Publicación:
Evaluation of a liquid crystal based polarization modulator for a space mission thermal environment

dc.contributor.authorSilva-López, Manuel
dc.contributor.authorBastide, L.
dc.contributor.authorRestrepo, R.
dc.contributor.authorGarcía Parejo, Pilar
dc.contributor.authorÁlvarez-Herrrero, Alberto
dc.date.accessioned2026-01-21T10:13:24Z
dc.date.available2026-01-21T10:13:24Z
dc.date.issued2017-09-21
dc.descriptionHighlights Liquid crystal polarization modulator designed for a space mission environment Thermal simulation performed to evaluate suitability of the power budget allocated. Thermal test campaign with a set-up for optical quality characterization. Transmitted wavefront measurements repeatable and within specifications required. Optical tests performed at non-operational conditions reveal no device degradation.
dc.description.abstractThe Multi Element Telescope for Imaging and Spectroscopy (METIS) is one of the remote sensing instruments to be onboard the future NASA/ESA Solar Orbiter mission. The science nominal mission orbit will take the spacecraft from 0.28 to 0.95 astronomical units from the Sun, setting challenging and variable thermal conditions to its payload. METIS is an inverted-occultation coronagraph that will image the solar corona in the visible and UV wavelength range. In the visible light path a Polarization Modulation Package (PMP) performs a polarimetric analysis of the incoming solar light. This PMP is based on liquid crystal variable retarders (LCVR) and works under a temporal modulation scheme. The LCVRs behavior has a dependence on temperature and, as a consequence, it is critical to guarantee the PMP performance in the mission thermal environment. Key system specifications are the optical quality and the optical retardance homogeneity. Moreover, the thermally induced elastic deformations of the mechanical mounts and the LCVRs shall not produce any performance degradation. A suitable thermal control is hence required to maintain the system within its allowed limits at any time. The PMP shall also be able to reach specific set-points with the power budget allocated. Consequently, and in order to verify the PMP thermal design, we have experimentally reproduced the expected thermal flight environment. Specifically, a thermal-vacuum cycle test campaign is run at the different mission operational conditions. The purpose is both to check the stability of the thermal conditions and to study the optical quality evolution/degradation. Within this test transmitted wavefront measurements and functional verification tests have been carried out. To do that we adapted an optical interrogation scheme, based on a phase shifting interferometric technique, that allows for inspection of the PMP optical aperture. Finally, measurements obtained at non-operational temperature conditions are also shown. These results demonstrate that the device meets the specifications required to perform its operational role in the space mission environment.
dc.description.peerreviewedPeerreview
dc.description.sponsorshipThe authors would like to express their gratitude to the rest of the INTA and METIS teams for their scientific and technical support. Additionally the authors gratefully acknowledge the financial support provided to this research by the MINECO (Ministerio de Economía Industria y Competitividad, Gobierno de España), project ESP2014-56169-C6-3-R “Fabricación e integración de los modelos QM, FM y FS de SO/PHI (Polarimetric and Helioseismic Imager for Solar Orbiter)” and by the Agenzia Spaziale Italiana (ASI).
dc.description.tableofcontentsManuel Silva-López graduated in Physics at the Sevilla University in Spain in 2002. He then moved to Edinburgh, United Kingdom, where he obtained his Ph.D. in optics in 2007 at Heriot-Watt University. After a period working as researcher at different universities, he joined the National Institute of Aerospace Technology (INTA) at Madrid, Spain, in 2013. At INTA he is working in the development of optical based instrumentation for space. Laurent Bastide graduated in 2006 as an Aerospace Engineer at the IPSA School in Paris. He has then several experiences in companies of the European space sector such as Thales Alenia Space and Airbus Defence and Space before joining INTA in 2009 as a thermal engineer to design space payloads for scientific missions. René Restrepo is a Mechanical Engineer at EAFIT University, Medellín, Colombia, DEA (MSc) in Physics and Computer Science at the University of La Laguna (ULL), Tenerife, Canary Islands – Spain. Ph.D. in Physics at the Complutense University of Madrid (UCM), Spain. He was a researcher at INTA and worked as an engineer at the Instituto de Astrofísica de Canarias (IAC) and at the Gran Telescopio de Canarias, Tenerife, Canary Islands – Spain. Currently, he is the Head of Applied Optics Group at EAFIT University. Pilar García Parejo graduated in Chemistry at the Universidad Autonóma de Madrid (UAM), Spain, in 2003. She was awarded with the Ph.D. from the UAM, researching on the preparation and characterization of sol–gel coatings for optical applications. Currently, she works in the space instrumentation area of INTA, Madrid. Her research interests are focused on the development and characterization of materials and optical devices to be used in payloads for space missions. Alberto Álvarez-Herrero received the degree in fundamental physics and the Ph.D. from the Complutense University of Madrid (UCM), Spain in 1994 and 2002, respectively. He has been at INTA since 1994 working in the development of space optical instrumentation. His research is aimed at new technologies, techniques, materials and devices to be used in payloads for space missions. Ellipsometry and polarimetry are his main areas of expertise. Currently he is focused on liquid crystal devices, nanostructured coatings and effects of the space environment on the optical properties of materials.
dc.identifier.citationSensors and Actuators A: Physical 266: 247-257
dc.identifier.doi10.1016/j.sna.2017.09.033
dc.identifier.e-issn0924-4247
dc.identifier.issn0924-4247
dc.identifier.otherhttps://www.sciencedirect.com/science/article/pii/S0924424717305630
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1635
dc.language.isoeng
dc.publisherElsevier
dc.relation.isreferencedby[1] D. Müller, R.G. Marsden, O.C.S. Cyr, H.R. Gilbert, Solar Orbiter exploring the Sun-heliosphere connection, Solar Phys. 285 (2013) 25–70, http://dx.doi.org/10.1007/s11207-012-0085-7. [2] S. Fineschi, E. Antonucci, M. Romoli, A. Bemporad, G. Capobianco, et al., Nobel Space Coronagraph: METIS, a flexible design for multi-wavelength imaging and spectrography, in: S. Fineschi, J. Fennelly (Eds.), Solar Physics and Space Weather Instrumentation V, Proc. of SPIE, vol. 8862, 2013, http://dx.doi.org/10.1117/12.2028544. [3] G. Crescenzio, S. Fineschi, G. Capobianco, G. Nicolini, G. Massone, M.A. Malvezzi, F. Landini, M. Romoli, E. Antonucci, Imaging polarimetry with the METIS coronograph of the Solar Orbiter mission, in: T. Takahashi, S.S. Murray, J.A. den Herder (Eds.), Space Telescopes and Instrumentation, Proc. of SPIE, vol. 8443, 2012, http://dx.doi.org/10.1117/12.927432. [4] R.L. Heredero, N. Uribe-Patarroyo, T. Belenguer, G. Ramos, A. Sánchez, M. Reina, V.M. Pillet, A. Álvarez-Herrero, Liquid-crystal variable retarders for aerospace polarimetry applications, Appl. Opt. 46 (2007) 689–699, http://dx.doi.org/10.1364/AO.46.000689. [5] A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R.L. Heredero, R. Restrepo, V. Martínez-Pillet, J.C. del Toro-Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, I. Manolis, Imaging polarimeters based on liquid crystal variable retarders: an emergent technology for space instrumentation, in: J.A. Shaw, J.S. Tyo (Eds.), Polarization Science and Remote Sensing V, Proc. of SPIE, vol. 8160, 2011, http://dx.doi.org/10.1117/12.892732. [6] V. Martinez-Pillet, J.C. del Toro-Hiniesta, A. Álvarez-Herrero, et al., The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon borne solar observatory, Solar Phys. 268 (2011) 57–102, http://dx.doi.org/10.1007/ s11207-010-9644-y. [7] K. Solanki, T.L. Riethmüller, P. Barthol, S. Danilovic, W. Deutsch, H.P. Doerr, A. Feller, A. Gandorfer, D. Germerott, L. Gizon, B. Grauf, K. Heerlein, J. Hirzberger, M. Kolleck, A. Lagg, R. Meller, G. Tomasch, M. van Noort, J.B. Rodríguez, J.L.G. Blesa, M.B. Jiménez, J.C.D.T. Iniesta, A.C.L. Jiménez, D.O. Suárez, T. Berkefeld, C. Halbgewachs, W. Schmidt, A. Álvarez-Herrero, L. Sabau-Graziati, I.P. Grande, V.M. Pillet, G. Card, R. Centeno, M. Knölker, A. Lecinski, The second flight of the SUNRISE balloon-borne solar observatory: overview of instrument updates, the flight, the data and first results, Astrophys. J. Suppl. Ser. 229 (2017) 2, http://dx.doi.org/10.3847/1538-4365/229/1/2. [8] A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sánchez, A. Gonzalo, R. Navarro, I. Vera, M. Royo, Polarization modulators based on liquid crystal variable retarders for the Solar Orbiter mission, in: J.A. Shaw, D.A. LeMaster (Eds.), Polarization Science and Remote Sensing VII, Proc. of SPIE, vol. 9613, 2015, http://dx.doi.org/10.1117/12.2188591. [9] A. Gandorfer, S.K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, T. Appourchaux, The Solar Orbiter mission and its Polarimetric and Helioseismic Imager, J. Phys. Conf. Ser. 271 (2011) 012086, http://dx.doi.org/10.1088/1742-6596/271/1/012086. [10] R. Roelfsema, H.M. Schmid, J. Pragt, et al., The ZIMPOL high-contrast imaging polarimeter for SPHERE: design, manufacturing, and testing, in: I.S. McLean, S.K. Ramsay, H. Takami (Eds.), Ground-Based and