Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/685
Título : The Coordinate Reaction Model: An Obstacle to Interpreting the Emergence of Chemical Complexity
Autor : Ribó, J. M.
Hochberg, D.
Palabras clave : Reaction model;Chemical complexity
Fecha de publicación : 14-jul-2021
Editorial : Chemistry Europe: European Chemical Societies Publishing
DOI: 10.1002/chem.202101562
Versión del Editor: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202101562
Citación : Chemistry: A European Journal 27(52): 13098-13106
Resumen : The way chemical transformations are described by models based on microscopic reversibility does not take into account the irreversibility of natural processes, and therefore, in complex chemical networks working in open systems, misunderstandings may arise about the origin and causes of the stability of non-equilibrium stationary states, and general constraints on evolution in systems that are far from equilibrium. In order to be correctly simulated and understood, the chemical behavior of complex systems requires time-dependent models, otherwise the irreversibility of natural phenomena is overlooked. Micro reversible models based on the reaction-coordinate model are time invariant and are therefore unable to explain the evolution of open dissipative systems. The important points necessary for improving the modeling and simulations of complex chemical systems are: a) understanding the physical potential related to the entropy production rate, which is in general an inexact differential of a state function, and b) the interpretation and application of the so-called general evolution criterion (GEC), which is the general thermodynamic constraint for the evolution of dissipative chemical systems.
URI : http://hdl.handle.net/20.500.12666/685
E-ISSN : 1521-3765
ISSN : 0947-6539
Aparece en las colecciones: (CAB) Artículos



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons