Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/1014
Registro completo de metadatos
Campo DC Valor Idioma
dc.rights.license© Author(s) 2025.es
dc.contributor.authorArruego, I.es
dc.contributor.authorApéstigue, V.es
dc.contributor.authorBastide, L.es
dc.contributor.authorAzcue, J.es
dc.contributor.authorGonzalo Melchor, Alejandroes
dc.contributor.authorMartínez Oter, J.es
dc.contributor.authorCaballero, N.es
dc.contributor.authorLiaño, G.es
dc.contributor.authorTorres, J.es
dc.contributor.authorGonzález Guerrero, M.es
dc.contributor.authorSerrano, F.es
dc.contributor.authorDe Mingo, J. R.es
dc.contributor.authorRivas, J.es
dc.contributor.authorAndrés Santiuste, N.es
dc.contributor.authorCarrasco, I.es
dc.contributor.authorFernández, M.es
dc.contributor.authorReina, M.es
dc.contributor.authorRuiz Carrasco, J. R.es
dc.contributor.authorPoyatos Martínez, D.es
dc.contributor.authorScaccabarozzi, D.es
dc.contributor.authorFrövel, M.es
dc.contributor.authorDe la Torre, M. A.es
dc.contributor.authorMartín, S.es
dc.contributor.authorPedraza, R.es
dc.date.accessioned2025-01-27T10:01:35Z-
dc.date.available2025-01-27T10:01:35Z-
dc.date.issued2025-01-23-
dc.identifier.citationEPSC Abstracts 17: EPSC2024-92 (2024)es
dc.identifier.otherhttps://meetingorganizer.copernicus.org/EPSC2024/EPSC2024-92.htmles
dc.identifier.urihttp://hdl.handle.net/20.500.12666/1014-
dc.descriptionIgnacio Arruego1 and the MarsConnect team: V. Apéstigue, L. Bastide, J. Azcue, A. Gonzalo, J. Martínez-Oter, N. Caballero, G. Liaño, J. Torres, M. González Guerrero, F. Serrano, J.R. de Mingo, J. Rivas, N. Andrés, I. Carrasco, M. Fernández, M. Reina, J. R. Ruiz-Carrasco, D. Poyatos, D. Scaccabarozzi, M. Frovel, M.A. de la Torre, S. Martín, R. Pedraza.es
dc.description.abstractIn the last 15 years the Payloads Department of INTA has developed a variety of compact sensors for different Mars exploration missions. This includes a magnetometer (72 g), a dust sensor (35 g; with UC3M, Spain) and a radiometer (114 g) for the MetNet penetrator [1]; a radiometer (25 g optical head, 56 g processor) for DREAMS (Schiaparelli) [2], [3]; a radiometer plus camera (1 kg) for MEDA on Perseverance [4], [5]; a 110 g dust sensor (with UC3M, Spain) [6] and a radiometer plus spectrometer (180 g) for the METEO package [7] on Kazachock lander (ExoMars’22) and a 0.5 kg nephelometer (with INAF and Politecnico di Milano, Italy) [8] for the Dust Complex on the same lander. Equally miniaturized sensors exist for the measurement of the most relevant environmental variables, such as radiative balance, air temperature, wind, humidity, pressure, dust saltation, electric field, etc. with enough flight heritage (or technology readiness level) on the same sensors’ suites on Perseverance and ExoMars, as well as Insight or Curiosity before [9]. In summary, a large portfolio of miniature sensors for environmental research is available at present. However, a qualitative leap on (in-situ) Mars climate science will only happen through the deployment of networks of environmental stations throughout large areas of the planet. Given the relevance of these measurement not only from a scientific point of view but also because of their importance for future human missions to Mars, this is an objective considered in several Mars exploration roadmaps such as ESA’s Terrae Novae 2030+ [10]. With this aim, we propose a microprobe named MarsConnect. It consists of a 10-12 kg probe with a rigid, deployable aeroshell/TPS and a 5-6 kg impactor/penetrator carrying up to 1 kg of environmental sensors. Many of these probes could be launched to Mars with a single carrier, to deploy meteorological networks. This works inherits different concepts from previous similar proposals, very specially MetNet and MiniPINS [11], but simplifying even more the EDL concept and reducing the mass, at the expense of an increased impact speed. The probe’s aeroshell is divided into a backshell and two halves of a frontshield that are opened in the low supersonic regime to drop the penetrator. This one is equipped with a drag-skirt that provides some braking and increases stability. The expected impact speed, highly dependent on the atmospheric density profile, entry conditions and landing altitude, ranges from less than 100 to 140 m/s. The whole system is designed to be compatible with a wide range of scenarios and landing sites and is sized to endure more than one Martian year operating on the planet’s surface.es
dc.language.isoenges
dc.publisherEuroplanetes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleMars environmental networks through the MarsConnect microprobeses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.5194/epsc2024-92-
dc.description.peerreviewedPreprintes
dc.type.hasVersioninfo:eu-repo/semantics/updatedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.type.coarhttp://purl.org/coar/resource_type/c_c94fes
Aparece en las colecciones: (Espacio) Comunicaciones de Congresos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
EPSC2024-92-print.pdf368,62 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons