Proyecto de Investigación: CIENCIA Y TECNOLOGIA DE INSTRUMENTOS ESPACIALES PARA LA CARACTERIZACION DEL AMBIENTE MARCIANO EN MULTIPLES MISIONES DE NASA - II: REMS (FASE E), TWINS (FASE E) Y MEDA (FASE D)
Cargando...
Colaboradores
Financiadores
ID
ESP2016-79612-C3-1-R
Autores
Publicaciones
The dynamic atmospheric and aeolian environment of Jezero crater, Mars
(Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Álvaro; Apéstigue, Víctor; Martínez, Germán M.; Toledo, D.; Sullivan, Robert; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A.; Murdoch, N.; Sánchez Lavega, Agustín; Wolff, Michael; Arruego, I.; Sebastián, E.; Navarro López, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, Michael D.; Lepinette Malvitte, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, María; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, Felipe; McConnochie, Tim H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María-Paz; Mora Sotomayor, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, Scott; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.
Meteorological Predictions for Mars 2020 Perseverance Rover Landing Site at Jezero Crater
(Springer Link, 2020-12-14) Pla García, J.; Rafkin, Scot C. R.; Martínez, G. M.; Vicente Retortillo, Álvaro; Newman, C. E.; Rodríguez Manfredi, J. A.; Gómez, Felipe; Molina, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The Mars Regional Atmospheric Modeling System (MRAMS) and a nested simulation of the Mars Weather Research and Forecasting model (MarsWRF) are used to predict the local meteorological conditions at the Mars 2020 Perseverance rover landing site inside Jezero crater (Mars). These predictions are complemented with the COmplutense and MIchigan MArs Radiative Transfer model (COMIMART) and with the local Single Column Model (SCM) to further refine predictions of radiative forcing and the water cycle respectively. The primary objective is to facilitate interpretation of the meteorological measurements to be obtained by the Mars Environmental Dynamics Analyzer (MEDA) aboard the rover, but also to provide predictions of the meteorological phenomena and seasonal changes that might impact operations, from both a risk perspective and from the perspective of being better prepared to make certain measurements. A full diurnal cycle at four different seasons (L-s 0 degrees, 90 degrees, 180 degrees, and 270 degrees) is investigated. Air and ground temperatures, pressure, wind speed and direction, surface radiative fluxes and moisture data are modeled. The good agreement between observations and modeling in prior works [Pla-Garcia et al. in Icarus 280:103-113, 2016; Newman et al. in Icarus 291:203-231, 2017; Vicente-Retortillo et al. in Sci. Rep. 8(1):1-8, 2018; Savijarvi et al. in Icarus, 2020] provides confidence in utilizing these models results to predict the meteorological environment at Mars 2020 Perseverance rover landing site inside Jezero crater. The data returned by MEDA will determine the extent to which this confidence was justified.
Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere
(Spring Nature Research Journals, 2020-04-22) González Toril, Elena; Osuna Esteban, Susana; Viúdez Moreiras, Daniel; Navarro Cid, Ivan; Del Toro, Silvia Díaz; Sor, Suthyvann; Bardera, Rafael; Puente Sánchez, Fernando; De Diego Castilla, Graciela; Aguilera, Á.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); 0000-0002-5750-0765; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40–90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.
Diurnal and Seasonal Variations of Aerosol Optical Depth Observed by MEDA/TIRS at Jezero Crater, Mars
(Advancing Earth and Space Science (AGU), 2023-01-09) Smith, Michael D.; Martínez, Germán M.; Sebastián, E.; Lemmon, M. T.; Wolff, Michael; Apéstigue, Víctor; Arruego, Ignacio; Toledo, D.; Viúdez Moreiras, Daniel; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; National Aeronautics and Space Administration (NASA); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The two upward-looking Thermal InfraRed Sensor (TIRS) channels from the Mars Environmental Dynamics Analyzer (MEDA) instrument suite on board the Perseverance rover enable the retrieval of total aerosol optical depth (dust plus water ice cloud) above the rover for all observations when TIRS is taken. Because TIRS observes at thermal infrared wavelengths, the retrievals are possible during both the day and night and thus, they provide an excellent way to monitor both the diurnal and seasonal variations of aerosols above Jezero Crater. A retrieval algorithm has been developed for this purpose and here, we describe that algorithm along with our results for the first 400 sols of the Perseverance mission covering nearly the entire aphelion season as well as a regional dust storm and the beginning of the perihelion season. We find systematic diurnal variations in aerosol optical depth that can be associated with dust and water ice clouds as well as a clear change from a cloud-filled aphelion season to a perihelion season where dust is the dominant aerosol. A comparison of retrieved optical depths between TIRS and the SkyCam camera that is also part of MEDA indicates evidence of possible diurnal variations in cloud height or particle size.
Day-night differences in Mars methane suggest nighttime containment at Gale crater
(EDP Sciences, 2021-06-29) Webster, Christopher R.; Mahaffy, Paul R.; Pla García, J.; Rafkin, Scot C. R.; Moores, J. E.; Atreya, S. K.; Flesch, Gregory J.; Malespin, C. A.; Teinturier, S. M.; Kalucha, H.; Smith, C. L.; Viúdez Moreiras, Daniel; Vasavada, Ashwin R.; Agencia Estatal de Investigación (AEI)
We report new measurements of atmospheric methane by the Curiosity rover’s Tunable Laser Spectrometer that is part of the Sample Analysis at Mars suite (TLS-SAM), finding nondetections during two daytime measurements of average value 0.05 ± 0.22 ppbv (95% confidence interval CI). These are in marked contrast with nighttime background levels of 0.52 ± 0.10 (95% CI) from four measurements taken during the same season of northern summer. This large day-night difference suggests that methane accumulates while contained near the surface at night, but drops below TLS-SAM detection limits during the day, consistent with the daytime nondetection by instruments on board the ExoMars Trace Gas Orbiter. With no evidence for methane production by the rover itself, we propose that the source is one of planetary micro-seepage. Dynamical modeling indicates that such methane release is contained within the collapsed planetary boundary layer (PBL) at night due to a combination of nocturnal inversion and convergent downslope flow winds that confine the methane inside the crater close to the point where it is released. The methane abundance is then diluted during the day through increased vertical mixing associated with a higher altitude PBL and divergent upslope flow that advects methane out of the crater region. We also report detection of a large spike of methane in June 2019 with a mean in situ value over a two-hour ingest of 20.5 ± 4 ppbv (95% CI). If near-surface production is occurring widely across Mars, it must be accompanied by a fast methane destruction or sequestration mechanism, or both.