Airborne Instrumentation for Astronomy III, Proc. of SPIE, vol. 7735, 2010, http://dx.doi.org/10.1117/12.857045. [11] L. Kolokolova, J. Hough, A. Levasseur-Regourd, Polarimetry of Stars and Planetary Systems, Cambridge University Press, 2015, http://dx.doi.org/10.1017/CBO9781107358249. [12] P. Scherrer, J. Schou, R. Bush, A. Kosovichev, R.S. Bogart, J.T. Hoeksema, Y. Liu, T.L. Duvall, J. Zhao, A.M. Title, C.J. Schrijver, T.D. Tarbell, S. Tomczyk, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO), Solar Phys. 275 (2012) 207–227, http://dx.doi.org/10.1007/s11207-011-9834-2. [13] N. Uribe-Patarroyo, A. Álvarez-Herrero, V. Martínez-Pillet, Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders, Appl. Opt. 51 (2012) 4954–4970, http://dx.doi.org/10.1364/AO.51.004954. [14] F. Landini, M. Romoli, G. Capobianco, S. Vives, S. Fineschi, G. Massone, D. Loreggia, E. Turchi, C. Guillon, C. Escolle, M. Pancrazzi, M. Focardi, Improved stray light suppression performance for the Solar Orbiter/METIS inverted external occulter, in: S. Fineschi, J. Fennelly (Eds.), Solar Physics and Space Weather Instrumentation V, Proc. of SPIE, vol. 8862, 2013, http://dx.doi.org/10.1117/12.2024209. [15] M. Bass, Handbook of Optics, vol. II, 2nd ed., McGraw Hill Inc., 1995. [16] E. C. for Space Standardization, Space product assurance. Black-anodizing of metals with inorganic dyes, ECSS Q-ST-70-03C, ESA Requirements and Standards Division, Noordwijk, The Netherlands, 2008. [17] N. Uribe-Patarroyo, A. Álvarez-Herrero, P. García-Parejo, J. Vargas, R.L. Heredero, R. Restrepo, V.M. Pillet, J.C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, I. Manolis, Space-qualified liquid-crystal variable retarders for wide-field-of-view coronagraphs, in: S. Fineschi, J. Fennelly (Eds.), Solar Physics and Space Weather Instrumentation IV, Proc. of SPIE, vol. 8148, 2011, http://dx.doi.org/10.1117/12.904919. [18] Z. Wang, B. Han, Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms, Opt. Lett. 29 (2004) 1671–1673, http://dx.doi.org/10.1364/OL.29.001671. [19] J. Vargas, N. Uribe-Patarroyo, J.A. Quiroga, A. Álvarez-Herrero, T. Belenguer, Optical inspection of liquid crystal variable retarder inhomogeneities, Appl. Opt. 49 (2010) 568–574, http://dx.doi.org/10.1364/AO.49.000568. [20] J.M. Bioucas-Dias, G. Valadão, Phase unwrapping via graph cuts, IEEE Trans. Image Process. 16 (2007) 698–709, http://dx.doi.org/10.1109/TIP.2006. 888351. [21] P.R. Yoder, Opto-Mechanical System Design, 2nd ed., Marcel Dekker Inc., 1993. [22] J.C. del Toro Iniesta, M. Collados, Optimum modulation and demodulation matrices for solar polarimetry, Appl. Opt. 39 (2000) 1637–1642, http://dx.doi.org/10.1364/AO.39.001637.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.license© 2017 The Authors. Published by Elsevier B.V.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.titleEvaluation of a liquid crystal based polarization modulator for a space mission thermal environment
dc.title.alternativeLiquid crystal
dc.title.alternativeThermal analysis
dc.title.alternativeWavefront measurement
dc.title.alternativeInterferometry
dc.title.alternativeOptical metrology
dc.title.alternativeSpace mission
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication6a403b13-af73-4b0c-9b28-c0582da3bc65
relation.isAuthorOfPublication80dbdeae-fe33-4eda-9bcc-ccad890196e4
relation.isAuthorOfPublication28d425c8-04fe-441c-ad3a-cf4c72051bf9
relation.isAuthorOfPublication.latestForDiscovery6a403b13-af73-4b0c-9b28-c0582da3bc65

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Evaluation of a liquid crytal based polarization modulator for a space mission thermal environment.pdf
Tamaño:
3.57 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción: