Science Publishing, 2021-09-10) Rathcke, A. D.; MacDonald, R. J.; Barstow, J. K.; Goyal, J. M.; López Morales, M.; Mendoça, J. M.; Sanz Forcada, J.; Henry, G. W.; Sing, D. K.; Alam, M. K.; Agencia Estatal de Investigación (AEI); Rathcke, A. D. [0000-0002-4227-4953]; MacDonald, R. J. [0000-0003-4816-3469]; Barstow, J. K. [0000-0003-3726-5419]; Goyal, J. M. [0000-0002-8515-7204]; López Morales, M. [0000-0003-3204-8183]; Mendoça, J. M. [0000-0002-6907-4476]; Sanz Forcada, J. [0000-0002-1600-7835]; Henry, G. W. [0000-0003-4155-8513]; Sing, D. K. [0000-0001-6050-7645]; Alam, M. K. [0000-0003-4157-832X]; Lewis, N. K. [0000-0002-8507-1304]; Chubb, K. L. [0000-0002-4552-4559]; Taylor, J. [0000-0003-4844-9838]; Nikolov, N. [0000-0002-6500-3574]; Buchhave, L. A. [0000-0003-1605-5666]
    We present a new optical transmission spectrum of the hot Jupiter WASP-79b. We observed three transits with the STIS instrument mounted on the Hubble Space Telescope (HST), spanning 0.3–1.0 μm. Combining these transits with previous observations, we construct a complete 0.3–5.0 μm transmission spectrum of WASP-79b. Both HST and ground-based observations show decreasing transit depths toward blue wavelengths, contrary to expectations from Rayleigh scattering or hazes. We infer atmospheric and stellar properties from the full near-UV to infrared transmission spectrum of WASP-79b using three independent retrieval codes, all of which yield consistent results. Our retrievals confirm previous detections of H2O (at 4.0σ confidence) while providing moderate evidence of H− bound–free opacity (3.3σ) and strong evidence of stellar contamination from unocculted faculae (4.7σ). The retrieved H2O abundance (∼1%) suggests a superstellar atmospheric metallicity, though stellar or substellar abundances remain consistent with present observations (O/H = 0.3–34× stellar). All three retrieval codes obtain a precise H− abundance constraint: log(${X}_{{{\rm{H}}}^{-}}$) ≈ −8.0 ± 0.7. The potential presence of H− suggests that James Webb Space Telescope observations may be sensitive to ionic chemistry in the atmosphere of WASP-79b. The inferred faculae are ∼500 K hotter than the stellar photosphere, covering ∼15% of the stellar surface. Our analysis underscores the importance of observing UV–optical transmission spectra in order to disentangle the influence of unocculted stellar heterogeneities from planetary transmission spectra.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The EChO science case
    (Springer Link, 2015-11-29) Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Olliver, M.; Puig, L.; Ribas, I.; Sicardy, B.; Kehoe, T.; Deeg, H.; Petrov, R.; Doel, P.; Tennyson, J.; Filacchione, G.; Varley, R.; Temple, J.; Lahav, O.; MacTavish, C.; Wisniowski, T.; Piccioni, G.; Guàrdia, J.; Cavarroc, C.; Jones, G.; Ade, P.; Sanromá, E.; Frith, J.; Lognonné, P.; Pantin, E.; Crook, J.; Colomé, J.; Allard, F.; Azzollini, R.; Burston, R.; Parviainen, H.; Malaguti, G.; Gerard, J. C.; Stamper, R.; Barrado, D.; Maldonado, J.; Morales, J. C.; Yurchenko, S. N.; Lagage, P. O.; Prinja, R.; Koskinen, T.; Waldmann, I.; Venot, O.; Heiter, U.; Lim, T.; Pace, E.; Moya Bedon, A.; Irwin, P.; Michaut, C.; Monteiro, M.; Jones, H.; Wawer, P.; Fouqué, P.; Widemann, T.; Alonso