Publicación:
A trajectory-based estimate of the tropospheric ozone column using the residual method

dc.contributor.authorSchoeberl, M. R.
dc.contributor.authorZiemke, J. R.
dc.contributor.authorBojkov, B.
dc.contributor.authorLivesey, N.
dc.contributor.authorDuncan, B.
dc.contributor.authorStrahan, S.
dc.contributor.authorFroidevaux, L.
dc.contributor.authorKulawik, S.
dc.contributor.authorBhartia, P. K.
dc.contributor.authorChandra, S.
dc.contributor.authorLevelt, P. F.
dc.contributor.authorWitte, J. C.
dc.contributor.authorThompson, A. M.
dc.contributor.authorCuevas, E.
dc.contributor.authorRedondas, A.
dc.contributor.authorTarasick, D. W.
dc.contributor.authorDavies, J.
dc.contributor.authorBodeker, G.
dc.contributor.authorHansen, G.
dc.contributor.authorJohnson, B. J.
dc.contributor.authorOltmans, S. J.
dc.contributor.authorVömel, H.
dc.contributor.authorAllaart, M.
dc.contributor.authorKelder, H.
dc.contributor.authorNewchurch, M.
dc.contributor.authorGodin Beekmann, S.
dc.contributor.authorAncellet, G.
dc.contributor.authorClaude, H.
dc.contributor.authorAndersen, S. B.
dc.contributor.authorKyrö, E.
dc.contributor.authorParrondo, María Concepción
dc.contributor.authorYela González, Margarita
dc.contributor.authorZablocki, G.
dc.contributor.authorMoore, D.
dc.contributor.authorDier, H.
dc.contributor.authorVon der Gathen, P.
dc.contributor.authorViatte, P.
dc.contributor.authorStübi, R.
dc.contributor.authorCalpini, B.
dc.contributor.authorSkrivankova, P.
dc.contributor.authorDorokhov, V.
dc.contributor.authorDe Backer, H.
dc.contributor.authorSchmidlin, F. J.
dc.contributor.authorCoetzee, G.
dc.contributor.authorFujiwara, M.
dc.contributor.authorThouret, V.
dc.contributor.authorPosny, F.
dc.contributor.authorMorris, G.
dc.contributor.authorMerrill, J.
dc.contributor.authorLeong, C. P.
dc.contributor.authorKoenig Langlo, G.
dc.contributor.authorJoseph, E.
dc.date.accessioned2026-01-22T12:00:37Z
dc.date.available2026-01-22T12:00:37Z
dc.date.issued2007-12-19
dc.descriptionPlease note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
dc.description.abstract[1] We estimate the tropospheric column ozone using a forward trajectory model to increase the horizontal resolution of the Aura Microwave Limb Sounder (MLS) derived stratospheric column ozone. Subtracting the MLS stratospheric column from Ozone Monitoring Instrument total column measurements gives the trajectory enhanced tropospheric ozone residual (TTOR). Because of different tropopause definitions, we validate the basic residual technique by computing the 200-hPa-to-surface column and comparing it to the same product from ozonesondes and Tropospheric Emission Spectrometer measurements. Comparisons show good agreement in the tropics and reasonable agreement at middle latitudes, but there is a persistent low bias in the TTOR that may be due to a slight high bias in MLS stratospheric column. With the improved stratospheric column resolution, we note a strong correlation of extratropical tropospheric ozone column anomalies with probable troposphere-stratosphere exchange events or folds. The folds can be identified by their colocation with strong horizontal tropopause gradients. TTOR anomalies due to folds may be mistaken for pollution events since folds often occur in the Atlantic and Pacific pollution corridors. We also compare the 200-hPa-to-surface column with Global Modeling Initiative chemical model estimates of the same quantity. While the tropical comparisons are good, we note that chemical model variations in 200-hPa-to-surface column at middle latitudes are much smaller than seen in the TTOR.
dc.description.peerreviewedPeerreview
dc.description.sponsorshipOzonesonde data were obtained through the NASA Aura Validation Data Center and contributions from the ESA Envisat Cal/Val data center and the WMO GAW regional collection center for ozonesondes (NILU, Norway). The Dutch-Finnish built OMI instrument is part of the NASA EOS Aura satellite payload. The OMI Project is managed by NIVR and KNMI in the Netherlands. Funding for this research was provided by NASA's Earth Science Mission.
dc.identifier.citationJournal of Geophysical Research: Atmospheres 112(D24): D24S49
dc.identifier.doi10.1029/2007JD008773
dc.identifier.e-issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.otherhttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JD008773
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1661
dc.language.isoeng
dc.publisherAGU Publishing
dc.relation.isreferencedbyBeer, R. (2006), TES on the Aura mission: Scientific objectives, measurements and analysis overview, IEEE Trans. Geosci. Remote Sens., 44, 1102–1105. Bhartia, P. K. (2007), Total ozone from backscattered ultraviolet measurements, in Observing Systems for Atmospheric Composition, pp. 48–63, Springer, New York. Bloom, S., et al. (2005), Documentation and validation of the Goddard Earth Observing System (GEOS) Data Assimilation System-Version 4, Tech. Rep. Ser. on Global Model. and Data Assim. 104606, NASA Goddard Space Flight Cent., Greenbelt, Md. Chandra, S., J. R. Ziemke, and R. V. Martin (2003), Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: Comparison with a global model, J. Geophys. Res., 108(D9), 4291, doi:10.1029/2002JD002912. de Laat, A. T. J., I. Aben, and G. J. Roelofs (2005), A model perspective on total tropospheric O3 column variability and implications for satellite observations, J. Geophys. Res., 110, D13303, doi:10.1029/2004JD005264. Dessler, A. (2005), The Chemistry and Physics of the Stratosphere, 214 pp., Elsevier, New York. Edwards, D. P., et al. (2003), Tropospheric ozone over the tropical Atlantic: A satellite perspective, J. Geophys. Res., 108(D8), 4237, doi:10.1029/2002JD002927. Fishman, J., and J. C. Larsen (1987), Distribution of total ozone and stratospheric ozone in the tropics: Implications for the distribution of tropospheric ozone, J. Geophys. Res., 92, 6627–6634. Fishman, J., C. E. Watson, J. C. Larsen, and J. A. Logan (1990), Distribution of tropospheric ozone determined from satellite data, J. Geophys. Res., 95(D4), 3599–3617. Froidevaux, L., et al. (2006), Early validation analyses of atmospheric profiles from EOS MLS on the Aura satellite, IEEE Trans. Geosci. Remote Sens., 44, 1006–1121. Kley, D., et al. (1996), Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry, Science, 274, 230–232. Kulawik, S. S., J. Worden, A. Eldering, K. Bowman, M. Gunson, G. B. Osterman, L. Zhang, S. A. Clough, M. W. Shephard, and R. Beer (2006), Implementation of cloud retrievals for Tropospheric Emission Spectrometer (TES) atmospheric retrievals: 1. Description and characterization of errors on trace gas retrievals, J. Geophys. Res., 111, D24204, doi:10.1029/2005JD006733. Lelieveld, J., et al. (2002), Global air pollution crossroads over the Mediterranean, Science, 298(5594), 794–799. Levelt, P. F., et al. (2006), The Ozone Monitoring Instrument, IEEE Trans. Geophys. Remote Sens., 44, 1093–1101. Liu, X., et al. (2006), First directly-retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model, J. Geophys. Res., 111, D02308, doi:10.1029/2005JD006564. Livesey, N., et al. (2007), Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere, J. Geophys. Res., doi:10.1029/2007JD008805, in press. Martin, R. V., et al. (2002), Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations, J. Geophys. Res., 107(D18), 4351, doi:10.1029/2001JD001480. Marufu, L., et al. (2000), Photochemistry of the African troposphere: Influence of biomass burning emission, J. Geophys. Res., 105, 14,513–14,530. Morris, G. A., J. F. Gleason, J. Ziemke, and M. R. Schoeberl (2000), Trajectory mapping: A tool for validation of trace gas observations, J. Geophys. Res., 105(D14), 17,875–17,894. Moxim, W. J. (2000), A model analysis of tropical South Atlantic Ocean tropospheric ozone maximum: The interaction of transport and chemistry, J. Geophys. Res., 105, 17,393–17,415. Randel, W. J., D. J. Seidel, and L. L. Pan (2007), Observational characteristics of double tropopauses, J. Geophys. Res., 112, D07309, doi:10.1029/2006JD007904. Schoeberl, M., and L. C. Sparling (1995), Trajectory modeling, in Diagnostic Tools in AtmosphericPhysics, edited by G. Fiocco, and G. Visconti, Proc. Int. Sch. Phys. Enrico Fermi, 124, 289–305. Schoeberl, M. R. (2004), Extratropical stratosphere-troposphere mass exchange, J. Geophys. Res., 109, D13303, doi:10.1029/2004JD004525. Schoeberl, M. R., et al. (2006), Overview of the EOS Aura Mission, IEEE Trans. Geosci. Remote Sens., 44, 1066–1074. Thompson, A. M., K. E. Pickering, D. P. McNamara, M. R. Schoeberl, R. D. Hudson, J. H. Kim, E. V. Browell, W. J. H. V. Kirchhoff, and D. Nganga (1996), Where did tropospheric ozone over southern Africa and the tropical Atlantic come from in October 1992? Insights from TOMS, GTE/TRACE-A and SAFARI-92, J. Geophys. Res., 101, 24,251–24,278. Thompson, A. M., et al. (2003), Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 1. Comparisons with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements, J. Geophys. Res., 108(D2), 8238, doi:10.1029/2001JD000967. Thompson, A. M., et al. (2007), Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 1. Summertime upper troposphere/lower stratosphere ozone over northeastern North America, J. Geophys. Res., 112, D12S12, doi:10.1029/2006JD007441. Waters, J. W., et al. (2006), The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE Trans. Geosci. Remote Sens., 44, 1075–1092. Wimmers, A. J., and J. L. Moody (2004), Tropopause folding at satellite-observed spatial gradients: 1. Verification of an empirical relationship, J. Geophys. Res., 109, D19306, doi:10.1029/2003JD004145. Worden, H. M. (2007), Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesodes: Methods and initial results, J. Geophys. Res., 112, D03309, doi:10.1029/2006JD007258. Ziemke, J. R., et al. (2006), Tropospheric ozone determined from aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model, J. Geophys. Res., 111, D19303, doi:10.1029/2006JD007089.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseCopyright 2007 by the American Geophysical Union.
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjecttropospheric ozone
dc.subjectpollution
dc.subjectair quality
dc.titleA trajectory-based estimate of the tropospheric ozone column using the residual method
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication1d5bbf2c-61c6-4e23-99a3-00e20dca0f89
relation.isAuthorOfPublication66604370-2f10-426d-a859-c9305f4185c0
relation.isAuthorOfPublication.latestForDiscovery66604370-2f10-426d-a859-c9305f4185c0

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
A trajectory based estimate of the tropospheric ozone column using the residual method.pdf
Tamaño:
1.92 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción: