Publicación: Advanced iterative algorithm for phase calibration of spatial light modulators integrated in optical instrumentation in a vibration environment
| dc.contributor.author | Silva-López, Manuel | |
| dc.contributor.author | Uribe Patarroyo, Néstor | |
| dc.contributor.author | Álvarez-Herrrero, Alberto | |
| dc.contributor.funder | Agencia Estatal de Investigación (España) | |
| dc.date.accessioned | 2026-01-21T09:27:53Z | |
| dc.date.available | 2026-01-21T09:27:53Z | |
| dc.date.issued | 2020-07-30 | |
| dc.description | The authors gratefully acknowledge Hugo Laguna and the rest of the INTA team for their technical support. The authors declare no conflicts of interest. | |
| dc.description.abstract | We present a method to obtain the phase modulation characteristic curve of a spatial light modulator (SLM) under severe vibration conditions. The procedure is based on the well-known advanced iterative algorithm (AIA), which allows wavefront extraction from unknown phase-shifted interferograms. Generally, AIA is used to determine the wavefront and the determined phase shifts are of little interest. In contrast, in our method, the main goal of using AIA is to determine the unknown phase shifts induced by an SLM during the calibration procedure. Using a segmented approach to calibration, AIA enables successful calibration even in the presence of additional random phase shifts due to environmental changes. This method has the potential to calibrate SLMs integrated in complex optical instruments with little to no modifications to the optical setup, no matter the environmental conditions. We demonstrate our technique by calibrating an SLM under vacuum conditions (10−5 mbar) in a common-path configuration compatible with usage of an SLM as a wavefront modulator at the pupil plane of an instrument. Our technique compensates for the vibrations produced by the vacuum pumps and reduces an order of magnitude the root-mean-squared error of the calibration curve evaluated with vibration errors. Our technique enhances the potential use of SLMs in complex optical systems, including aerospace optical instrumentation. | |
| dc.description.peerreviewed | Peerreview | |
| dc.description.sponsorship | National Institutes of Health (K25EB024595); Ministerio de Ciencia, Innovación y Universidades (ESP2016-77548-C5-4-R, RTI2018-096886-B-C52). | |
| dc.identifier.citation | Applied Optics 59(22): 6760-6764 | |
| dc.identifier.doi | 10.1364/AO.391723 | |
| dc.identifier.e-issn | 2155-3165 | |
| dc.identifier.issn | 1559-128X | |
| dc.identifier.other | https://opg.optica.org/ao/fulltext.cfm?uri=ao-59-22-6760 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12666/1631 | |
| dc.language.iso | eng | |
| dc.publisher | Optica Publishing Group | |
| dc.relation | SPACE SOLAR PHYSICS: PHI FOR SOLAR ORBITER AND IMAX AND SP FOR SUNRISE | |
| dc.relation | SPACE SOLAR PHYSICS | |
| dc.relation.isreferencedby | 1. H. Toyoda, T. Inoue, and T. Hara, “Application of liquid crystal on silicon spatial light modulator (LCOS-SLM) for manipulation and sensing,” in 14th Workshop on Information Optics (WIO), Kyoto, Japan, June 1, 2015, paper WS-1. 2. S. Xue, S. Chen, G. Tie, and Y. Tian, “Adaptive null interferometric test using spatial light modulator for free-form surfaces,” Opt. Express 27, 8414–8428 (2019). 3. S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006). 4. J. H. Bechtel, W. Lin, Y. Shi, and A. Yacoubian, “Electro-optic polymer integrated optic devices for space applications,” Proc. SPIE 4134, 46–55 (2000). 5. M. Silva-López, A. Campos-Jara, and A. Álvarez Herrero, “Validation of a spatial light modulator for space applications,” Proc. SPIE 11180, 111806R (2019). 6. E. W. Roberts, “Space tribology: its role in spacecraft mechanisms,” J. Phys. D 45, 503001 (2012). 7. A. Alonso, M. Reyes, and Z. Sodnik, “Performance of satellite-to-ground communications link between ARTEMIS and the optical ground station,” Proc. SPIE 5572, 372–383 (2004). 8. M. Ziemkiewicz, S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, and M. Anderson, “Laser-based satellite communication systems stabilized by non-mechanical electro-optic scanners,” Proc. SPIE 9828, 982808 (2016). 9. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004). 10. Y. Takiguchi, T. Otsu, T. Inoue, and H. Toyoda, “Self-distortion compensation of spatial light modulator under temperature-varying conditions,” Opt. Express 22, 16087–16098 (2014). 11. O. Mendoza-Yero, G. Mínguez-Vega, L. Martínez-León, M. Carbonell-Leal, M. Fernández-Alonso, C. Donate-Buendía, J. Pérez-Vizcaíno, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase fresnel lenses,” J. Display Technol. 12, 14159–14171 (2016). 12. A. Lizana, N. Martin, M. Estapé, E. Fernández, I. Moreno, A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, “Influence of the incident angle in the performance of liquid crystal on silicon displays,” Opt. Express 17, 8491–8505 (2009). 13. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulator,” Appl. Opt. 43, 3910–3913 (2004). 14. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992). 15. J. L. Martínez-Fuentes, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24, 14159–14171 (2016). 16. P. de Groot, “Vibration in phase shifting interferometry,” J. Opt. Soc. Am. A 12, 354–365 (1995). 17. L. L. Deck, “Model-based phase shifting interferometry,” Appl. Opt. 53, 4628–4636 (2014). 18. D. M. Sycora and M. L. Holmes, “Dynamic measurements using a Fizeau interferometer,” Proc. SPIE 8082, 80821R (2011). 19. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,” Opt. Lett. 29,1671–1673 (2004). 20. J. Vargas, J. A. Quiroga, A. Ávarez Herrero, and T. Belenguer, “Phase-shifting interferometry based on induced vibrations,” Opt. Express 19, 584–596 (2011). 21. M. Silva-López, L. Bastide, R. Restrepo, P. G. Parejo, and A. Álvarez Herrero, “Evaluation of a liquid crystal based polarization modulator for a space mission thermal environment,” Sens. Actuators A: Phys. 266, 247–257 (2017). 22. S. Reichelt, “Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators,” Appl. Opt. 52, 2610–2618 (2013). 23. D. Engstron, M. Persson, J. Bengtsson, and M. Goksor, “Calibration of spatial light modulators suffering from spatially varying phase response,” Opt. Express 21, 16086–16103 (2013). | |
| dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | © The Authors 2020 | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.title | Advanced iterative algorithm for phase calibration of spatial light modulators integrated in optical instrumentation in a vibration environment | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| oaire.awardNumber | ESP2016-77548-C5-5-R | |
| oaire.awardNumber | RTI2018-096886-B-C52 | |
| oaire.awardTitle | SPACE SOLAR PHYSICS: PHI FOR SOLAR ORBITER AND IMAX AND SP FOR SUNRISE | |
| oaire.awardTitle | SPACE SOLAR PHYSICS | |
| oaire.awardURI | https://hdl.handle.net/20.500.12666/1629 | |
| oaire.awardURI | https://hdl.handle.net/20.500.12666/1630 | |
| relation.isAuthorOfPublication | 6a403b13-af73-4b0c-9b28-c0582da3bc65 | |
| relation.isAuthorOfPublication | 28d425c8-04fe-441c-ad3a-cf4c72051bf9 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6a403b13-af73-4b0c-9b28-c0582da3bc65 | |
| relation.isProjectOfPublication | c761844e-dfe5-4743-ad69-e89e794f01ba | |
| relation.isProjectOfPublication | 00b4a2ea-7a11-46e9-bc66-f1e309af0a62 | |
| relation.isProjectOfPublication.latestForDiscovery | c761844e-dfe5-4743-ad69-e89e794f01ba |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Advanced iterative algorithm for phase calibration of spatial light modulators integrated in optical instrumentation in a vibration environment.pdf
- Tamaño:
- 1.1 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 4.77 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:










