Logotipo del repositorio
Comunidades
Todo Digital INTA
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Hueso, R."

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 15 de 15
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Advance Dust Devil Detection with AI using Mars2020 MEDA instrument
    (Europlanet, 2024-07-03) Apéstigue, Víctor; Mohino, Inma; Gil, Roberto; Toledo, D.; Arruego, Ignacio; Hueso, R.; Martínez, Germán M.; Lemmon, M. T.; Newman, C. E.; Genzer, María; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.
    Mars’ dust cycle is a critical factor that drives the weather and climate of the planet. Airborne dust affects the energy balance that drives the atmospheric dynamic. Therefore, for studying the present-day and recent-past climate of Mars we need to observe and understand the different processes involved in the dust cycle. To this end, the Mars Environmental Dynamics Analyser (MEDA) station [1] includes a set of sensors capable of measuring the radiance fluxes, the wind direction and velocity, the pressure, and the humidity over the Martian surface. Combining these observations with radiative transfer (RT) simulations, airborne dust particles can be detected and characterized (optical depth, particle size, refractive index) along the day. The retrieval of these dust properties allows us to analyze dust storms or dust-lifting events, such as dust devils, on Mars [2][3]. Dust devils are thought to account for 50% of the total dust budget, and they represent a continuous source of lifted dust, active even outside the dust storms season. For these reasons, they have been proposed as the main mechanism able to sustain the ever-observed dust haze of the Martian atmosphere. Our radiative transfer simulations indicate that variations in the dust loading near the surface can be detected and characterized by MEDA radiance sensor RDS [4]. This study reanalyzes the dataset of dust devil detections obtained in [3] employing artificial intelligence techniques including anomaly detection based on autoencoders [5] and deep learning models [6] to analyze RDS and pressure sensor data. As we will show, preliminary results indicate that our AI models can successfully identify and characterize these phenomena with high accuracy. The final aim is to develop a powerful tool that can improve the database for the following sols of the mission, and subsequently extend its use for other atmospheric studies.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Convective Vortices and Dust Devils Detected and Characterized by Mars 2020
    (AGU Advancing Earth and Space Science, 2023-02-10) Hueso, R.; Newman, C. E.; Del Río Gaztelurrutia, T.; Munguira, A.; Sánchez Lavega, Agustín; Toledo, D.; Apéstigue, Víctor; Arruego, Ignacio; Vicente Retortillo, Álvaro; Martínez, Germán M.; Lemmon, M. T.; Lorenz, Ralph; Richardson, M. I.; Viúdez Moreiras, Daniel; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.; Tamppari, L. K.; Murdoch, N.; Navarro López, Sara; Gómez Elvira, J.; Baker, M.; Pla García, J.; Harri, Ari-Matti; Hieta, M.; Genzer, María; Polkko, J.; Jaakonaho, I.; Makinen, Terhi; Stott, Alexander; Mimoun, D.; Chide, B.; Sebastián Martínez, Eduardo; Banfield, D.; Lepinette Malvitte, A.; Gobierno Vasco; Ministerio de Ciencia e Innovación (MICINN); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Los Alamos National Laboratory (LANL); Arizona State University (ASU); Universities Space Research Association (USRA); NASA Jet Propulsion Laboratory (JPL); Comunidad de Madrid; Academy of Finland (AKA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    We characterize vortex and dust devils (DDs) at Jezero from pressure and winds obtained with the Mars Environmental Dynamics Analyzer (MEDA) instrument on Mars 2020 over 415 Martian days (sols) (Ls = 6°–213°). Vortices are abundant (4.9 per sol with pressure drops >0.5 Pa correcting from gaps in coverage) and they peak at noon. At least one in every five vortices carries dust, and 75% of all vortices with Δp > 2.0 Pa are dusty. Seasonal variability was small but DDs were abundant during a dust storm (Ls = 152°–156°). Vortices are more frequent and intense over terrains with lower thermal inertia favoring high daytime surface-to-air temperature gradients. We fit measurements of winds and pressure during DD encounters to models of vortices. We obtain vortex diameters that range from 5 to 135 m with a mean of 20 m, and from the frequency of close encounters we estimate a DD activity of 2.0–3.0 DDs km−2 sol−1. A comparison of MEDA observations with a Large Eddy Simulation of Jezero at Ls = 45° produces a similar result. Three 100-m size DDs passed within 30 m of the rover from what we estimate that the activity of DDs with diameters >100 m is 0.1 DDs km−2sol−1, implying that dust lifting is dominated by the largest vortices in Jezero. At least one vortex had a central pressure drop of 9.0 Pa and internal winds of 25 ms−1. The MEDA wind sensors were partially damaged during two DD encounters whose characteristics we elaborate in detail.
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Decline in Water Ice Abundance in the Martian Mesosphere during Aphelion
    (Europlanet, 2024-07-03) Toledo, D.; Rannou, P.; Apéstigue, Víctor; Rodríguez Veloso, Raúl; Arruego, I.; Martínez, Germán M.; Tamppari, L. K.; Munguira, A.; Lorenz, Ralph; Stcherbinine, Aurélien; Montmessin, F.; Sánchez Lavega, Agustín; Patel, P.; Viúdez Moreiras, Daniel; Hueso, R.; Bertrand, T.; Pla García, J.; Yela González, Margarita; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.
    Clouds play a crucial role in the past and current climate of Mars. Cloud particles impact the planet's energy balance and atmospheric dynamics, as well as influence the vertical distribution of dust particles through dust scavenging. This process of dust scavenging by clouds has significant consequences for the planet's water cycle. For example, regions in the atmosphere with insufficient quantities of dust particles, or condensation nuclei, can inhibit the formation of H2O clouds, leading to the presence of water vapor in excess of saturation [1]. Recent observations made by the MEDA Radiation and Dust Sensor (RDS) [2,3] have shown a marked decline in mesospheric cloud activity (above 35-40 km) when Mars is near its aphelion (within the Aphelion Cloud Belt-ACB season), notably occurring during solar longitudes (Ls) between Ls 70° and 80° [4] (see Figure 1). In order to investigate the possible factors leading to this decrease in water ice abundance, we used a one-dimensional cloud microphysical model [5,6], which includes the processes of nucleation, condensation, coagulation, evaporation, precipitation, and coalescence, and where the vertical mixing is parameterized using an eddy diffusion profile (Keddy). Combining cloud microphysics modeling with ground-based (Mars 2020 and InSight) and orbital observations (TGO and MRO) of clouds, water vapor, and temperature, we will discuss in this presentation the main factors controlling the water abundance in the Martian mesosphere during the ACB season.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Drying of the Martian mesosphere during aphelion induced by lower temperatures
    (Springer Nature, 2024-11-20) Toledo, D.; Rannou, P.; Apéstigue, Víctor; Rodríguez Veloso, Raúl; Rodríguez Manfredi, J. A.; Arruego, Ignacio; Martínez, Germán M.; Tamppari, L. K.; Munguira, A.; Lorenz, Ralph; Stcherbinine, Aurélien; Montmessin, F.; Sánchez Lavega, Agustín; Patel, P.; Smith, Michael D.; Lemmon, M. T.; Vicente Retortillo, Álvaro; Newman, C. E.; Viúdez Moreiras, Daniel; Hueso, R.; Bertrand, T.; Pla García, J.; Yela González, Margarita; De la Torre Juárez, M.; Ministerio de Ciencia e Innovación (MICINN); Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Gobierno Vasco; Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Instituto de Astrofísica de Cantabria, MDM-2017-0765
    The formation of water ice clouds or hazes on Mars imposes substantial limitations on the vertical transport of water into the middle-upper atmosphere, impacting the planet’s hydrogen loss. Recent observations made by the Mars Environmental Dynamics Analyzer instrument onboard Mars 2020 Perseverance rover have shown a marked decline in water ice abundance within the mesosphere (above 35-40 km) when Mars is near its aphelion (near the northern summer solstice), notably occurring during solar longitudes (Ls) between Ls 70∘ and 80∘. Orbital observations around the same latitudes indicate that temperatures between ~ 30-40 km reach a minimum during the same period. Using cloud microphysics simulations, we demonstrate that this decrease in temperature effectively increases the amount of water cold-trapped at those altitudes, confining water ice condensation to lower altitudes. Similarly, the reinforcement of the cold trap induced by the lower temperatures results in significant reductions in the water vapor mixing ratio above 35–40 km, explaining the confinement of water vapor observed around aphelion from orbiters.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Dust Devil Frequency of Occurrence and Radiative Effects at Jezero Crater, Mars, as Measured by MEDA Radiation and Dust Sensor (RDS)
    (GU Advancing Earth and Space Science, 2023-01-17) Toledo, D.; Apéstigue, Víctor; Arruego, Ignacio; Lemmon, M. T.; Gómez Martín, L.; Montoro, F.; Hueso, R.; Newman, C. E.; Smith, Michael D.; Viúdez Moreiras, Daniel; Martínez, Germán M.; Vicente Retortillo, Álvaro; Sánchez Lavega, Agustín; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.; Carrasco, I.; Yela González, Margarita; Jiménez Martín, Juan José; García-Menéndez, Elisa; Navarro López, Sara; Gómez Elvira, J.; Harri, Ari-Matti; Polkko, J.; Hieta, M.; Genzer, María; Murdoch, N.; Sebastián, E.; Agencia Estatal de Investigación (AEI); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Gobierno Vasco
    The Mars Environmental Dynamics Analyzer, onboard the Perseverance rover, is a meteorological station that is operating on Mars and includes, among other sensors, the radiometer Radiation and Dust Sensor (RDS). From RDS irradiance observations, a total of 374 dust devils (DDs) were detected for the first 365 sols of the mission (Ls = 6°–182°), which along with wind and pressure measurements, we estimated a DD frequency of formation at Jezero between 1.3 and 3.4 DD km−2 sol−1 (increasing as we move from spring into summer). This frequency is found to be smaller than that estimated at the Spirit or Pathfinder landing sites but much greater than that derived at InSight landing site. The maximum in DD frequency occurs between 12:00 and 13:00 local true solar time, which is when the convective heat flux and lower planetary boundary layer IR heating are both predicted to peak in Jezero crater. DD diameter, minimum height, and trajectory were studied showing (a) an average diameter of 29 m (or a median of 25 m) and a maximum and minimum diameter of 132 ± 63.4 and 5.6 ± 5.5 m; (b) an average minimum DD height of 231 m and a maximum minimum-height of 872 m; and (c) the DD migration direction is in agreement with wind measurements. For all the cases, DDs decreased the UV irradiance, while at visible or near-IR wavelengths both increases and decreases were observed. Contrary to the frequency of formation, these results indicate similar DD characteristics in average for the studied period.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Dust Lifting Through Surface Albedo Changes at Jezero Crater, Mars
    (Advancing Earth and Space Science (AGU), 2023-03-22) Vicente Retortillo, Álvaro; Martínez, Germán M.; Lemmon, M. T.; Hueso, R.; Johnson, J. R.; Sullivan, Robert; Newman, C. E.; Sebastián, E.; Toledo, D.; Apéstigue, Víctor; Arruego, Ignacio; Munguira, A.; Sánchez Lavega, Agustín; Murdoch, N.; Gillier, M.; Stott, A.; Mora Sotomayor, L.; Bertrand, T.; Tamppari, L. K.; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); Comunidad de Madrid; Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    We identify temporal variations in surface albedo at Jezero crater using first-of-their-kind high-cadence in-situ measurements of reflected shortwave radiation during the first 350 sols of the Mars 2020 mission. Simultaneous Mars Environmental Dynamics Analyzer (MEDA) measurements of pressure, radiative fluxes, winds, and sky brightness indicate that these albedo changes are caused by dust devils under typical conditions and by a dust storm at Ls ∼ 155°. The 17% decrease in albedo caused by the dust storm is one order of magnitude larger than the most apparent changes caused during quiescent periods by dust devils. Spectral reflectance measurements from Mastcam-Z images before and after the storm indicate that the decrease in albedo is mainly caused by dust removal. The occurrence of albedo changes is affected by the intensity and proximity of the convective vortex, and the availability and mobility of small particles at the surface. The probability of observing an albedo change increases with the magnitude of the pressure drop (ΔP): changes were detected in 3.5%, 43%, and 100% of the dust devils with ΔP < 2.5 Pa, ΔP > 2.5 Pa and ΔP > 4.5 Pa, respectively. Albedo changes were associated with peak wind speeds above 15 m·s−1. We discuss dust removal estimates, the observed surface temperature changes coincident with albedo changes, and implications for solar-powered missions. These results show synergies between multiple instruments (MEDA, Mastcam-Z, Navcam, and the Supercam microphone) that improve our understanding of aeolian processes on Mars.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Dust, Sand, and Winds Within an Active Martian Storm in Jezero Crater
    (AGU Advancing Earth and Space Science, 2022-11-16) Lemmon, M. T.; Smith, Michael D.; Viúdez Moreiras, Daniel; De la Torre Juárez, M.; Vicente Retortillo, Álvaro; Munguira, A.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán M.; Chide, B.; Sullivan, Robert; Toledo, D.; Tamppari, L. K.; Bertrand, T.; Bell, J. F.; Newman, C. E.; Baker, M.; Banfield, D.; Rodríguez Manfredi, J. A.; Maki, Justin N.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); NASA Jet Propulsion Laboratory (JPL); Arizona State University (ASU); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Rovers and landers on Mars have experienced local, regional, and planetary-scale dust storms. However, in situ documentation of active lifting within storms has remained elusive. Over 5–11 January 2022 (LS 153°–156°), a dust storm passed over the Perseverance rover site. Peak visible optical depth was ∼2, and visibility across the crater was briefly reduced. Pressure amplitudes and temperatures responded to the storm. Winds up to 20 m s−1 rotated around the site before the wind sensor was damaged. The rover imaged 21 dust-lifting events—gusts and dust devils—in one 25-min period, and at least three events mobilized sediment near the rover. Rover tracks and drill cuttings were extensively modified, and debris was moved onto the rover deck. Migration of small ripples was seen, but there was no large-scale change in undisturbed areas. This work presents an overview of observations and initial results from the study of the storm.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Mars 2020 Perseverance Rover Studies of the Martian Atmosphere Over Jezero From Pressure Measurements
    (AGU Advancing Earth and Space Science, 2022-11-01) Sánchez Lavega, Agustín; Del Río Gaztelurrutia, T.; Hueso, R.; De la Torre Juárez, M.; Martínez, Germán M.; Harri, Ari-Matti; Genzer, María; Hieta, M.; Polkko, J.; Rodríguez Manfredi, J. A.; Lemmon, M. T.; Pla García, J.; Toledo, D.; Vicente Retortillo, Álvaro; Viúdez Moreiras, Daniel; Munguira, A.; Tamppari, L. K.; Newman, C. E.; Gómez Elvira, J.; Guzewich, Scott; Bertrand, T.; Apéstigue, Víctor; Arruego, Ignacio; Wolff, Michael; Banfield, D.; Jaakonaho, I.; Mäkinen, T.; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); National Aeronautics and Space Administration (NASA); Universities Space Research Association (USRA); Gobierno Vasco; Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from Ls ∼ 13°–241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO2 sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere. They also show the presence of wave disturbances with periods 2–5 sols, exploring their baroclinic nature, short period oscillations (mainly at night-time) in the range 8–24 min that we interpret as internal gravity waves, transient pressure drops with duration ∼1–150 s produced by vortices, and rapid turbulent fluctuations. We also analyze the effects on pressure measurements produced by a regional dust storm over Jezero at Ls ∼ 155°.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument
    (AGU Advancing Earth and Space Science, 2023-02) Martínez, Germán M.; Sebastián, E.; Vicente Retortillo, Álvaro; Smith, Michael D.; Johnson, J. R.; Fischer, E.; Savijärvi, H.; Toledo, D.; Hueso, R.; Mora Sotomayor, L.; Gillespie, H.; Munguira, A.; Sánchez Lavega, Agustín; Lemmon, M. T.; Gómez, Felipe; Polkko, J.; Mandon, Lucía; Apéstigue, Víctor; Arruego, Ignacio; Ramos, Miguel; Conrad, Pamela G.; Newman, C. E.; De la Torre Juárez, M.; Jordan, Francisco; Tamppari, L. K.; McConnochie, Tim H.; Harri, Ari-Matti; Genzer, María; Hieta, M.; Zorzano, María-Paz; Siegler, M.; Prieto-Ballesteros, Olga; Molina, A.; Rodríguez Manfredi, J. A.; Comunidad de Madrid; Universities Space Research Association (USRA); Agencia Estatal de Investigación (AEI); Gobierno Vasco; Instituto Nacional de Técnica Aeroespacial (INTA); Centre National D'Etudes Spatiales (CNES); National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first-of-its-kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non-Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock-dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground-truth to orbital measurements.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars
    (Nature Publishing Group, 2023-01-09) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán M.; Lemmon, M. T.; Newman, C. E.; Munguira, A.; Hieta, M.; Tamppari, L. K.; Polkko, J.; Toledo, D.; Sebastian, D.; Smith, Michael D.; Jaakonaho, I.; Genzer, María; Vicente Retortillo, Álvaro; Viúdez Moreiras, Daniel; Ramos, Miguel; Saiz López, A.; Lepinette Malvitte, A.; Wolff, Michael; Sullivan, R. J.; Gómez Elvira, J.; Apéstigue, Víctor; Conrad, P.; Del Río Gaztelurrutia, T.; Murdoch, N.; Arruego, Ignacio; Banfield, D.; Boland, J.; Brown, Adrian Jon; Ceballos Cáceres, J.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Ferrándiz Guibelalde, Ricardo; Fischer, E.; García Villadangos, M.; Giménez Torregrosa, S.; Gómez Gómez, F.; Guzewich, Scott; Harri, Ari-Matti; Jiménez Martín, Juan José; Jiménez, V.; Makinen, Terhi; Marín Jiménez, M.; Martín Rubio, C.; Martín Soler, J.; Molina, A.; Mora Sotomayor, L.; Navarro López, Sara; Peinado, V.; Pérez Grande, I.; Pla García, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Savijärvi, H.; Schofield, J. T.; Torres, J.; Urquí, R.; Zurita, S.; NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Instituto Nacional de Técnica Aeroespacial (INTA); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); California Institute of Technology (CIT); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both com
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The dynamic atmospheric and aeolian environment of Jezero crater, Mars
    (Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Álvaro; Apéstigue, Víctor; Martínez, Germán M.; Toledo, D.; Sullivan, Robert; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A.; Murdoch, N.; Sánchez Lavega, Agustín; Wolff, Michael; Arruego, I.; Sebastián, E.; Navarro López, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, Michael D.; Lepinette Malvitte, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, María; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, Felipe; McConnochie, Tim H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María-Paz; Mora Sotomayor, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, Scott; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The EChO science case
    (Springer Link, 2015-11-29) Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Olliver, M.; Puig, L.; Ribas, I.; Sicardy, B.; Kehoe, T.; Deeg, H.; Petrov, R.; Doel, P.; Tennyson, J.; Filacchione, G.; Varley, R.; Temple, J.; Lahav, O.; MacTavish, C.; Wisniowski, T.; Piccioni, G.; Guàrdia, J.; Cavarroc, C.; Jones, G.; Ade, P.; Sanromá, E.; Frith, J.; Lognonné, P.; Pantin, E.; Crook, J.; Colomé, J.; Allard, F.; Azzollini, R.; Burston, R.; Parviainen, H.; Malaguti, G.; Gerard, J. C.; Stamper, R.; Barrado, D.; Maldonado, J.; Morales, J. C.; Yurchenko, S. N.; Lagage, P. O.; Prinja, R.; Koskinen, T.; Waldmann, I.; Venot, O.; Heiter, U.; Lim, T.; Pace, E.; Moya Bedon, A.; Irwin, P.; Michaut, C.; Monteiro, M.; Jones, H.; Wawer, P.; Fouqué, P.; Widemann, T.; Alonso Floriano, F. J.; Eiroa, C.; Savini, G.; Stixrude, L.; Damasso, M.; Rataj, M.; Glasse, A.; Koskinen, T.; Bulgarelli, A.; Ciaravella, A.; Hollis, M.; Schmider, F. X.; Kerschbaum, F.; Licandro Goldaracena, J.; Claret, A.; Rocchetto, M.; López Valverde, Miguel Ángel; Fossey, S.; Leto, G.; Ramos Zapata, G.; Beaulieu, J. P.; Balado, A.; Luzzi, D.; Rebordao, J.; Encrenaz, T.; Adriani, A.; Alcala, J.; Guedel, M.; Morales Calderón, M.; Peña Ramírez, K. Y.; Herrero, Enrique; Focardi, M.; Montalto, M.; Wright, G.; Danielski, C.; Burleigh, M. R.; Medvedev, A.; Murgas Alcaino, F.; Chadney, J.; Bowles, N.; Maxted, Pierre; Kerschbaum, F.; Ward Thompson, D.; Laken, B.; Börne, P.; Christian Jessen, N.; Dominic, C.; López Morales, M.; Miles Paez, P.; Achilleos, N.; Biondi, D.; White, G.; Heredero, R. L.; De Kok, R.; Frith, J.; Grodent, D.; Rank Lüftinger, T.; Scholz, A.; Villaver, E.; Dobrijévic, M.; Alard, C.; Demangeon, O. D. S.; De Witt, J.; Machado, P.; Cordier, D.; Charnoz, S.; Rodler, F.; Gerard, J. C.; Sousa, S. G.; Viti, S.; Cole, R.; Blecka, M.; Barber, R. J.; Middleton, K.; Griffin, M.; Giro, E.; Cho, J.; Covino, E.; Turrini, D.; Moro Martín, A.; Decin, L.; Ramos, A. A.; Schrader, J. R.; Massi, F.; Abe, L.; Mauskopf, P.; Batista, V.; Agnor, C.; Bordé, P.; Fabrizio, N.; Bakos, G.; Rengel, M.; Gustin, J.; Hueso, R.; Fernández Hernández, Maite; Ray, T.; Claudi, R.; Femenía Castella, B.; Rebolo, R.; Sethenadh, J.; Luntzer, A.; Mueller Wodarg, I.; Delgado Mena, E.; Brown, L.; De Sio, A.; González Hernández, J.; Selsis, F.; Leconte, J.; Del Vecchio, C.; Budaj, J.; Scandariato, G.; Pagano, I.; García Piquer, A.; Guillot, T.; Terenzi, L.; Tabernero, H. M.; Forget, F.; Hargrave, P.; North, C.; Heyrovsky, D.; Cerulli, R.; Adybekian, V.; Read, P.; Pinsard, Frederic; Parmentier, V.; Collura, A.; Hubert, B.; Lanza, N.; Graczyk, R.; Fouqué, P.; Giuranna, M.; Valdivieso, M. L.; Pérez Hoyos, S.; Andersen, A.; Mall, U.; Buchhave, L. A.; Yelle, R.; Rickman, H.; Ballerini, P.; Affer, L.; Maruquette, J. B.; Sánchez Béjar, V. J.; Nelson, Richard; Fletcher, L.; Radioti, A.; Turrini, D.; Montes, D.; Gizon, L.; Galand, M.; Gómez, H.; Eymet, V.; Esposito, M.; Smith, A.; Morello, G.; Allende Prieto, C.; Justtanot, K.; Bryson, I.; Pallé, E.; Amado, P. J.; Figueira, P.; Shore, Steven; Focardi, M.; Strazzulla, G.; Giani, E.; Pietrzak, R.; González Merino, B.; Lo Cicero, Ugo; Gaulme, P.; Sozzetti, A.; Femenía Castella, B.; Maillard, J. P.; Cabral, A.; Iro, N.; Magnes, W.; Pinfield, David J.; Swain, M.; Showman, A.; Bellucci, G.; Kerins, E.; Maurin, A. S.; Poretti, E.; Boisse, I.; Barton, E. J.; Kervella, P.; Guio, P.; Norgaard Nielsen, H. U.; Bézard, B.; Montañés Rodríguez, P.; Banaszkiewicz, M.; Kovács, G.; Baffa, C.; Del Val Borro, M.; Belmonte Avilés, J. A.; Palla, F.; Hersant, F.; Correira, A.; Yung, Y.; Cockell, Charles S.; Vinatier, S.; Pilat Lohinger, E.; Krupp, N.; Orton, G.; Vakili, F.; Pezzuto, S.; Di Giorgio, A.; Waltham, D.; Testi, L.; Stiepen, A.; Deroo, P.; Capria, M. T.; Eales, S.; Irshad, R.; Stolarski, M.; Zapatero Osorio, M. R.; Swinyard, B.; Griffith, C.; Winek, W.; Bouy, H.; Thompson, S.; Maggio, A.; Moses, J.; Liu, S. J.; Lithgow Bertelloni, C.; Coudé du Foresto, V.; Martín Torres, Javier; Fletcher, L.; Barlow, M.; Coustenis, A.; Berry, D.; López Puertas, M.; Banaszkiewicz, M.; Lundgaard Rasmussen, I.; Hoogeveen, Ruud; Morais, H.; Watkins, C.; Oliva, E.; Scuderi, S.; Aylward, A.; Bonford, B.; Sitek, P.; Haigh, J.; Prisinzano, L.; Soret, L.; Wawrzaszk, A.; Lammer, H.; Figueira, P.; Gianotti, F.; Readorn, K.; Tanga, P.; Israelian, G.; Gesa, L.; Peralta, J.; Gómez Leal, I.; Cassan, A.; Tecsa, M.; Tessenyi, M.; Pancrazzi, M.; Coates, A.; Gambicorti, L.; Gear, W.; Winter, B.; Piskunov, N.; Álvarez Iglesias, C. A.; Polichtchouk, I.; Altieri, F.; Ottensamer, R.; Watson, D.; Rezac, L.; Vandenbussche, B.; Waters, R.; Dorfi, E.; Morgante, G.; Pascale, E.; Hornstrup, A.; Snellen, Ignas; Lodieu, N.; Lellouch, E.; Espinoza Contreras, M.; Jarchow, C.; Agúndez, Marcelino; Filacchione, G.; Abreu, M.; Grassi, D.; Tingley, B. W.; Sánchez Lavega, Agustín; Tozzi, A.; Sanz Forcada, J.; Kipping, D.; Chamberlain, S.; Trifoglio, M.; Barstow, J. K.; Santos, Nuno C.; Gillon, M.; Hébrard, E.; Cecchi Pestellini, C.; Fossey, S.; García López, Ramón; Thrastarson, H.; Rees, J. M.; Selig, A.; Galand, M.; Jacquemoud, S.; Branduardi Raymont, Graziella; Rebordao, J. [0000-0002-7418-0345]; Kerschbaum, F. [0000-0001-6320-0980]; Abreu, M. [0000-0002-0716-9568]; Tabernero, H. [0000-0002-8087-4298]; López Puertas, M. [0000-0003-2941-7734]; Jacquemoud, S. [0000-0002-1500-5256]; Tennyson, J. [0000-0002-4994-5238]; Focardi, M. [0000-0002-3806-4283]; Leto, G. [0000-0002-0040-5011]; Lodieu, N. [0000-0002-3612-8968]; Tinetti, G. [0000-0001-6058-6654]; Danielski, C. [0000-0002-3729-2663]; Hornstrup, A. [0000-0002-3363-0936]; Kervella, P. [0000-0003-0626-1749]; Sánchez Bejar, V. [0000-0002-5086-4232]; López Heredero, R. [0000-0002-2197-8388]; Sanz Forcada, J. [0000-0002-1600-7835]; Rickman, H. [0000-0002-9603-6619]; Maggio, A. [0000-0001-5154-6108]; Medved, A. [0000-0003-2713-8977]; Tinetti, G. [0000-0001-6058-6654]; Fletcher, L. [0000-0001-5834-9588]; Haigh, J. [0000-0001-5504-4754]; Bakos, G. [0000-0001-7204-6727]; Stixrude, L. [0000-0003-3778-2432]; Amado, P. J. [0000-0002-8388-6040]; Martín Torres, J. [0000-0001-6479-2236]; Correira, A. [0000-0002-8946-8579]; Yurchenko, S. [0000-0001-9286-9501]; Rataj, M. [0000-0002-2978-9629]; Guedel, M. [0000-0001-9818-0588]; Piskunov, N. [0000-0001-5742-7767]; Filacchione, G. [0000-0001-9567-0055]; Adibekyan, V. [0000-0002-0601-6199]; Budaj, J. [0000-0002-9125-7340]; Poretti, E. [0000-0003-1200-0473]; Pascale, E. [0000-0002-3242-8154]; Claudi, R. [0000-0001-7707-5105]; Piccioni, G. [0000-0002-7893-6808]; Ribas, I. [0000-0002-6689-0312]; Sanroma, E. [0000-0001-8859-7937]; Agundez, M. [0000-0003-3248-3564]; Montes, D. [0000-0002-7779-238X]; Lognonne, P. [0000-0002-1014-920X]; Abreu, M. [0000-0002-0716-9568]; Montes, D. [0000-0002-7779-238X]; Morais, M. H. [0000-0001-5333-2736]; Tanga, P. [0000-0002-2718-997X]; Peralta, J. [0000-0002-6823-1695]; Hueso, R. [0000-0003-0169-123X]; Leto, G. [0000-0002-0040-5011]; Morales, J. C. [0000-0003-0061-518X]; Pérez Hoyos, S. [0000-0002-2587-4682]; Santos, N. [0000-0003-4422-2919]; Lithgow Bertelloni, C. [0000-0003-0924-6587]; Delgado, M. E. [0000-0003-4434-2195]; Barlow, M. [0000-0002-3875-1171]; Deeg, H. [0000-0003-0047-4241]; Bouy, H. [0000-0002-7084-487X[; Grassi, D. [0000-0003-1653-3066]; Figueira, P. [0000-0001-8504-283X]; Barton, E. [0000-0001-5945-9244]; Coates, A. [0000-0002-6185-3125]; García Ramón, J. [0000-0002-8204-6832]; Watson, D. [0000-0002-4465-8264]; Morales Calderon, M. [0000-0001-9526-9499]; Demangeon, O. [0000-0001-7918-0355]; Ray, T. [0000-0002-2110-1068]; Guio, P. [0000-0002-1607-5862]; Gillon, M. [0000-0003-1462-7739]; Bulgarelli, A. [0000-0001-6347-0649]; Prisinzano, L. [0000-0002-8893-2210]; Barstow, J. [0000-0003-3726-5419]; Pancrazzi, M. [0000-0002-3789-2482]; Barrado Navascues, D. [0000-0002-5971-9242]; Balado, A. [0000-0003-4268-2516]; Malaguti, G. [0000-0001-9872-3378]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Affer, L. [0000-0001-5600-3778]; Ciaravella, A. [0000-0002-3127-8078]; Guillot, T. [0000-0002-7188-8428]; Altieri, F. [0000-0002-6338-8300]; Covino, E. [0000-0002-6187-6685]; Venot, O. [0000-0003-2854-765X]; López Valverde, M. A. [0000-0002-7989-4267]; Cabral, A. [0000-0002-9433-871X]; Selsis, F. [0000-0001-9619-5356]; Turrini, D. [0000-0002-1923-7740]; Ward Thompson, D. [0000-0003-1140-2761]; Rebolo, R. [0000-0003-3767-7085]; Damasso, M. [0000-0001-9984-4278]; Tizzi, A. [0000-0002-6725-3825]; Morgante, G. [0000-0001-9234-7412]; Pena Ramírez, K. [0000-0002-5855-401X]; Galand, M. [0000-0001-5797-914X]; Pace, E. [0000-0001-5870-1772]; Pilat Lohinger, E. [0000-0002-5292-1923]; Sánchez Lavega, A. [0000-0001-7234-7634]; Waldmann, I. [0000-0002-4205-5267]; Claret, A. [0000-0002-4045-8134]; Olivia, E. [0000-0002-9123-0412]; Kovacs, G. [0000-0002-2365-2330]; Gómez, H. [0000-0003-3398-0052]; Monteiro, M. [0000-0001-5644-0898]; Bellucci, G. [0000-0003-0867-8679]; Baffa, C. [0000-0002-4935-100X]; Scholz, A. [0000-0001-8993-5053]; Bezard, B. [0000-0002-5433-5661]; Scuderi, Salvatore [0000-0002-8637-2109]; Hersant, F. [0000-0002-2687-7500]; Maldonado, J. [0000-0002-4282-1072]; Gear, W. [0000-0001-6789-6196]; Sousa, S. [0000-0001-9047-2965]; Irwin, P. [0000-0002-6772-384X]; Pinfield, D. [0000-0002-7804-4260]; Kipping, D. [0000-0002-4365-7366]; Ade, P. [0000-0002-5127-0401]; Vandenbussche, B. [0000-0002-1368-3109]; Burleigh, M. [0000-0003-0684-7803]; Chadney, J. [0000-0002-5174-2114]; Moro Martín, A. [0000-0001-9504-8426]; Scandariato, G. [0000-0003-2029-0626]; Rodríguez, P. [0000-0002-6855-9682]; Maldonado, J. [0000-0002-2218-5689]; Michaut, C. [0000-0002-2578-0117]; Pérez Hoyos, S. [0000-0001-9797-4917]
    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10−4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission
    (Springer Link, 2021-04-13) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Alonso, A.; Apéstigue, Víctor; Arruego, Ignacio; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M. A.; Castañer, L.; Ceballos Cáceres, J.; Chen Chen, H.; Cobos, A.; Conrad, Pamela G.; Cordoba, E.; Del Río Gaztelurrutia, T.; Vicente Retortillo, Álvaro; Domínguez Pumar, M.; Espejo, S.; Fairén, Alberto G.; Fernández Palma, A.; Ferrándiz, Ricardo; Ferri, F.; Fischer, E.; García Manchado, A.; García Villadangos, M.; Genzer, María; Giménez, Á.; Gómez Elvira, J.; Gómez, Felipe; Guzewich, Scott; Harri, Ari-Matti; Hernández, C. D.; Hieta, M.; Hueso, R.; Jaakonaho, I.; Jiménez Martín, Juan José; Jiménez, V.; Larman, A.; Leiter, R.; Lepinette Malvitte, A.; Lemmon, M. T.; López, G.; Madsen, Soren N.; Mäkinen, T.; Marín Jiménez, M.; Martín Soler, J.; Martínez, Germán M.; Molina, A.; Mora Sotomayor, L.; Moreno Álvarez, J. F.; Navarro López, Sara; Newman, C. E.; Ortega, Cristina; Parrondo, María Concepción; Peinado, V.; Peña, A.; Pérez Grande, I.; Pérez Hoyos, S.; Pla García, J.; Polkko, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Ramos, Miguel; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Runyon, Kirby; Saiz López, A.; Sánchez Lavega, Agustín; Sard, I.; Schofield, J. T.; Sebastián, E.; Smith, Michael D.; Sullivan, Robert; Tamppari, L. K.; Thompson, A. D.; Toledo, D.; Torrero, F.; Torres, J.; Urquí, R.; Velasco, T.; Viúdez Moreiras, Daniel; Zurita, S.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Gobierno Vasco; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Saiz López, A. [0000-0002-0060-1581]; Chen, H. [0000-0001-9662-0308]; Pérez Hoyos, S. [0000-0002-2587-4682]
    NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The sound of a Martian dust devil
    (Nature, 2022-12-13) Murdoch, N.; Stott, A. E.; Gillier, M.; Hueso, R.; Lemmon, M. T.; Martínez, Germán M.; Apéstigue, Víctor; Toledo, D.; Lorenz, R. D.; Chide, B.; Munguira, A.; Sánchez Lavega, Agustín; Vicente Retortillo, Álvaro; Newman, C. E.; Maurice, S.; De la Torre Juárez, M.; Bertrand, T.; Banfield, D.; Navarro López, Sara; Marín, M.; Torres, J.; Gómez Elvira, J.; Jacob, Xavier; Cadu, A.; Sournac, A.; Rodríguez Manfredi, J. A.; Mimoun, D.; National Aeronautics and Space Administration (NASA); Centre National D'Etudes Spatiales (CNES); NASA Jet Propulsion Laboratory (JPL); Comunidad de Madrid; Gobierno Vasco; Agencia Estatal de Investigación (AEI); Los Alamos National Laboratory; Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Dust devils (convective vortices loaded with dust) are common at the surface of Mars, particularly at Jezero crater, the landing site of the Perseverance rover. They are indicators of atmospheric turbulence and are an important lifting mechanism for the Martian dust cycle. Improving our understanding of dust lifting and atmospheric transport is key for accurate simulation of the dust cycle and for the prediction of dust storms, in addition to being important for future space exploration as grain impacts are implicated in the degradation of hardware on the surface of Mars. Here we describe the sound of a Martian dust devil as recorded by the SuperCam instrument on the Perseverance rover. The dust devil encounter was also simultaneously imaged by the Perseverance rover’s Navigation Camera and observed by several sensors in the Mars Environmental Dynamics Analyzer instrument. Combining these unique multi-sensorial data with modelling, we show that the dust devil was around 25 m large, at least 118 m tall, and passed directly over the rover travelling at approximately 5 m s−1. Acoustic signals of grain impacts recorded during the vortex encounter provide quantitative information about the number density of particles in the vortex. The sound of a Martian dust devil was inaccessible until SuperCam microphone recordings. This chance dust devil encounter demonstrates the potential of acoustic data for resolving the rapid wind structure of the Martian atmosphere and for directly quantifying wind-blown grain fluxes on Mars.
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Vortices and Dust Devils on Jezero Crater, Mars: inner thermal structure and dependence on surface properties
    (EGU General Assembly, 2024-05-16) Hueso, R.; Munguira, A.; Newman, C. E.; Martínez, Germán M.; Sánchez Lavega, Agustín; Del Río Gaztelurrutia, T.; Toledo, D.; Apéstigue, Víctor; Arruego, Ignacio; Pla García, J.; Lemmon, M. T.; Lorenz, Ralph; Vicente Retortillo, Álvaro; Navarro López, Sara; Stott, Alexander; Murdoch, N.; Gillier, M.; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.
footer.link.logos.derechosLogo Acceso abiertoLogo PublicacionesLogo Autores
Logo Sherpa/RomeoLogo DulcineaLogo Creative CommonsLogo RecolectaLogo Open AireLogo Hispana

Dspace - © 2024

  • Política de cookies
  • Política de privacidad
  • Aviso Legal
  • Accesibilidad
  • Sugerencias