Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/772
Título : Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors
Autor : López Rodríguez, P.
Fernández Recio, R.
Bravo, I.
Gardel, Alfredo
Lázaro, José L.
Rufo, Elena
Fecha de publicación : 22-abr-2013
Editorial : Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/s130405381
Versión del Editor: https://www.mdpi.com/1424-8220/13/4/5381
Citación : Sensors 13(4): 5381-5402
Resumen : This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.
URI : http://hdl.handle.net/20.500.12666/772
ISSN : 1424-8220
Aparece en las colecciones: (Espacio) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Computational burden resulting from image recognition of high resolution radar sensors.pdf1,32 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons