Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12666/424
Title: Fingerprinting molecular and isotopic biosignatures on different hydrothermal scenarios of Iceland, an acidic and sulfur-rich Mars analog
Authors: Sánchez García, L.
Carrizo, D.
Molina, A.
Muñoz Iglesias, V.
Lezcano, M. A.
Fernández Sampedro, M.
Parro García, V.
Prieto Ballesteros, O.
Keywords: Mars Carters;MSL;Mars
Issue Date: Dec-2020
Publisher: Springer Nature
DOI: 10.1038/s41598-020-78240-2
Published version: https://www.nature.com/articles/s41598-020-78240-2
Citation: Scientific Report 10 (1): 21196
Abstract: Detecting signs of potential extant/extinct life on Mars is challenging because the presence of organics on that planet is expected to be very low and most likely linked to radiation-protected refugia and/or preservative strategies (e.g., organo-mineral complexes). With scarcity of organics, accounting for biomineralization and potential relationships between biomarkers, mineralogy, and geochemistry is key in the search for extraterrestrial life. Here we explored microbial fingerprints and their associated mineralogy in Icelandic hydrothermal systems analog to Mars (i.e., high sulfur content, or amorphous silica), to identify potentially habitable locations on that planet. The mineralogical assemblage of four hydrothermal substrates (hot springs biofilms, mud pots, and steaming and inactive fumaroles) was analyzed concerning the distribution of biomarkers. Molecular and isotopic composition of lipids revealed quantitative and compositional differences apparently impacted by surface geothermal alteration and environmental factors. pH and water showed an influence (i.e., greatest biomass in circumneutral settings with highest supply and turnover of water), whereas temperature conditioned the mineralogy that supported specific microbial metabolisms related with sulfur. Raman spectra suggested the possible coexistence of abiotic and biomediated sources of minerals (i.e., sulfur or hematite). These findings may help to interpret future Raman or GC–MS signals in forthcoming Martian missions.
URI: http://hdl.handle.net/20.500.12666/424
ISSN: 2045-2322
Appears in Collections:(CAB) Artículos

Files in This Item:
File Description SizeFormat 
s41598-020-78240-2.pdf2,31 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons