Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/691
Registro completo de metadatos
Campo DC Valor Idioma
dc.rights.license© Author(s) 2021.es
dc.contributor.authorCórdoba Jabonero, C.-
dc.contributor.authorSicard, M.-
dc.contributor.authorLópez Cayuela, M. A.-
dc.contributor.authorAnsmann, A.-
dc.contributor.authorComerón, A.-
dc.contributor.authorZorzano, María Paz-
dc.contributor.authorRodríguez Gómez, A.-
dc.contributor.authorMuñóz Porcar, C.-
dc.contributor.otherUnidad de Excelencia Científica María de Maeztu Grupo de investigación en Teledetección, Antenas, Microondas y Superconductividad UNIVERSITAT POLITECNICA DE CATALUNYA, MDM-2016-0600-
dc.contributor.otherUnidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737-
dc.date.accessioned2022-03-18T12:07:33Z-
dc.date.available2022-03-18T12:07:33Z-
dc.date.issued2021-04-30-
dc.identifier.citationAtmospheric Chemistry and Physics 21: 6455-6479(2021)es
dc.identifier.issn1680-7316-
dc.identifier.otherhttps://acp.copernicus.org/articles/21/6455/2021/-
dc.identifier.urihttp://hdl.handle.net/20.500.12666/691-
dc.description.abstractThe short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and 30 June), 1350 km apart from each other. Major data are obtained from AERONET and polarised Micro-Pulse Lidar (P-MPL) observations. Modelling is used to describe the different dust pathways, as observed at both sites. The coarse dust (Dc) and fine dust (Df) components (with total dust, DD = Dc + Df) are identified in the profiles of the total particle backscatter coefficient using the POLIPHON (POlarisation LIdar PHOtometer Networking) method in synergy with P-MPL measurements. This information is used to calculate the relative mass loading and the centre-of-mass height, as well as the contribution of each dust mode to the total dust DRE. Several aspects of the ageing of dust are put forward. The mean dust optical depth and its ratios are, respectively, 0.153 and 24 % in Barcelona and 0.039 and 38 % in Leipzig; this Df increase in Leipzig is attributed to a longer dust transport path in comparison to Barcelona. The dust produced a cooling effect on the surface with a mean daily DRE of −9.1 and −2.5 W m−2, respectively, in Barcelona and Leipzig, but the DRE ratio is larger for Leipzig (52 %) than for Barcelona (37 %). Cooling is also observed at the top of the atmosphere (TOA), although less intense than on the surface. However, the DRE ratio at the TOA is even higher (45 % and 60 %, respectively, in Barcelona and Leipzig) than on the surface. Despite the predominance of Dc particles under dusty conditions, the SW radiative impact of Df particles can be comparable to, even higher than, that induced by the Dc ones. In particular, the DRE ratio in Barcelona increases by +2.4 % d−1 (surface) and +2.9 % d−1 (TOA) during the dusty period. This study is completed by a second paper about the long-wave and net radiative effects. These results are especially relevant for the next ESA EarthCARE mission (planned in 2022) as it is devoted to aerosol–cloud–radiation interaction research.es
dc.description.sponsorshipThe authors thank the images provided from the NMMB/BSC-Dust model, operated by the Barcelona Supercomputing Centre (BSC) (https://ess.bsc.es/bsc-dust-daily-forecast; last access: 30 January 2020). The authors also gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the pictures from the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov; last access: 28 April 2020) used in this work. The MPLNET project is funded by the NASA Radiation Sciences Program and Earth Observing System. The MPLNET staff at NASA GSFC is warmly acknowledged for the continuous help in keeping the MPL systems and the data analysis up to date. We particularly thank Judd Welton for providing the MPL unit in place at the Barcelona site. This research was funded by the Spanish Min istry of Science, Innovation and Universities (CGL2017-90884-REDT and PRX18/00137 “Salvador de Madariaga” programme), the Spanish Ministry of Science and Innovation (PID2019- 104205GB-C21 and PID2019-103886RB-I00), the H2020 programme from the European Union (ACTRIS, GA no. 654109, 778349, and 871115), and the Unity of Excellence “María de Maeztu“ (MDM-2016-0600) financed by the Spanish State Research Agency (AEI). MPZ has been partially funded by the AEI (Unity of Excellence “María de Maeztu” - Centro de Astrobiología (CSIC-INTA), MDM-2017-0737). MALC is supported by the INTA predoctoral contract programme.es
dc.language.isoenges
dc.publisherEuropean Geoscience Union (EGU)es
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-90884-REDT/ES/AEROSOLES, NUBES Y GASES TRAZA ACTRIS‐ESPAÑA/-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103886RB-I00/ES/INERGIA DE TELEDETECCION PASIVA Y ACTIVA PARA LA INVESTIGACION DE LAS INTERACIONES AEROSOLES-NUBES (RESA-CI)/-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104205GB-C21-
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAerosol Radiativees
dc.subjectSummer 2019es
dc.titleAerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effectes
dc.typeinfo:eu-repo/semantics/articlees
dc.contributor.orcidCórdoba Jabonero, C. [0000-0003-4859-471X]-
dc.contributor.orcidSicard, M. [0000-0001-8287-9693]-
dc.contributor.orcidLópez Cayuela, M. A. [0000-0002-8825-830X]-
dc.contributor.orcidComerón, A. [0000-0001-6886-3679]-
dc.contributor.orcidRodríguez Gómez, A. [0000-0002-9209-0685]-
dc.identifier.doi10.5194/acp-21-6455-2021-
dc.identifier.e-issn1680-7324-
dc.contributor.funderMinisterio de Ciencia e Innovación (MICINN)-
dc.contributor.funderAgencia Estatal de Investigación (AEI)-
dc.contributor.funderEuropean Research Council (ERC)-
dc.contributor.funderInstituto Nacional de Técnica Aeroespacial (INTA)-
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO)-
dc.description.peerreviewedPeerreviewes
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100010687-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329-
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/654109-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778349-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/871115-
Aparece en las colecciones: (Espacio) Artículos



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons