Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12666/616
Title: Numerical assessment in aeronautics for electromagnetic environmental effects
Authors: Ruiz Cabello Núñez, M. D.
Fernández Romero, S.
Pous Solà, M.
Poyatos Martínez, David
Fernández Chimeno, M.
Gutierrez, Guadalupe G.
Rubio Bretones, Amelia
Añó cancela, M.
Ferran, Silva
Álvarez, Jesús
Fernández Pantoja, Mario
Nuño, Luis
Gómez Martín, Rafael
Escot Bocanegra, David
Rui Costa, Pere J.
Trallero, Rafael
Jauregui Telleria, Ricardo I.
González García, Salvador
Keywords: Electrical and electronic Systems;E3 Certification;Aeronautics
Issue Date: 5-Jan-2018
Publisher: IGI Global Publisher of Timely Knowledge
DOI: 10.4018/978-1-5225-5415-8.ch005
Published version: https://www.igi-global.com/gateway/chapter/199514
Citation: IGI Global Publisher of Timely Knowledge
Abstract: Electrical and electronic systems on board air vehicles are susceptible to electromagnetic interference (EMI). This has made the topic of electromagnetic compatibility (EMC), a major concern for aircraft safety. The use of composite materials worsens this situation, for their poor shielding and low conductive capabilities. Some of the main experimental E3 certification scenarios used in aeronautics are revisited in this chapter. Guidelines to achieve simple, yet accurate, numerical models of them are provided, with appropriate tradeoffs between computational simplicity and accuracy. The numerical method, endowed with extended capabilities, has been chosen for this task for its ability and efficiency to deal with complex problems of arbitrary materials. The feature selective validation (FSV) IEEE standard procedure, commonly used to quantify the comparison of data in electromagnetic problems, is also revisited. The simulation of three different air vehicles in several certification scenarios is finally described and the numerical results compared to experimental data.
Description: Modern aircrafts have become increasingly dependent on electronic equipment to control its systems. This has led to new safety concerns with respect to their immunity levels against EM hazards and, in consequence, their assessment by aircraft manufacturers. Besides, the variety of potential EMI sources are increasing dramatically due to the appearing of new artificial sources in addition to the natural ones. This situation is aggravated by the pervasive use of composite materials in aircraft structure: CFC, CFRC, CFRP, etc. These materials, lighter and stronger from the mechanical point of view, are poorer conductors than metals and therefore have lower shielding capabilities. From the EMC point of view, the main EM threats for an AV can be summarized as follows: • Lightning Indirect Effects (LIE): 0 to ~50 MHz: Indirect effects are caused by the electric current flowing through the structure and internal wiring as a consequence of the impact of a lightning strike. This is, undoubtedly, the most important threat to onboard electronic equipment, becoming critical for aircrafts mostly made of CFCs (Meyer et al., 2008) like, for instance, modern UAVs. • High Intensity Radiated Fields (HIRF): 0 to ~100 MHz: This threat is caused by artificial intentional or unintentional, external or internal RF sources. These are constantly increasing in number: TV, mobile networks (3G/4G/5G), radars, navigation satellite systems, etc. and may couple to cables and equipment, potentially causing malfunction for high field levels. • Electromagnetic Pulses (EMP) of Nuclear or Non-Nuclear Origin: 0-100 MHz: Most of current non-nuclear low-level electromagnetic pulse generators are not capable of radiating enough EM energy to produce a significant damage. However, novel devices are appearing, which are able to involve much higher power levels with extremely short durations. These modern weapons, also named E-bombs, are becoming cheaper and susceptible of being used in terrorist acts. They can wreak havoc on computers and networks, yielding temporary disruptive effects (Radasky et al., 2004; Radasky, 2014). In all these cases, as a result of the exposition to the EM hazard, transient currents will flow along the aircraft surface, creating EM fields which penetrate into the fuselage through apertures such as windows, or by diffusion through parts made of poorly conducting materials (Figure 1). Inside the aircraft, these transients induce currents to the EWIS, which, in turn, couple to equipment, potentially compromising their safe operation or even creating permanent damage. Several aviation incidents, reported in the last quarter of the past century, triggered the attention of aviation agencies to include strict EMC requirements for the airworthiness certification processes of AVs during their whole life-cycle. Before a newly developed AV model is permitted to operate, it must get a certificate of airworthiness issued by an aviation regulatory authority. For instance, in civil aviation, the regulatory authority is the EASA in the EU, or the FAA in the US. Within the EMC context, certification methods are mainly based on experimental tests and the guidelines provided in several standardized documents and certification guides: Eurocae ED-105/SAE-ARP5416; SAE-ARP5415; Eurocae ED-107/SAE-ARP5583; MIL-STD-202; MIL-STD-461;EUROCAE ED-14/RTCA/DO-160, MIL-STD-464, STANAG 4370, etc..
URI: http://hdl.handle.net/20.500.12666/616
ISBN: 9781522554158 ; 1522554157 ; 9781522554165
Appears in Collections:(Espacio) Libros y partes de libros

Files in This Item:
File Description SizeFormat 
acceso-restringido.pdf221,73 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.