Floriano, F. J.; Eiroa, C.; Savini, G.; Stixrude, L.; Damasso, M.; Rataj, M.; Glasse, A.; Koskinen, T.; Bulgarelli, A.; Ciaravella, A.; Hollis, M.; Schmider, F. X.; Kerschbaum, F.; Licandro Goldaracena, J.; Claret, A.; Rocchetto, M.; López Valverde, Miguel Ángel; Fossey, S.; Leto, G.; Ramos Zapata, G.; Beaulieu, J. P.; Balado, A.; Luzzi, D.; Rebordao, J.; Encrenaz, T.; Adriani, A.; Alcala, J.; Guedel, M.; Morales Calderón, M.; Peña Ramírez, K. Y.; Herrero, Enrique; Focardi, M.; Montalto, M.; Wright, G.; Danielski, C.; Burleigh, M. R.; Medvedev, A.; Murgas Alcaino, F.; Chadney, J.; Bowles, N.; Maxted, Pierre; Kerschbaum, F.; Ward Thompson, D.; Laken, B.; Börne, P.; Christian Jessen, N.; Dominic, C.; López Morales, M.; Miles Paez, P.; Achilleos, N.; Biondi, D.; White, G.; Heredero, R. L.; De Kok, R.; Frith, J.; Grodent, D.; Rank Lüftinger, T.; Scholz, A.; Villaver, E.; Dobrijévic, M.; Alard, C.; Demangeon, O. D. S.; De Witt, J.; Machado, P.; Cordier, D.; Charnoz, S.; Rodler, F.; Gerard, J. C.; Sousa, S. G.; Viti, S.; Cole, R.; Blecka, M.; Barber, R. J.; Middleton, K.; Griffin, M.; Giro, E.; Cho, J.; Covino, E.; Turrini, D.; Moro Martín, A.; Decin, L.; Ramos, A. A.; Schrader, J. R.; Massi, F.; Abe, L.; Mauskopf, P.; Batista, V.; Agnor, C.; Bordé, P.; Fabrizio, N.; Bakos, G.; Rengel, M.; Gustin, J.; Hueso, R.; Fernández Hernández, Maite; Ray, T.; Claudi, R.; Femenía Castella, B.; Rebolo, R.; Sethenadh, J.; Luntzer, A.; Mueller Wodarg, I.; Delgado Mena, E.; Brown, L.; De Sio, A.; González Hernández, J.; Selsis, F.; Leconte, J.; Del Vecchio, C.; Budaj, J.; Scandariato, G.; Pagano, I.; García Piquer, A.; Guillot, T.; Terenzi, L.; Tabernero, H. M.; Forget, F.; Hargrave, P.; North, C.; Heyrovsky, D.; Cerulli, R.; Adybekian, V.; Read, P.; Pinsard, Frederic; Parmentier, V.; Collura, A.; Hubert, B.; Lanza, N.; Graczyk, R.; Fouqué, P.; Giuranna, M.; Valdivieso, M. L.; Pérez Hoyos, S.; Andersen, A.; Mall, U.; Buchhave, L. A.; Yelle, R.; Rickman, H.; Ballerini, P.; Affer, L.; Maruquette, J. B.; Sánchez Béjar, V. J.; Nelson, Richard; Fletcher, L.; Radioti, A.; Turrini, D.; Montes, D.; Gizon, L.; Galand, M.; Gómez, H.; Eymet, V.; Esposito, M.; Smith, A.; Morello, G.; Allende Prieto, C.; Justtanot, K.; Bryson, I.; Pallé, E.; Amado, P. J.; Figueira, P.; Shore, Steven; Focardi, M.; Strazzulla, G.; Giani, E.; Pietrzak, R.; González Merino, B.; Lo Cicero, Ugo; Gaulme, P.; Sozzetti, A.; Femenía Castella, B.; Maillard, J. P.; Cabral, A.; Iro, N.; Magnes, W.; Pinfield, David J.; Swain, M.; Showman, A.; Bellucci, G.; Kerins, E.; Maurin, A. S.; Poretti, E.; Boisse, I.; Barton, E. J.; Kervella, P.; Guio, P.; Norgaard Nielsen, H. U.; Bézard, B.; Montañés Rodríguez, P.; Banaszkiewicz, M.; Kovács, G.; Baffa, C.; Del Val Borro, M.; Belmonte Avilés, J. A.; Palla, F.; Hersant, F.; Correira, A.; Yung, Y.; Cockell, Charles S.; Vinatier, S.; Pilat Lohinger, E.; Krupp, N.; Orton, G.; Vakili, F.; Pezzuto, S.; Di Giorgio, A.; Waltham, D.; Testi, L.; Stiepen, A.; Deroo, P.; Capria, M. T.; Eales, S.; Irshad, R.; Stolarski, M.; Zapatero Osorio, M. R.; Swinyard, B.; Griffith, C.; Winek, W.; Bouy, H.; Thompson, S.; Maggio, A.; Moses, J.; Liu, S. J.; Lithgow Bertelloni, C.; Coudé du Foresto, V.; Martín Torres, Javier; Fletcher, L.; Barlow, M.; Coustenis, A.; Berry, D.; López Puertas, M.; Banaszkiewicz, M.; Lundgaard Rasmussen, I.; Hoogeveen, Ruud; Morais, H.; Watkins, C.; Oliva, E.; Scuderi, S.; Aylward, A.; Bonford, B.; Sitek, P.; Haigh, J.; Prisinzano, L.; Soret, L.; Wawrzaszk, A.; Lammer, H.; Figueira, P.; Gianotti, F.; Readorn, K.; Tanga, P.; Israelian, G.; Gesa, L.; Peralta, J.; Gómez Leal, I.; Cassan, A.; Tecsa, M.; Tessenyi, M.; Pancrazzi, M.; Coates, A.; Gambicorti, L.; Gear, W.; Winter, B.; Piskunov, N.; Álvarez Iglesias, C. A.; Polichtchouk, I.; Altieri, F.; Ottensamer, R.; Watson, D.; Rezac, L.; Vandenbussche, B.; Waters, R.; Dorfi, E.; Morgante, G.; Pascale, E.; Hornstrup, A.; Snellen, Ignas; Lodieu, N.; Lellouch, E.; Espinoza Contreras, M.; Jarchow, C.; Agúndez, Marcelino; Filacchione, G.; Abreu, M.; Grassi, D.; Tingley, B. W.; Sánchez Lavega, Agustín; Tozzi, A.; Sanz Forcada, J.; Kipping, D.; Chamberlain, S.; Trifoglio, M.; Barstow, J. K.; Santos, Nuno C.; Gillon, M.; Hébrard, E.; Cecchi Pestellini, C.; Fossey, S.; García López, Ramón; Thrastarson, H.; Rees, J. M.; Selig, A.; Galand, M.; Jacquemoud, S.; Branduardi Raymont, Graziella; Rebordao, J. [0000-0002-7418-0345]; Kerschbaum, F. [0000-0001-6320-0980]; Abreu, M. [0000-0002-0716-9568]; Tabernero, H. [0000-0002-8087-4298]; López Puertas, M. [0000-0003-2941-7734]; Jacquemoud, S. [0000-0002-1500-5256]; Tennyson, J. [0000-0002-4994-5238]; Focardi, M. [0000-0002-3806-4283]; Leto, G. [0000-0002-0040-5011]; Lodieu, N. [0000-0002-3612-8968]; Tinetti, G. [0000-0001-6058-6654]; Danielski, C. [0000-0002-3729-2663]; Hornstrup, A. [0000-0002-3363-0936]; Kervella, P. [0000-0003-0626-1749]; Sánchez Bejar, V. [0000-0002-5086-4232]; López Heredero, R. [0000-0002-2197-8388]; Sanz Forcada, J. [0000-0002-1600-7835]; Rickman, H. [0000-0002-9603-6619]; Maggio, A. [0000-0001-5154-6108]; Medved, A. [0000-0003-2713-8977]; Tinetti, G. [0000-0001-6058-6654]; Fletcher, L. [0000-0001-5834-9588]; Haigh, J. [0000-0001-5504-4754]; Bakos, G. [0000-0001-7204-6727]; Stixrude, L. [0000-0003-3778-2432]; Amado, P. J. [0000-0002-8388-6040]; Martín Torres, J. [0000-0001-6479-2236]; Correira, A. [0000-0002-8946-8579]; Yurchenko, S. [0000-0001-9286-9501]; Rataj, M. [0000-0002-2978-9629]; Guedel, M. [0000-0001-9818-0588]; Piskunov, N. [0000-0001-5742-7767]; Filacchione, G. [0000-0001-9567-0055]; Adibekyan, V. [0000-0002-0601-6199]; Budaj, J. [0000-0002-9125-7340]; Poretti, E. [0000-0003-1200-0473]; Pascale, E. [0000-0002-3242-8154]; Claudi, R. [0000-0001-7707-5105]; Piccioni, G. [0000-0002-7893-6808]; Ribas, I. [0000-0002-6689-0312]; Sanroma, E. [0000-0001-8859-7937]; Agundez, M. [0000-0003-3248-3564]; Montes, D. [0000-0002-7779-238X]; Lognonne, P. [0000-0002-1014-920X]; Abreu, M. [0000-0002-0716-9568]; Montes, D. [0000-0002-7779-238X]; Morais, M. H. [0000-0001-5333-2736]; Tanga, P. [0000-0002-2718-997X]; Peralta, J. [0000-0002-6823-1695]; Hueso, R. [0000-0003-0169-123X]; Leto, G. [0000-0002-0040-5011]; Morales, J. C. [0000-0003-0061-518X]; Pérez Hoyos, S. [0000-0002-2587-4682]; Santos, N. [0000-0003-4422-2919]; Lithgow Bertelloni, C. [0000-0003-0924-6587]; Delgado, M. E. [0000-0003-4434-2195]; Barlow, M. [0000-0002-3875-1171]; Deeg, H. [0000-0003-0047-4241]; Bouy, H. [0000-0002-7084-487X[; Grassi, D. [0000-0003-1653-3066]; Figueira, P. [0000-0001-8504-283X]; Barton, E. [0000-0001-5945-9244]; Coates, A. [0000-0002-6185-3125]; García Ramón, J. [0000-0002-8204-6832]; Watson, D. [0000-0002-4465-8264]; Morales Calderon, M. [0000-0001-9526-9499]; Demangeon, O. [0000-0001-7918-0355]; Ray, T. [0000-0002-2110-1068]; Guio, P. [0000-0002-1607-5862]; Gillon, M. [0000-0003-1462-7739]; Bulgarelli, A. [0000-0001-6347-0649]; Prisinzano, L. [0000-0002-8893-2210]; Barstow, J. [0000-0003-3726-5419]; Pancrazzi, M. [0000-0002-3789-2482]; Barrado Navascues, D. [0000-0002-5971-9242]; Balado, A. [0000-0003-4268-2516]; Malaguti, G. [0000-0001-9872-3378]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Affer, L. [0000-0001-5600-3778]; Ciaravella, A. [0000-0002-3127-8078]; Guillot, T. [0000-0002-7188-8428]; Altieri, F. [0000-0002-6338-8300]; Covino, E. [0000-0002-6187-6685]; Venot, O. [0000-0003-2854-765X]; López Valverde, M. A. [0000-0002-7989-4267]; Cabral, A. [0000-0002-9433-871X]; Selsis, F. [0000-0001-9619-5356]; Turrini, D. [0000-0002-1923-7740]; Ward Thompson, D. [0000-0003-1140-2761]; Rebolo, R. [0000-0003-3767-7085]; Damasso, M. [0000-0001-9984-4278]; Tizzi, A. [0000-0002-6725-3825]; Morgante, G. [0000-0001-9234-7412]; Pena Ramírez, K. [0000-0002-5855-401X]; Galand, M. [0000-0001-5797-914X]; Pace, E. [0000-0001-5870-1772]; Pilat Lohinger, E. [0000-0002-5292-1923]; Sánchez Lavega, A. [0000-0001-7234-7634]; Waldmann, I. [0000-0002-4205-5267]; Claret, A. [0000-0002-4045-8134]; Olivia, E. [0000-0002-9123-0412]; Kovacs, G. [0000-0002-2365-2330]; Gómez, H. [0000-0003-3398-0052]; Monteiro, M. [0000-0001-5644-0898]; Bellucci, G. [0000-0003-0867-8679]; Baffa, C. [0000-0002-4935-100X]; Scholz, A. [0000-0001-8993-5053]; Bezard, B. [0000-0002-5433-5661]; Scuderi, Salvatore [0000-0002-8637-2109]; Hersant, F. [0000-0002-2687-7500]; Maldonado, J. [0000-0002-4282-1072]; Gear, W. [0000-0001-6789-6196]; Sousa, S. [0000-0001-9047-2965]; Irwin, P. [0000-0002-6772-384X]; Pinfield, D. [0000-0002-7804-4260]; Kipping, D. [0000-0002-4365-7366]; Ade, P. [0000-0002-5127-0401]; Vandenbussche, B. [0000-0002-1368-3109]; Burleigh, M. [0000-0003-0684-7803]; Chadney, J. [0000-0002-5174-2114]; Moro Martín, A. [0000-0001-9504-8426]; Scandariato, G. [0000-0003-2029-0626]; Rodríguez, P. [0000-0002-6855-9682]; Maldonado, J. [0000-0002-2218-5689]; Michaut, C. [0000-0002-2578-0117]; Pérez Hoyos, S. [0000-0001-9797-4917]
    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10−4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The Hubble Space Telescope PanCET Program: An Optical to Infrared Transmission Spectrum of HAT-P-32Ab
    (The Institute of Physics (IOP), 2020-07-02) Alam, M. K.; López Morales, M.; Nikolov, N.; Sing, D. K.; Henry, G. W.; Baxter, C.; Désert, J. M.; Barstow, J. K.; Mikal Evans, T.; Bourrier, V.; Lavvas, P.; Wakeford, H. R.; Williamson, M. H.; Sanz Forcada, J.; Buchhave, L. A.; Cohen, O.; García Muñoz, Antonio; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); European Research Council (ERC); Alam, M. K. [0000-0003-4157-832X]; López Morales, M. [0000-0003-3204-8183]; Nikolov, N. [0000-0002-6500-3574]; Sing, D. K. [0000-0001-6050-7645]; Henry, G. W. [0000-0003-4155-8513]; Baxter, C. [0000-0003-3438-843X]; Désert, J. M. [0000-0002-0875-8401]; Barstow, J. K. [0000-0003-3726-5419]; Mikal Evans, T. [0000-0001-5442-1300]; Bourrier, V. [0000-0002-9148-034X]; Lavvas, P. [0000-0002-5360-3660]; Wakeford, H. R. [0000-0003-4328-3867]; Forcada, J. S. [0000-0002-1600-7835]; Buchhave, L. A. [0000-0003-1605-5666]; Cohen, O. [0000-0003-3721-0215]; García Muñoz, A. [0000-0003-1756-4825]
    We present a 0.3−5 μm transmission spectrum of the hot Jupiter HAT-P-32Ab observed with the Space Telescope Imaging Spectrograph and Wide Field Camera 3 instruments mounted on the Hubble Space Telescope, combined with Spitzer Infrared Array Camera photometry. The spectrum is composed of 51 spectrophotometric bins with widths ranging between 150 and 400 Å, measured to a median precision of 215 ppm. Comparisons of the observed transmission spectrum to a grid of 1D radiative-convective equilibrium models indicate the presence of clouds/hazes, consistent with previous transit observations and secondary eclipse measurements. To provide more robust constraints on the planet's atmospheric properties, we perform the first full optical to infrared retrieval analysis for this planet. The retrieved spectrum is consistent with a limb temperature of ${1248}_{-92}^{+92}$ K, a thick cloud deck, enhanced Rayleigh scattering, and ~10× solar H2O abundance. We find log(Z/Z⊙) = ${2.41}_{-0.07}^{+0.06}$, and compare this measurement with the mass–metallicity relation derived for the solar system.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    WASP-52b. The effect of star-spot correction on atmospheric retrievals
    (Oxford Academics: Oxford University Press, 2019-11-18) Bruno, G.; Lewis, N. K.; Alam, M. K.; López Morales, M.; Barstow, J. K.; Wakeford, H. R.; Sing, D. K.; Henry, G. W.; Ballester, G. E.; Bourrier, V.; Buchhave, L. A.; Cohen, O.; Mikal Evans, T.; García Muñoz, Antonio; Lavvas, P.; Sanz Forcada, J.; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); European Research Council (ERC); Deutsche Forschungsgemeinschaft (DFG); Buchhave, L. A. [0000-0003-1605-5666]; Bruno, G. [0000-0002-3288-0802]; Sing, D. [0000-0001-6050-7645]; Mikal Evans, T. [0000-0001-5442-1300]; Alam, M. [0000-0003-4157-832X]; Wakeford, H. [0000-0003-4328-3867]
    We perform atmospheric retrievals on the full optical to infrared (⁠0.3−5μm⁠) transmission spectrum of the inflated hot Jupiter WASP-52b by combining HST/STIS, WFC3 IR, and Spitzer/IRAC observations. As WASP-52 is an active star that shows both out-of-transit photometric variability and star-spot crossings during transits, we account for the contribution of non-occulted active regions in the retrieval. We recover a 0.1–10× solar atmospheric composition, in agreement with core accretion predictions for giant planets, and no significant contribution of aerosols. We also obtain a <3000 K temperature for the star-spots, a measure which is likely affected by the models used to fit instrumental effects in the transits, and a 5 per cent star-spot fractional coverage, compatible with expectations for the host star’s spectral type. Such constraints on the planetary atmosphere and on the activity of its host star will inform future JWST GTO observations of this target.
footer.link.logos.derechosLogo Acceso abiertoLogo PublicacionesLogo Autores
Logo Sherpa/RomeoLogo DulcineaLogo Creative CommonsLogo RecolectaLogo Open AireLogo Hispana

Dspace - © 2024

  • Política de cookies
  • Política de privacidad
  • Aviso Legal
  • Accesibilidad
  • Sugerencias